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F. Vitalini,1 F. Noé,2, a) and B.G. Keller1, b)

1)Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin,

Takustraße 3, D-14195 Berlin, Germany

2)Department of Mathematics and Computer Science, Freie Universität Berlin,

Arnimallee 6, D-14195 Berlin, Germany

(Dated: 27 July 2015)

Although Markov state models have proven to be powerful tools in resolving the com-

plex features of biomolecular kinetics, the discretization of the conformational space

has been a bottleneck since the advent of the method. A recently introduced vari-

ational approach, which uses basis functions instead of crisp conformational states,

opened up a route to construct kinetic models in which the discretization error can

be controlled systematically. Here, we develop and test a basis set for peptides to

be used in the variational approach. The basis set is constructed by combining local

residue-centered kinetic modes which are obtained from kinetic models of terminally

blocked amino acids. Using this basis set, we model the conformational kinetics of two

hexapeptides with sequences VGLAPG and VGVAPG. Six basis functions are suffi-

cient to represent the slow kinetic modes of these peptides. The basis set also allows

for a direct interpretation of the slow kinetic modes without an additional clustering

in the space of the dominant eigenvectors. Morever, changes in the conformational

kinetics due to the exchange of leucine in VGLAPG to valine in VGVAPG can be

directly quantified by comparing histograms of the basis set expansion coefficients.
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I. INTRODUCTION

Structure and function of proteins are linked by structural transitions. This is particularly

evident in protein-ligand binding processes, in which induced fit, conformational selection, or

allosteric regulation1,2 directly mediate ligand recognition and biological response. But it is

also true for intrinsically disordered peptides (IDPs)3,4 which fluctuate between a variety of

(partially folded) conformations. Many IDPs are involved in signaling and regulatory path-

ways, and adopt a specific three-dimensional structure only upon binding to their interaction

partner within this pathway. Misfolded IDPs are associated to a number of diseases, such as

cancer, Alzheimer’s disease, and diabetes5,6. A description of the function and malfunction

of these peptides hence requires a detailed model of their conformational kinetics.

In recent years, the estimation of transition rates across energy barriers using classi-

cal molecular dynamics (MD) simulations has become computationally tractable. Methods

which intertwine the exploration of the conformational space with an estimation of transition

rates, such as the milestoning approach7–9, transition path sampling10, transition interface

sampling11, or the string method12,13, have been used successfully. Alternatively, molec-

ular kinetics models can be estimated from unbiased simulations using the Markov state

model (MSM) technique14–19. In MSMs, the conformational space is discretized into M non-

overlapping states, often denoted microstates. The pairwise transition probabilities between

the microstates (within a lag time τ) are estimated from the molecular-dynamics simulation

data and arranged in a MSM transition matrix, which is then further analyzed.

MSMs have proven to be very useful tools in resolving the complex features of biomolec-

ular kinetics20,21. Because their construction is largely independent of a priori assumptions

as to what the actual slow conformational processes in the system might be, human bias

can be minimized in these models. MSMs allow for the representation of highly complex

molecular kinetics, yet the salient features of these kinetics can be converted into humanly

comprehendible and visually intuitive representations, such as kinetic networks17,22, tran-

sition path networks and density fluxes across these networks23,24, metastable states25,26,

and conformational exchange processes27,28. Finally, MSMs are a very useful framework to

connect data from time-resolved experiments with simulation data29,30.

MSMs approximate the (deterministic) dynamics in the complete, high-dimensional con-

formational space by a stochastic dynamics in a low-dimensional subspace of the confor-
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mational space. Therefore, the discretization of the conformational space into microstates

consists of two steps, which are often executed iteratively to find a suitable set of microstates.

First, the dynamics of the MD simulation is projected onto a (relevant) subspace of the con-

formational space, which is typically chosen manually. Then this subspace is partitioned

into microstates. The approximation quality of MSMs depends sensitively on how well the

discretization of the conformational space represents the free-energy barriers in the system31.

Since the features of the free-energy landscape of large molecules are not known a priori,

the discretization of the conformational space has been a bottleneck in the construction of

MSMs since the advent of the method16–19,32,33. In recent years, principle component analysis

in conjunction with the most probable path algorithm34,35, as well as diffusion maps36,37 have

been used to automatically identify the relevant subspace. Along the same lines, the time-

lagged independent component analysis (TICA) method27,38,39 has been proposed which, for

a particular system, automatically combines a large set of user-defined order parameters

into an optimal small set of order parameters for the construction of a MSM.

