Springe direkt zu Inhalt

Insights into a Defective Potassium Sulfido Cobaltate: Giant Magnetic Exchange Bias, Ionic Conductivity, and Electrical Permittivity

AdvElMater24_AG

AdvElMater24_AG

M. Reza Ghazanfari, Simon Steinberg, Konrad Siemensmeyer, Johannes C. Vrijmoed, Mirko Tallu, Stefanie Dehnen, Günther Thiele – 2024

The novel potassium sulfido cobaltate, K2[Co3S4] is introduced, with 25% vacancies of the cobalt positions within a layered anionic sublattice. The impedance and dielectric investigations indicate a remarkable ionic conductivity of 21.4 mS cm−1 at room temperature, which is in the range of highest ever reported values for potassium-ions, as well as a high electrical permittivity of 2650 at 1 kHz, respectively. Magnetometry results indicate an antiferromagnetic structure with giant intrinsic exchange bias fields of 0.432 and 0.161 T at 3 and 20 K respectively, potentially induced by a combination of the interfacial effect of combined magnetic anionic and nonmagnetic cationic sublattices, as well as partial spin canting. The stability of the exchange bias behavior is confirmed by a training effect of less than 18% upon 10 hysteresis cycles. The semiconductivity of the material is determined, both experimentally and theoretically, with a bandgap energy of 1.68 eV. The findings render this material as a promising candidate for both, active electrode material in potassium-ion batteries, and for spintronic applications.

Title
Insights into a Defective Potassium Sulfido Cobaltate: Giant Magnetic Exchange Bias, Ionic Conductivity, and Electrical Permittivity
Author
M. Reza Ghazanfari, Simon Steinberg, Konrad Siemensmeyer, Johannes C. Vrijmoed, Mirko Tallu, Stefanie Dehnen, Günther Thiele
Date
2024
Citation
Adv. Electron. Mater. 2024, 2400038.