Springe direkt zu Inhalt

Efficient skin interactions of graphene derivatives: challenge, opportunity or both?

F. Zabihi, Z. Tu, S. Kaessmeyer, F. Schumacher, F. Rancan, B. Kleuser, C. Boettcher, K. Ludwig, J. Plendl, S. Hedtrich, A. Vogt and R. Haag – 2023

Interactions between graphene, with its wide deployment in consumer products, and skin, the body's largest organ and first barrier, are highly relevant with respect to toxicology and dermal delivery. In this work, interaction of polyglycerol-functionalized graphene sheets, with 200 nm average lateral size and different surface charges, and human skin was studied and their potential as topical delivery systems were investigated. While neutral graphene sheets showed no significant skin interaction, their positively and negatively charged counterparts interacted with the skin, remaining in the stratum corneum. This efficient skin interaction bears a warning but also suggests a new topical drug delivery strategy based on the sheets' high loading capacity and photothermal property. Therefore, the immunosuppressive drug tacrolimus was loaded onto positively and negatively charged graphene sheets, and its release measured with and without laser irradiation using liquid chromatography tandem-mass spectrometry. Laser irradiation accelerated the release of tacrolimus, due to the photothermal property of graphene sheets. In addition, graphene sheets with positive and negative surface charges were loaded with Nile red, and their ability to deliver this cargo through the skin was investigated. Graphene sheets with positive surface charge were more efficient than the negatively charged ones in enhancing Nile red penetration into the skin.

Title
Efficient skin interactions of graphene derivatives: challenge, opportunity or both?
Author
F. Zabihi, Z. Tu, S. Kaessmeyer, F. Schumacher, F. Rancan, B. Kleuser, C. Boettcher, K. Ludwig, J. Plendl, S. Hedtrich, A. Vogt and R. Haag
Date
2023
Identifier
DOI: 10.1039/d3na00574g
Citation
Nanoscale Adv 2023, 5 (21), 5923-5931
Language
eng
Type
Text