In highly metastable systems, i.e. in systems with few but very long-lived conformations,

the dominant kinetic processes can be represented by step functions which switch between

the regions of the conformational space associated to the metastable conformations. In these

systems, once the relevant subspace is identified, few microstates are sufficient to obtain good

approximation quality14,25,40. Most biomolecules however exhibit kinetic processes which

vary smoothly between different regions of the conformational space19,31. This requires a

fine discretization in these transition regions and hence a model with many microstates.

Unfortunately, the model quality suffers if the number of microstates becomes too large

because the statistical uncertainty of estimated transition probability increases with the

numbers of microstates. To balance these two requirements, several iterative discretizations

schemes have been proposed16,41. Also methods which abandon the crisp state definition

and instead use functions which slowly vary from 0 to 1 between pairs of metatable states

have been put forward42–44.

All of these strategies have in common that they are data-driven, i.e. the projection and

discretization is defined by a statistical analysis of the trajectory, rather than by considering

the properties of the molecules. As a consequence, different simulation runs (even of the

same system) will produce different discretizations, making the results difficult to compare;

Moreover, the interpretation of the kinetic processes as conformational transitions is not
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straight-forward, as the microstates have no intrinsic meaning. Thus, an additional clus-

tering step in the space of the dominant eigenvectors is applied25 which again depends on

user-defined input parameters.

Recently, we have introduced a variational approach to molecular kinetics45 that was

further developed in27,28. This variational approach opens up a route to construct com-

parable Markov state models with systematically controllable approximation quality. The

mathematical properties of a propagator associated to the stochastic dynamics in the rele-

vant subspace (self-adjointness, bound eigenvalue spectrum) allow for the formulation of a

variational principle. The dominant kinetic processes can then be expanded in terms of an

arbitrary basis set and the coefficients can be optimized using the method of linear variation.

This is analogous to linear variation methods in quantum chemistry. The difference in the

implementation is that the matrix elements are estimated as time-lagged cross-correlations

from MD trajectories, rather then attempting to numerically solve the associated integral.

Because the basis functions can be chosen to vary smoothly from one region of the confor-

mational space to another, the number of basis functions needed to achieve a given approxi-

mation quality may be much less than the number of states in a corresponding conventional

MSM. The better the basis functions represent the slow kinetic processes, the better the

approximation quality. Hence, using prior knowledge about the system, one can customize

the basis functions for a particular class of molecules. Furthermore, if the basis functions

are designed such that they represent local conformational changes, the linear expansion of

the slow kinetic processes in terms of this basis can be easily interpreted as a superposition

of these local transitions.

In the present paper, we develop a basis set for the conformational kinetics of peptides.

We model the kinetics within a single residue by up to three functions and combine these

residue-centered functions into basis functions for the overall backbone dynamics. The

residue-centered functions are pre-parametrized on model systems, and hence the basis set

only depends on the sequence of the peptide and not on the actual simulation of the pep-

tide. Moreover, the residue-centered functions of all (canonical) amino acids have analogous

interpretations. Hence the direct comparison of conformational kinetics of the peptides with

different sequence becomes possible.
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II. THEORY

We present the salient points of the theory of propagators (section II A) and the varia-

tional principle for propagators (section II B). Markov state models are reviewed in appendix

B. For a detailed discussion see15,19,28,33,45,46. The basis set for peptide dynamics is intro-

duced in sections II C - II E.

A. The propagator

Consider an infinite ensemble of molecules in a state space X. We assume that the

dynamics are Markovian, ergodic, and reversible. The time-dependent probability density

of the ensemble of molecules in the state space is denoted pt(x) with x ∈ X. If pt(x) is not

equal to the equilibrium distribution π(x), it will relax gradually towards the equilibrium

distribution

lim
t→∞

pt(x) = π(x) . (1)

The time-evolution of pt(x) is governed by a transition density

pt+τ (y) =

∫
X

p(x, y; τ) p(x) dx (2)

where the integral is evaluated over the entire state space X. p(x, y; τ) represents the

conditional probability density of finding a molecule in conformation y at time t, given that

it has been in x dx at time t− τ . Eq. 2 defines an operator, the so-called propagator P(τ),

which propagates the probability forwards in time by a fixed time interval τ

pt+τ (x) = P(τ)pt(x) (3)

pt+nτ (x) = Pn(τ)pt(x) . (4)

