Springe direkt zu Inhalt

Ultraviolet Photolysis Studies on XeO₄ in Noble‐Gas and F₂ Matrices and the Formation and Characterization of a New Xeⱽᴵᴵᴵ Oxide, (η ²‐O₂)XeO₃

Thomas Vent-Schmidt, James T. Goettel, Gary J. Schrobilgen, Sebastian Riedel – 2015

The photolytic behavior of the thermochemically unstable xenon(VIII) oxide XeO₄ was investigated by UV irradiation in noble‐gas and F₂ matrices. Photolysis of Xe¹⁶O₄ or Xe¹⁸O₄ in noble‐gas matrices at 365 nm yielded XeO₃ and a new xenon(VIII) oxide, namely, (η²‐O₂)XeO₃, which, along with XeO₄, was characterized by matrix‐isolation IR spectroscopy and quantum‐chemical calculations. Calculations of the UV spectrum showed that the photodecomposition is induced by an n→σ* transition, but the nature of the excitation differs when different light sources are used. There is strong evidence for the formation of mobile ¹D excited O atoms in the case of excitation at 365 nm, which led to the formation of (η²‐O₂)XeO₃ by reaction with XeO₄. Matrix‐isolation IR spectroscopy in Ne and Ar matrices afforded the natural‐abundance xenon isotopic pattern for the ν₃(T₂) stretching mode of Xe¹⁶O₄, and ¹⁸O enrichment provided the ¹⁶O/¹⁸O isotopic shifts of XeO₄ and (η²‐O₂)XeO₃.

Titel
Ultraviolet Photolysis Studies on XeO₄ in Noble‐Gas and F₂ Matrices and the Formation and Characterization of a New Xeⱽᴵᴵᴵ Oxide, (η ²‐O₂)XeO₃
Verfasser
Thomas Vent-Schmidt, James T. Goettel, Gary J. Schrobilgen, Sebastian Riedel
Schlagwörter
High Oxidation States, Matrix-Isolation Spectroscopy, Xenon, Oxides, Noble Gas Compounds
Datum
2015
Quelle/n
Erschienen in
Chem. Eur. J. 2015, 21, 11244 – 11252.
Zitierweise
DOI: 10.1002/chem.201500964
Sprache
eng