Springe direkt zu Inhalt

530. Bioinspired Confinement of Upconversion Nanoparticles for Improved Performance in Aqueous Solution

P. U. Bastian, L. Yu, A. L. de Guereñu, R. Haag, M. U. Kumke – 2020

The resonance energy transfer (RET) from NaYF4:Yb,Er upconverting nanoparticles (UNCPs) to a dye (5-carboxytetramethylrhodamine (TAMRA)) was investigated by photoluminescence experiments and microscale thermophoresis (MST). The dye was excited via RET from the UCNPs which was excited in the near-infrared (NIR). The change of the dye diffusion speed (free vs coupled) was investigated by MST. RET shows significant changes in the decay times of the dye as well as of the UCNPs. MST reveals significant changes in the diffusion speed. A unique amphiphilic coating polymer (customized mussel protein (CMP) polymer) for UCNP surface coating was used, which mimics blood protein adsorption and mussel food protein adhesion to transfer the UCNP into the aqueous phase and to allow surface functionalization. The CMP provides very good water dispersibility to the UCNPs and minimizes ligand exchange and subsequent UCNP aging reactions because of the interlinkage of the CMP on the UCNP surface. Moreover, CMP provides N3-functional groups for click chemistry-based functionalization demonstrated with the dye 5-carboxytetramethylrhodamine (TAMRA). This establishes the principle coupling scheme for suitable biomarkers such as antibodies. The CMP provides very stable aqueous UCNP dispersions that are storable up to 3 years in a fridge at 5 °C without dissolution or coagulation. The outstanding properties of CMP in shielding the UCNP from unwanted solvent effects is reflected in the distinct increase of the photoluminescence decay times after UCNP functionalization. The UCNP-to-TAMRA energy transfer is also spectroscopically investigated at low temperatures (4–200 K), revealing that one of the two green Er(III) emission bands contributes the major part to the energy transfer. The TAMRA fluorescence decay time increases by a factor of 9500 from 2.28 ns up to 22 μs due to radiationless energy transfer from the UCNP after NIR excitation of the latter. This underlines the unique properties of CMP as a versatile capping ligand for distinctly improving the UCNPs’ performance in aqueous solutions, for coupling of biomolecules, and for applications for in vitro and in vivo experiments using UCNPs as optical probes in life science applications.

Title
530. Bioinspired Confinement of Upconversion Nanoparticles for Improved Performance in Aqueous Solution
Author
P. U. Bastian, L. Yu, A. L. de Guereñu, R. Haag, M. U. Kumke
Date
2020
Identifier
DOI: 10.1021/acs.jpcc.0c09798
Source(s)
Citation
J. Phys. Chem. C 2020, 124, 52, 28623–28635
Type
Text