Springe direkt zu Inhalt

Quantification of electron correlation effects: Quantum Information Theory vs Method of Increments

Stemmle, Christian and Paulus, Beate – 2019

Understanding electron correlation is crucial for developing new concepts in electronic structure theory, especially for strongly correlated electrons. We compare and apply two different approaches to quantify correlation contributions of orbitals: Quantum Information Theory (QIT) based on a Density Matrix Renormalization Group (DMRG) calculation and the Method of Increments (MoI). Although both approaches define very different correlation measures, we show that they exhibit very similar patterns when being applied to a polyacetelene model system. These results suggest one may deduce from one to the other, allowing the MoI to leverage from QIT results by screening correlation contributions with a cheap (“sloppy”) DMRG with a reduced number of block states. Or the other way around, one may select the active space in DMRG from cheap one‐body MoI calculations.

Title
Quantification of electron correlation effects: Quantum Information Theory vs Method of Increments
Author
Stemmle, Christian and Paulus, Beate
Date
2019
Identifier
DOI: 10.1002/qua.26007
Source(s)
Citation
Int. J. Quantum Chem. 2019, 119, e26007