Springe direkt zu Inhalt

650. Polyglycerol-Based Hydrogel as Versatile Support Matrix for 3D Multicellular Tumor Spheroid Formation

B. Thongrom, P. Tang, S. Arora, R. Haag – 2023

Hydrogel-based artificial scaffolds are essential for advancing cell culture models from 2D to 3D, enabling a more realistic representation of physiological conditions. These hydrogels can be customized through crosslinking to mimic the extracellular matrix. While the impact of extracellular matrix scaffolds on cell behavior is widely acknowledged, mechanosensing has become a crucial factor in regulating various cellular functions. cancer cells’ malignant properties depend on mechanical cues from their microenvironment, including factors like stiffness, shear stress, and pressure. Developing hydrogels capable of modulating stiffness holds great promise for better understanding cell behavior under distinct mechanical stress stimuli. In this study, we aim to 3D culture various cancer cell lines, including MCF-7, HT-29, HeLa, A549, BT-474, and SK-BR-3. We utilize a non-degradable hydrogel formed from alpha acrylate-functionalized dendritic polyglycerol (dPG) and thiol-functionalized 4-arm polyethylene glycol (PEG) via the thiol-Michael click reaction. Due to its high multivalent hydroxy groups and bioinert ether backbone, dPG polymer was an excellent alternative as a crosslinking hub and is highly compatible with living microorganisms. The rheological viscoelasticity of the hydrogels is tailored to achieve a mechanical stiffness of approximately 1 kPa, suitable for cell growth. Cancer cells are in situ encapsulated within these 3D network hydrogels and cultured with cell media. The grown tumor spheroids were characterized by fluorescence and confocal microscopies. The average grown size of all tumoroid types was ca. 150 µm after 25 days of incubation. Besides, the stability of a swollen gel remains constant after 2 months at physiological conditions, highlighting the nondegradable potential. The successful formation of multicellular tumor spheroids (MCTSs) for all cancer cell types demonstrates the versatility of our hydrogel platform in 3D cell growth.

650. Polyglycerol-Based Hydrogel as Versatile Support Matrix for 3D Multicellular Tumor Spheroid Formation
B. Thongrom, P. Tang, S. Arora, R. Haag
DOI: 10.3390/gels9120938
Gels, 2023, 9 (12), 938