Springe direkt zu Inhalt

590. Scaffold Flexibility Controls Binding of Herpes Simplex Virus Type 1 with Sulfated Dendritic Polyglycerol Hydrogels Fabricated by Thiol-Maleimide Click Reaction

B. Thongrom, A. Sharma, C. Nie, E. Quaas, M. Raue, S. Bhatia, R. Haag – 2022

Herpes Simplex Virus -1 (HSV) with a diameter of 155 – 240 nm uses electrostatic interactions to bind with the heparan sulfate present on the cell surface to initiate infection. In this work, we aim to deter the initial contact using polysulfate-functionalized hydrogels. The hydrogels provide a large contact surface area for viral interaction and sulfated hydrogels are good mimics for the native heparan sulfate. In this work, we have synthesized hydrogels of different flexibilities, determined by rheology. We prepared gels within an elastic modulus range of 10 – 1119 Pa with a mesh size of 80 – 15 nm, respectively. The virus binding studies carried out with the plaque assay show that the most flexible sulfated hydrogel performs the best in binding HSV viruses. These studies prove that polysulfated hydrogels are a viable option as HSV-1 antiviral compounds. Furthermore, such hydrogel networks are also physically similar to naturally occurring mucus gels and therefore may be used as mucus substitutes.

Title
590. Scaffold Flexibility Controls Binding of Herpes Simplex Virus Type 1 with Sulfated Dendritic Polyglycerol Hydrogels Fabricated by Thiol-Maleimide Click Reaction
Author
B. Thongrom, A. Sharma, C. Nie, E. Quaas, M. Raue, S. Bhatia, R. Haag
Date
2022
Identifier
DOI: 10.1002/mabi.202100507
Source(s)
Citation
Macromol. Biosci., 2022, in press
Type
Text