τ is a parameter of the propagator and is typically called lag time. The propagator has a

bounded eigenvalue spectrum

λ1 = 1 > |λ2(τ)| ≥ |λ3(τ)| ≥ .... (5)

where λ1 = 1 is the largest eigenvalue by absolute value. This eigenvalue always exists and

is associated to an eigenvector l1(x) which is proportional to the equilibrium distribution

π(x) of the dynamic process xt. Here we set them equal, without loss of generality:

l1(x) = π(x) (6)
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Ergodicity and reversibility have two consequences. First, the eigenvalues λi(τ) and eigen-

vectors li(x), defined by

P(τ)li(x) = λi(τ)li(x) , (7)

are real-valued. Second, the propagator is self-adjoint

〈P(τ)g | f〉π−1 = 〈g | P(τ)f〉π−1 (8)

with respect to a weighted scalar product

〈g | f〉π−1 =

∫
X

g(x)π−1(x)f(x) dx . (9)

Therefore, its eigenfunctions form a complete basis and the time-evolution of the probability

density can be expressed as a linear combination of the eigenfunctions

pt(x) =
∞∑
i=1

ciλ
n
i (τ)li(x)

= π(x) +
∞∑
i=2

ci exp

(
− t
ti

)
li(x) (10)

where the relaxation timescales are given by ti = −τ/ ln |λi(τ)| (for i > 1), and time is

in multiples of the lag time, t = nτ . The coefficients ci are determined by the probability

density at time t = 0, and always c1 = 1.

Eq. 10 can be understood as superposition of dynamic modes li(x) with time-dependent

amplitudes ci exp (−t/ti). Since the eigenvalues are bounded by one, the amplitudes decay

exponentially. ti represents the relaxation time of this decay process. The first eigenfunction

is an exception because it is associated to a constant amplitude. This is the mathematical

correspondence of the physical observation that any initial distribution p0(x) will eventually

decay to the equilibrium distribution π(x).

The dominant eigenfunction-eigenvalue pairs, i.e. those with high-lying eigenvalues, con-

tain a wealth of information on the barriers in the system, its long-lived conformational

states and the dynamics between these states. An analytical solution of eq. 7 is not possible

due to the high-dimensionality of the space X even for small molecules. The variational ap-

proach therefore aims at numerically approximating the dominant eigenfunction-eigenvalue

pairs.
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B. Variational principle and method of linear variation

The two properties of the propagator - bounded eigenvalue spectrum and self-adjointness

- are sufficient to derive a variational principle for the propagator

〈f | P(τ) | f〉π−1 ≤ 1 . (11)

where the equality holds iff f(x) = π(x). (For more details, see Ref. 45 and to appendix

A.) Based on this variational principle, we can derive variational methods to compute best

approximations to the leading eigenvalues λ1(τ), ..., λM(τ) and eigenfunctions l1(x), ..., lM(x).

In particular, if one requires that ith eigenfunctions li(x) is orthogonal (with respect to

eq. 9) to the previously estimated eigenvectors l1(x), ...li−1(x), the associated estimate of

the eigenvalue λ̂i is a lower bound to the true ith eigenvalues

λ̂i(τ) ≤ λi(τ) ∀ i . (12)

In the method of linear variation28,45, that is analogous to the Ritz method in quantum

mechanics47, the eigenfunctions are approximated as linear combinations of a set of basis

functions {φi(x)}

lj(x) ≈ l̂j(x) =
M∑
i=1

aijφi(x). (13)

We do not require that the basis functions are orthonormal. The size of the basis set is not

limited, however for any practical application a finite subset of M basis functions needs to

be chosen for eq. 13. By inserting the expansion (13) into the variational principle (eq. 11)

and varying the expansion coefficients {ai}Mi=1 so as to maximize
〈
l̂i(x)

∣∣∣P(τ)
∣∣∣ l̂i(x)

〉
π
, while

keeping l̂i orthonormal with respect to eq. 9, we obtain a generalized eigenvalue problem

