Springe direkt zu Inhalt

278
Composition-driven Archetype Dynamics in Polyoxovanadates

A. Kondinski, M. Rasmussen, S. Mangelsen, N. Pienack, V. Simjanoski, C. Näther, D. L. Stares, C. A. Schalley, W. Bensch – 2022

Molecular metal oxides often adopt common structural frameworks (i.e. archetypes), many of them boasting impressive structural robustness and stability. However, the ability to adapt and to undergo transformations between different structural archetypes is a desirable material design feature offering applicability in different environments. Using systems thinking approach that integrates synthetic, analytical and computational techniques, we explore the transformations governing the chemistry of polyoxovanadates (POVs) constructed of arsenate and vanadate building units. The water-soluble salt of the low nuclearity polyanion [V6As8O26]4- can be effectively used for the synthesis of the larger spherical (i.e. kegginoidal) mixed-valent [V12As8O40]4− precipitate, while the novel [V10As12O40]8− POVs having tubular cyclic structures are another, well soluble product. Surprisingly, in contrast to the common observation that high-nuclearity polyoxometalate (POM) clusters are fragmented to form smaller moieties in solution, the low nuclearity [V6As8O26]4- anion is in-situ transformed into the higher nuclearity cluster anions. The obtained products support a conceptually new model that is outlined in this article and that describes a continuous evolution between spherical and cyclic POV assemblies. This new model represents a milestone on the way to rational and designable POV self-assembly.

Title
278
Composition-driven Archetype Dynamics in Polyoxovanadates
Author
A. Kondinski, M. Rasmussen, S. Mangelsen, N. Pienack, V. Simjanoski, C. Näther, D. L. Stares, C. A. Schalley, W. Bensch
Date
2022-04-29
Identifier
DOI: 10.1039/D2SC01004F
Citation
Chem. Sci. 2022, 13, 6397-6412.