Springe direkt zu Inhalt

Aktuelles Forschungsprojekt

Enhancing Students’ Subject-Matter Knowledge and Chemistry-Related, Communicative Competences Through Language in Chemistry Teaching

 

In times of rapidly increasing diversity – particularly in societies largely affected by immigration – stakeholders in science education are more than ever required to pay attention to students who face specific challenges in their individual learning biographies (Stanat, Schipolowski, Mahler, Weirich & Henschel, 2019, 444–445). Recent national as well as international large-scale assessment like the PISA survey (Reiss, Weis, Klieme, & Köller, 2019, 77) or the IQB-Bildungstrend (Stanat et al., 2019, 445) identified students whose language level is not advanced enough to meet the academic and thus socially defined objectives formulated in school curricula and the German Educational Standards (Bolte & Pastille, 2010, 34–35). Under-developed competences evidentially have a negative impact on learning in STEM subjects (Bird & Welford, 1995, 396–397; Bolte & Pastille, 2010, 27; Childs, Markic & Ryan, 2015, 421; Schmellentin, Lindauer & Beerenwinkel, 2016, 230).

In German education research there has been broad consensus regarding the theory that language instruction as a component of every individual school subject can help to overcome the majority of students’ language barriers (referred to as "Durchgängige Sprachbildung" in German, cf. Gogolin & Lange, 2011, 118). However, to date no single instructional approach has turned out to be particularly effective and practical in this respect. On account of this it seems plausible to develop approaches for the integration of language instruction into science teaching from the perspective of the individual subjects and to evaluate their effects (Riebling, 2013, 17).

Under the assumption that the acquisition of scientific vocabulary in some respects resembles the acquisition of a foreign language (Rincke, 2011, 255–256), focusing instruction on subject-specific, conceptual understanding and scientific language at the same time should result in a significant cognitive load for most students. Different studies have shown that the challenges for learners in science subjects are particularly high because of this simultaneous focus on scientific concepts and vocabulary due to high cognitive load (Brown, Ryoo & Rodriguez, 2010, 1479-1480; Brown, Donovan & Wild, 2019, 766). Research in multilingual settings in the United States revealed that the acquisition of scientific concepts induced improved learning efficiency as well as enhanced articulation of the acquired knowledge with all students if the instruction mainly used colloquial terminology initially (Brown et al., 2010; McDonnell, Barker, & Wieman, 2016; Ryoo, 2015; Schoerning, 2014). Using this idea, Brown et al. (2010) and Ryoo (2015) designed a series of science lessons in the field of photosynthesis and empirically analyzed the effects of this so-called Disaggregate Instruction. According to their approach, the introduction of scientific terms should only happen after the students have internalized the corresponding scientific concepts (Brown et al., 2010).

We would like to pick up this promising approach and adapt it to meet the conditions of a diverse student population in a multilingual, urban setting in order to answer the following research questions:

  • RQ1: To what extent does the separation of teaching sequences into initial phases in which the teacher primarily uses everyday language and only later introduces new scientific terms (in accordance with the Disaggregate Instruction approach) assist students in the acquisition of chemistry-related knowledge and the development of chemistry-specific communicative competences?
  • RQ2: To what degree do verbally under-developed learners benefit from the Disaggregate Instruction approach? How can verbally skilled students capitalize on this kind of instruction?
  • RQ3: What effects does the approach have on the development of competences in the area of chemistry-related communication (within the framework of the German Educational Standards for chemistry in KMK, 2004, 12-13)?

Inspired by previous studies, I am designing a sequence of lessons aimed at novice chemistry learners following the Berlin school curriculum in the field of „salts“ (Senatsverwaltung für Bildung, Jugend und Sport Berlin, 2006, 36-37) based on the idea of Disaggregate Instruction (Brown et al., 2010). I will then evaluate the effectiveness of the instructional approach within the scope of an intervention study with treatment and control group in a pre-post-test design.