C(τ)ai = Sλi(τ)ai (14)

where C(τ) is the correlation matrix with elements

Cij(τ) = 〈φi | P(τ)φj〉π−1 , (15)

S is the overlap matrix with elements

Sij = 〈φi | φj〉π−1 , (16)
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and a is the vector of expansion coefficients (eq. 13). Note that only the expansion coefficients

are varied, while the basis functions are kept constant. Solving this generalized eigenvalue

problem yields the optimal approximation to the first M eigenfunctions in terms of the

chosen basis {φi(x)}Mi=1 and the associated eigenvalues: {l̂i(x), λ̂i(τ)}Mi=1. In particular, this

linear variational solution ensures that eq.12 holds for all estimated eigenvalues45, and that

several scoring functions such as the sum of eigenvalues can be used to compare different

solutions (Appendix A).

Due to the high dimensionality of the conformational space X, the integral in eq. 15

cannot be evaluated directly. However, the expression 〈φi | P(τ)φj〉π−1 (eq. 15) can be

interpreted as a time-lagged correlation function28,45 which can be estimated from a time-

discretized realization of the dynamical process xt with time step ∆t and length NT

Cij(τ) = lim
NT→∞

ĉor(χi, χj, τ) (17)

= lim
NT→∞

1

NT − nτ

NT−nτ∑
t=1

χj(xt)χi(xt+nτ ) (18)

where nτ = τ/∆t. Likewise, the elements of the overlap matrix are estimated as

Sij = lim
NT→∞

ĉor(χi, χj, τ = 0) (19)

= lim
NT→∞

1

NT

NT∑
t=1

χj(xt)χi(xt) . (20)

For finite NT , Cij(τ) and Sij are replaced by there corresponding estimates

Ĉij(τ) =
1

NT − nτ

NT−nτ∑
t=1

χj(xt)χi(xt+nτ ) (21)

and

Ŝij =
1

NT

NT∑
t=1

χj(xt)χi(xt) . (22)

Note that the correlation is not defined with respect to the basis function {φi} but with

respect to the co-functions {χi} which are obtained by weighting the basis functions with

π−1i (x)

χi(x) = π−1(x)φi(x)⇔ π(x)χi(x) = φi(x) . (23)

In practice, we will therefore directly work in the basis of the co-functions {χi}. The

theoretical background of these co-functions is discussed in section II C.
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Realizations xt of molecular dynamics can be obtained by atomistic molecular dynamics

simulations, which leads to the following workflow for the variational approach to molecular

dynamics

1. Generate a realization xt of the conformational dynamics of the molecule of interest

using molecular dynamics simulation.

2. Choose a (finite) basis set {χi}Mi=1

3. Project the xt onto each of the basis function yielding a set ofM time series {χi(xt)}Mi=1.

4. Choose a lag time τ and estimate the elements of the correlation matrix using eq. 21.

5. Estimate the elements of the overlap matrix using eq. 22.

6. Solve eq. 14 to obtain the eigenvalues {λi}Mi=1 and expansion coefficients {ai}Mi=1 of the

first M eigenfunctions.

C. The eigenfunctions of the propagator and their associated co-functions

Alternatively to the propagator formulation (eq. 1 to 10), we could choose a transfer

operator formulation which is completely equivalent14. The transfer operator is defined in

a weighted space and has eigenfunctions rj(x). For the present case of reversible dynamics,

the relationship between these two sets of eigenfunctions is very simple:

π(x) rj(x) = lj(x)

rj(x) = π−1(x) lj(x) (24)

Both sets of eigenfunctions can be interpreted as dynamic modes, which mediate the transfer

of probability density between different regions of the state space X. While the functions

lj(x) contain information on the probability distribution within these regions, this infor-

mation is erased in rj(x) by weighting lj(x) with π−1(x). In the functions ri(x), only the

specification of these regions is retained.19.

