Springe direkt zu Inhalt

Switchable synchronisation of pirouetting motions in a redox-active [3]rotaxane

Schröder, Hendrik V. and Mekic, Amel and Hupatz, Henrik and Sobottka, Sebastian and Witte, Felix and Urner, Leonhard H. and Gaedke, Marius and Pagel, Kevin and Sarkar, Biprajit and Paulus, Beate and Schalley, Christoph A. – 2018

In this study, the crown/ammonium [3]rotaxane R2 is reported which allows a switchable synchronisation of wheel pirouetting motions. The rotaxane is composed of a dumbbell-shaped axle molecule with two mechanically interlocked macrocycles which are decorated with a redox-active tetrathiafulvalene (TTF) unit. Electrochemical, spectroscopic, and electron paramagnetic resonance experiments reveal that rotaxane R2 can be reversibly switched between four stable oxidation states (R2, R2˙+, R22(˙+), and R24+). The oxidations enable non-covalent, cofacial interactions between the TTF units in each state—including a stabilised mixed-valence (TTF2)˙+ and a radical-cation (TTF˙+)2 dimer interaction—which dictate a syn (R2, R2˙+, and R22(˙+)) or anti (R24+) ground state co-conformation of the wheels in the rotaxane. Furthermore, the strength of these wheel–wheel interactions varies with the oxidation state, and thus electrochemical switching allows a controllable synchronisation of the wheels’ pirouetting motions. DFT calculations explore the potential energy surface of the counter-rotation of the two interacting wheels in all oxidation states. The controlled coupling of pirouetting motions in rotaxanes can lead to novel molecular gearing systems which transmit rotational motion by switchable non-covalent in rotaxanes can lead to novel molecular gearing systems which transmit rotational motion by switchable non-covalent interactions.

Title
Switchable synchronisation of pirouetting motions in a redox-active [3]rotaxane
Author
Schröder, Hendrik V. and Mekic, Amel and Hupatz, Henrik and Sobottka, Sebastian and Witte, Felix and Urner, Leonhard H. and Gaedke, Marius and Pagel, Kevin and Sarkar, Biprajit and Paulus, Beate and Schalley, Christoph A.
Date
2018
Identifier
DOI: 10.1039/C8NR05534C
Source(s)
Citation
Nanoscale 2018, 10, 21425-21433