 

Bird, E., & Welford, G. (1995). The effect of language on the performance of second‐language students in science examinations. International Journal of Science Education, 17(3), 389–397. https://doi.org/10.1080/0950069950170309

Bolte, C., & Pastille, R. (2010). Naturwissenschaften zur Sprache bringen. Strategien und Umsetzung eines sprachaktivierend naturwissenschaftlichen Unterrichts. In G. Fenkart, A. Lembens, & E. Erlacher-Zeitlinger (Hrsg.), Sprache, Mathematik und Naturwissenschaften (S. 26–46). StudienVerlag.

Brown, B. A., Donovan, B., & Wild, A. (2019). Language and cognitive interference: How using complex scientific language limits cognitive performance. Science Education, 103(4), 750–769. https://doi.org/10.1002/sce.21509

Brown, B. A., Ryoo, K., & Rodriguez, J. (2010). Pathway Towards Fluency: Using ‘disaggregate instruction’ to promote science literacy. International Journal of Science Education, 32(11), 1465–1493. https://doi.org/10.1080/09500690903117921

Childs, P. E., Markic, S., & Ryan, M. C. (2015). The Role of Language in the Teaching and Learning of Chemistry. In J. García-Martínez & E. Serrano-Torregrosa (Hrsg.), Chemistry Education: Best Practices, Opportunities and Trends (First, S. 421–446). Wiley-VCH.

Deutsches PISA-Konsortium. (2001). PISA 2000 (J. Baumert, E. Klieme, M. Neubrand, M. Prenzel, U. Schiefele, W. Schneider, P. Stanat, K.-J. Tillmann, & M. Weiß (Hrsg.)). VS Verlag für Sozialwissenschaften. https://doi.org/10.1007/978-3-322-83412-6

Gogolin, I., & Lange, I. (2011). Bildungssprache und Durchgängige Sprachbildung. In S. Fürstenau & M. Gomolla (Hrsg.), Migration und schulischer Wandel: Mehrsprachigkeit (S. 107–127). VS, Verl. für Sozialwiss.

KMK. (2004). Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss. Luchterhand. https://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/2004/2004_12_16-Bildungsstandards-Chemie.pdf

McDonnell, L., Barker, M. K., & Wieman, C. (2016). Concepts first, jargon second improves student articulation of understanding. Biochemistry and Molecular Biology Education, 44(1), 12–19. https://doi.org/10.1002/bmb.20922

Reiss, K., Weis, M., Klieme, E., & Köller, O. (Hrsg.). (2019). PISA 2018. Waxmann Verlag GmbH. https://doi.org/10.31244/9783830991007

Riebling, L. (2013). Sprachbildung im naturwissenschaftlichen Unterricht: eine Studie im Kontext migrationsbedingter sprachlicher Heterogenität. http://www.content-select.com/index.php?id=bib_view&ean=9783830978046

Rincke, K. (2011). It’s Rather like Learning a Language: Development of talk and conceptual understanding in mechanics lessons. International Journal of Science Education, 33(2), 229–258. https://doi.org/10.1080/09500691003615343

Ryoo, K. (2015). Teaching Science Through the Language of Students in Technology-Enhanced Instruction. Journal of Science Education and Technology, 24(1), 29–42. https://doi.org/10.1007/s10956-014-9518-4

Schmellentin, C., Lindauer, T., & Beerenwinkel, A. (2016). Sprachbewusster Naturwissenschaftsunterricht – Werkstattbericht zu einem transdisziplinären Entwicklungsprojekt. In I. Winkler & F. Schmidt (Hrsg.), Interdisziplinäre Forschung in der Deutschdidaktik. „Fremde Schwestern“ im Dialog (Bd. 2, S. 225–246). Peter Lang.

Schoerning, E. (2014). The Effect of Plain-English Vocabulary on Student Achievement and Classroom Culture in College Science Instruction. International Journal of Science and Mathematics Education, 12(2), 307–327. https://doi.org/10.1007/s10763-013-9398-8

Stanat, P., Schipolowski, S., Mahler, N., Weirich, S., & Henschel, S. (2019). IQB-Bildungstrend 2018. Mathematische und naturwissenschaftliche Kompetenzen am Ende der Sekundarstufe I im zweiten Ländervergleich. Waxmann.