The close connection between lj(x) and rj(x) has important consequences for interpreta-

tion of the model and for the choice of a suitable basis set. First, the variational approach
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yields lj(x) as a linear expansion in the basis {φi}Mi=1 and simultaneously rj(x) as a linear

expansion in the basis of the co-functions {χi}Mi=1

π(x) rj(x) ≈
M∑
i=1

aijφi(x) =
M∑
i=1

aijπ(x)χi(x)

⇓

rj(x) ≈
M∑
i=1

aijχi(x) . (25)

Second, a particularly suitable basis set {φi}Mi=1 would be one in which the basis functions

resemble the actual eigenfunctions lj(x) of the propagator. This implies that the co-functions

{χi}Mi=1, which are used for the estimation of the matrix elements, would be similar to the

eigenfunctions of the transfer operator rj(x). Therefore, when parametrizing a basis set from

model systems (as suggested in the following section) one should use the eigenfunctions of

the transfer operator of these model system, rmodel
i (x), to construct {χi}Mi=1. In Markov

state models (with row-normalized transition matrices), this amounts to using the right

eigenvectors of the transition matrix rather than the left eigenvectors.

D. Basis set for peptide dynamics

The critical step in the workflow in section II B is the choice of the basis set. A good basis

set should meet three requirements: (i) it should be designed such that it can distinguish

all the important conformational changes of the molecule; (ii) the number of basis func-

tions needed to represent the slow processes should be small; (iii) the basis set should be

transferable, i.e. one should be able to use the same basis functions to construct dynamics

models for a large range of molecules with similar chemical structure. In the following, we

will demonstrate how to construct such a basis set for the conformational dynamics of pep-

tides. The overall dynamics of peptides can usually be described to a good approximation

by the φ- and ψ-backbone torsion angles. We therefore choose to define our basis functions

in terms of these backbone-torsion angles. (requirement i). The inclusion of the side chain

torsion angles (χ1, χ2, etc) is numerically more demanding but conceptually straight for-

ward. Likewise, other state variables such as the distances between atoms that are far apart

in the sequence, solvent and ion coordinates can be included to model larger peptides and

proteins for which the space of torsions is no longer expected to be sufficient.
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With this choice, the basis functions of an N -residue peptide are functions with 2N

variables. To get these high-dimensional functions into a manageable form, we decompose

them into tensor products of residue-centered two-dimensional functions

χ(φ1, ψ1, φ2, ψ2, ...φN , ψN) = (26)

R(φ1, ψ1)⊗R(φ2, ψ2)....⊗R(φN , ψN) . (27)

This decomposition has a biophysical underpinning: the (rigid) peptide bond by which the

amino acid residues are linked in a peptide chain acts as a block to the dynamic correlations

between residues. That is, typically the φ- and ψ-backbone torsion angle of any given residue

are much higher correlated to each other than to any other backbone torsion angle in the

peptide chain.

To meet requirement ii, the basis functions have to be close to the actual eigenfunctions

of the transfer operator (see section II C). The dynamics of the φ-ψ-torsion angle pairs

in a peptide chain is severely restricted by steric interactions of its side chain with the

neighboring peptide groups. In fact, these steric interactions are so dominant that one can

identify generic slow dynamic modes within the φ-ψ-space of each amino acid type48. We

use these dynamic modes as the residue-centered functions R(φi, ψi) in eq. 27.

Fig. 1 shows the slow dynamic modes of of alanine (A), valine (V), leucine (L), proline

(P), glycine (G), and alanine which precedes a proline (AP) (represented as eigenfunctions

ri(φ, ψ) of the underlying transfer operator). In the following, we denote these functions

as RX
k , where X is replaced by the one-letter code of the amino acid and k ∈ {1, 2, 3}

(proline: k ∈ {1, 2}) indicates the number of the residue-centered dynamic mode. Most

amino acids, such as alanine (A), valine (V), and leucine (L), have three dynamics modes

which correspond to the stationary process (RA
1 , RV

1 , RL
1 ), the conformational exchange

between the Lα-region and the combined α-helix and β-sheet regions (RA
2 , RV

2 , RL
2 ), and the

conformational exchange between the α-helix region and the β-sheet region (RA
3 , RV

3 , RL
3 ).

