Springe direkt zu Inhalt

Prof. Dr. India Mansour

Prof. Dr. India Mansour
Image Credit: privat

Institute of Biology / Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB)

Visiting Professor

Address
Altensteinstr. 6
Room E.09
14195 Berlin

Microbial Biospherics: studying life in closed systems

The Earth is an energy-open and (mostly) matter closed system that has hosted life for billions of years. Biological agents modify the environment from the micrometer to planetary scale, and these modifications subsequently determine the suitability of these environments to serve as habitats for other organisms. Our research utilizes spatially structured, simplified closed (eco)systems, also known as microbial biospheres, to study the ability of microbial communities to self-sustain under different initial conditions. In a closed system, some special conditions apply: persistence is only possible when organisms can effectively recycle necromass (dead matter from previous generations) and regulate their atmospheric gas composition. The goal of our research is to understand the biological, chemical and physical boundaries underlying self-sustainability. Under what conditions do microbial communities modify their environment such that it supports future generations? What is the simplest ecosystem that can self-sustain? The outcomes of this research inform our understanding of the persistence of life on Earth, potential biodiversity reservoirs in highly energy-limited environments, and the establishment of life in early successional stage ecosystems or after catastrophic events.

Publications

*+Mansour, I., Hähnlein, M., Minkewitz, L., Wilk, E.N., Remus-Emsermann, M., Antonovics, J., Rillig, M.C. (2024). Spatial structure affects the establishment and persistence of closed microbial ecosystems. bioRxiv. Available at: https://doi.org/10.1101/2024.06.28.601237

Rillig, M. C., Mansour, I., Hempel, S., Bi, M., König‐Ries, B., & Kasirzadeh, A. (2024). How widespread use of generative AI for images and video can affect the environment and the science of ecology. Ecol. Lett. 27(3), e14397. Available at: https://doi.org/10.1111/ele.14397

Medina Madariaga, G., Ferreira, V., Arora, R., Mansour, I., David, G. M., Jähnig, S. C., & He, F. (2024). Multiple-stressor effects on leaf litter decomposition in freshwater ecosystems: A meta‐analysis. Funct. Ecol. Available at: https://doi.org/10.1111/1365-2435.14571

*+He, F., Arora, R., & Mansour, I. (2023). Multispecies assemblages and multiple stressors: Synthesizing the state of experimental research in freshwaters. Wiley Interdiscip. Rev. Water, e1641. Available at: https://doi.org/10.1002/wat2.1641

Camenzind, T., Mason-Jones, K., Mansour, I., Rillig, M. C., & Lehmann, J. (2023). Formation of necromass-derived soil organic carbon determined by microbial death pathways. Nat. Geosci. 16(2), 115-122. Available at: https://doi.org/10.1038/s41561-022-01100-3

Chaudhary, V. B., Aguilar-Trigueros, C. A., Mansour, I., & Rillig, M. C. (2022). Fungal dispersal across spatial scales. Annu. Rev. Ecol. Evol. Syst. 53, 69-85.

Rillig, M.C., Antonovics, J., and Mansour, I. (2021). Microbial self-recycling and biospherics. Proc. Natl. Acad. Sci. 118. Available at: https://www.pnas.org/content/118/37/e2113148118.

Rillig, M.C., Bonneval, K., De Lutz, C., Lehmann, J., Mansour, I., Rapp, R., Spacal, S., and Meyer, V. (2021). Ten simple rules for hosting artists in a scientific lab. PLoS Comput. Biol. 17, 3–7.

*+Pinek, L., Mansour, I., Lakovic, M., Ryo, M., and Rillig, M.C. (2020). Rate of environmental change across scales in ecology. Biol. Rev. 1, 1798–1811.

Rillig, M.C., Bielcik, M., Chaudhary, V.B., Grünfeld, L., Maaß, S., Mansour, I., Ryo, M., and Veresoglou, S.D. (2020). Ten simple rules for increased lab resilience. PLOS Comput. Biol. 16, e1008313. Available at: https://dx.plos.org/10.1371/journal.pcbi.1008313.

Rillig, M.C., Aguilar-Trigueros, C.A., Anderson, I.C., Antonovics, J., Ballhausen, M.B., Bergmann, J., Bielcik, M., Chaudhary, V.B., Deveautour, C., Grünfeld, L., et al. (2020). Myristate and the ecology of AM fungi: significance, opportunities, applications and challenges. New Phytol. 227, 1610–1614.

Okiobe, S.T., Augustin, J., Mansour, I., and Veresoglou, S.D. (2019). Disentangling direct and indirect effects of mycorrhiza on nitrous oxide activity and denitrification. Soil Biol. Biochem. 134, 142–151. Available at: https://doi.org/10.1016/j.soilbio.2019.03.025.

Rillig, M.C., Aguilar-Trigueros, C.A., Camenzind, T., Cavagnaro, T.R., Degrune, F., Hohmann, P., Lammel, D.R., Mansour, I., Roy, J., van der Heijden, M.G.A., et al. (2019). Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytol. Available at: http://doi.wiley.com/10.1111/nph.15602.

Veresoglou, S.D., Verbruggen, E., Makarova, O., Mansour, I., Sen, R., and Rillig, M.C. (2018). Arbuscular Mycorrhizal Fungi Alter the Community Structure of Ammonia Oxidizers at High Fertility via Competition for Soil NH4+. Microb. Ecol., 1–12. Available at: http://link.springer.com/10.1007/s00248-018-1281-2.

*+Mansour, I., Heppell, C.M., Ryo, M., and Rillig, M.C. (2018). Application of the microbial community coalescence concept to riverine networks. Biol. Rev. 93, 1832–1845. Available at: http://doi.wiley.com/10.1111/brv.12422.

Rillig, M.C., and Mansour, I. (2017). Microbial Ecology: Community Coalescence Stirs Things Up. Curr. Biol. 27, R1280–R1282. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0960982217313301.

Veresoglou, S.D., Aguilar-Trigueros, C.A., Mansour, I., and Rillig, M.C. (2015). Self-DNA: a blessing in disguise? New Phytol. 207, 488–490. Available at: https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.13425.

Pereira, E.I.P., Suddick, E.C., Mansour, I., Mukome, F.N.D., Parikh, S.J., Scow, K., and Six, J. (2015). Biochar alters nitrogen transformations but has minimal effects on nitrous oxide emissions in an organically managed lettuce mesocosm. Biol. Fertil. Soils 51.

*First author or shared first authorship

+Corresponding author