Springe direkt zu Inhalt

Electronic structure and the ground-state properties of cobalt antimonide skutterudites: Revisited with different theoretical methods

Hammerschmidt, Lukas and Schlecht, Sabine and Paulus, Beate – 2012

We have computed the lattice structure, bulk modulus, electronic structure, and cohesive energies for the CoSb3 skutterudite by performing plane wave and atomic basis set DFT, as well as HF atomic basis set calculations. We find that plane wave and atomic basis set DFT calculations compare almost perfectly well. Band gaps vary significantly, depending on the applied functional and subtle changes of the lattice structure of CoSb3. Where LDA strongly overestimates the binding, cohesive energies are reasonably well described by GGA and hybrid DFT functionals within 2 eV in comparison to experiment. HF results are unreasonably far off compared to DFT and experimental values for all calculated properties, which indicates that correlation effects play an important role in the characterization of skutterudites.

Title
Electronic structure and the ground-state properties of cobalt antimonide skutterudites: Revisited with different theoretical methods
Author
Hammerschmidt, Lukas and Schlecht, Sabine and Paulus, Beate
Date
2012
Identifier
DOI: 10.1002/pssa.201228453
Source(s)
Citation
Phys. Status Solidi A 2012, 210, 131-139