Proline (P) has only two dynamic modes because its side chain binds back to the backbone,

thereby restricting the dynamics of the φ-torsion angle. The two modes correspond to the

stationary distribution (RP
1 ) and to the conformational exchange along the ψ-torsion angle

(RP
2 ). Glycine (G) does not have a side chain and therefore shows a different dynamics

than the other amino acids. Nonetheless, its modes can be interpreted as stationary process

(RG
1 ), conformational exchange along the ψ-torsion angle (RG

2 ), and conformational exchange
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along the φ-torsion angle (RG
3 ). The dynamics of an amino acid that precedes a proline in

the sequence is altered by the limited dynamics of the following residue49 (see for example

Fig. 1 in the SI). The dynamic modes of an alanine which is followed by a proline exhibits

three slow dynamic modes (Fig. 1): the stationary distribution (RAP
1 ), the conformational

exchange along the ψ-axis (RAP
2 ), and the conformational exchange of the minimum in the

upper left corner of the graph with the rest of the φ-ψ-space (RAP
3 )

The construction of example peptide basis functions as a tensor product of these residue-

centered functions is illustrated in Fig. 2 for the peptide VGVAPG. The index of the basis

function χ should be read as a string in which the ith element denotes which dynamic mode

of the ith residue is used for this particular basis function. The index 0 denote that the

corresponding residue is not included in conformational space X, and not included in the

model. Excluding N -terminal residues from a kinetic model is a common approach since

their dynamics tend to be decoupled from the rest of the chain. The complete basis set

consists of 3N−NP · 2NP basis functions, where N denotes the number of residues which

are included in the model, and NP denotes the number of proline residues in the peptide

sequence.

E. Basis set size

The number of basis functions grows as 3N−P · 2P , where N is the number or residues

in the peptide and P is the number of proline residues. This is computationally intractable

for peptides beyond decamers. However, we expect that, due to the design of the peptide

basis set, only very few (possibly less than N) basis functions are needed to describe the

conformational subspace spanned by the slow dynamic processed of the peptide. For the

molecules studied in this contribution, this expectation is confirmed. The task at hand is

then to select a small number of basis functions which are likely to yield a good representation

of the slow dynamic processes. The residue-centered function RX
1 can be interpreted as the

dynamic ground state, and RX
2 and RX

3 as the first and second dynamically excited state

of residue X. The basis function χ111111 approximates the dynamic ground state of a hexa-

peptide. Correspondingly, the basis function χ112111 represents a dynamic mode in which

the third residues is excited, and χ112131 represents a dynamic mode in which two residues

(residues 3 and 5) are excited. We suggest to use at least a basis set which consists of the
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ground state basis functions plus all singly excited basis functions, i.e. functions in which the

one residue is in excited dynamic state, and all other are in the ground state. This reduces

the computational complexity to O(N). This basis set can be systematically expanded by

including doubly, triply, etc. excited basis functions.

III. METHODS

A. MD simulations

To obtain the residue-based functions RX
k , we performed all-atom molecular-dynamics

simulations of the terminally blocked amino acids Ac-A-NHMe, Ac-V-NHMe, Ac-P-NHMe,

Ac-G-NHMe, and Ac-L-NHMe, and the terminally capped dipeptide Ac-AP-NHMe. We

additionally simulated the terminally blocked dipeptides Ac-AV-NHMe and Ac-VA-NHMe,

and the hexa-peptides VGVAPG and VGLAPG. All simulations were carried out in explicit

water in the NVT ensemble, where the temperature was restrained to 300K. We used the

GROMACS 4.5.5 simulation package50 with the AMBER ff-99SB-ILDN51 force field and the

TIP3P water model52. The atom coordinates of the solutes were saved every picosecond.

For each system, a total of c.a. 4 µs simulation time was produced. For further details on

the simulation, see SI section I.

B. Markov State Models

Markov state models for all systems were constructed from the microstate trajectories

using EMMA software package53 and the recent python implementation (see pyemma.org).

For each of the systems, Markov state models were constructed at a range of lag times. To

construct implied timescale plots (Fig. 3, 4 and 7), at each lag time, the dominant eigenvalues

of the MSM transition matrix were calculated. Additionally, the dominant left and right

eigenvectors of the MSM transition matrix were extracted for the lag time τMarkov at which

the implied timescales of each system reached a plateau. The eigenvectors give a structural

interpretation to the slow dynamic modes (Fig. 3, 5, and 6). For further details, see SI

section II.

To obtain the microstate trajectories, different discretization strategies have been used

for different systems. For the terminally blocked amino acids (Ac-X-NHMe) the backbone φ-
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and ψ-torsion angles were discretized using a regular grid of 36 grid points along each angle

(distance between grid points 10◦), yielding a discretization of 36× 36 = 1 296 microstates.

In the terminally blocked dipeptide Ac-AP-NHMe, the φ- and ψ-torsion angles of the alanine

residue were discretized in the same fashion. The torsion angles of the proline residue were

not included in the model. For the terminally blocked dipeptides Ac-AV-NHMe and Ac-

VA-NHMe, a coarser discretization of the Ramachandran plane of each residue was applied.

The φ- and ψ-torsion angle space of each residue was discretized into three bins (see SI

Fig.1), which resulted in an overall discretization of 3 × 3 = 9 microstates. The bins were

chosen such that they separate the maxima of the equilibrium distribution in the φ-ψ-plane

of each residue (see SI Fig. 1). Similarly in the hexapeptides, the Ramachandran planes

of the residues 2 to 6 were discretized into a grid of 6 (G), 3 (V, A, L), and 2 (P) states.

The N-terminal residue is largely decoupled from the dynamics of the rest of the chain and

was therefore excluded from discretization. Each possible configuration of bins along the

peptide chain represents a microstate, resulting in 6 × 3 × 3 × 2 × 6 = 648 microstates for

the hexapeptides.

C. Variational approach

Terminally blocked amino acids serve as minimal segments which mimic the conforma-

tional dynamics of the corresponding amino acid in a peptide chain. Conventional MSMs of

terminally blocked amino acids Ac-X-NHMe, where X is a wildcard for the one-letter code

of as specific amino acid, and of Ac-AP-NHMe were used to obtain vector-representations

of the residue-centered functions RX
k . We use the dominant right eigenvectors of the (row-

normalized) MSM transition matrix, i.e.vector-representations of the transfer operator eigen-

functions.

Given the vector-representations of the residue-centered functions, the implementation of

step 3 in the workflow in section II B consists of the following substeps

3. Project the xt onto each of the basis function yielding a set ofM time series {χi(xt)}Mi=1:

(a) For each residue r, extract the {φt, ψt}r-torsion angle time series from the MD

trajectory xt.
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(b) Project {φt, ψt}r onto the grid of 36× 36 = 1296 states, yielding a trajectory of

(residue-centered) states sres number
t

(c) For each basis function χi = χklmn... (where the k, l,m, n, ... denote the dynamic

mode RX
k of the corresponding residue), construct the time series χi(xt) as

χi(xt) = Rres 1

k [sres 1

t ] ·Rres 2

l [sres 2

t ] ·Rres 3

m [sres 3

t ]...

For more details on the implementation see SI section III.

For models of the terminally blocked amino acids Ac-A-NHMe and Ac-V-NHMe, the

basis set consisted simply of the corresponding residue centered functions {RA
1 , R

A
2 , R

A
3 }

and {RV
1 , R

V
2 , R

V
3 }. For the models of the terminally blocked dipeptides Ac-AV-NHMe and

Ac-VA-NHMe, a basis set consisting of all possible combinations of the residue-centered func-

tions was used (Tab. IA). For the hexa-peptides VGLAPG and VGVAPG, a truncated basis

set consisting of all singly and doubly excited basis functions was used. The corresponding

indices are reported in Tab. IB. Analogous to the Markov state models, the correlation ma-

trices were estimated at a range of lag times τ . The generalized eigenvalue problem (eq. 14)

was solved, and the dominant eigenvalues were used to construct the implied-timescale plots

(Fig. 3 and 4). A structural interpretation of the slow dynamic modes was obtained by an-

alyzing the corresponding vector of the expansion coefficients a (Fig. 3, 5, 6). The software

for the variational approach was implemented in python54 in conjunction with the packages

NumPy55, SciPy55, and Matplotlib56. We are planning to add this implementation as a

package to the EMMA project (pyemma.org).

IV. RESULTS

A. Terminally blocked amino acids

To check consistency, we applied the variational approach to the terminally blocked amino

acids Ac-A-NHMe and Ac-V-NHMe, which were used to obtain the residue-centered func-

tions {RA
1 , R

A
2 , R

A
3 } and {RV

1 , R
V
2 , R

V
3 }, respectively. The basis sets consisted simply of these

functions. The variational results are compared to the conventional MSM that was used to

parametrize the residue-centered functions. As expected, the variational approach yields

the same implied timescales as the MSM (Fig. 3a and 3b). The stationary process and the
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two slow kinetic processes of the MSM are given by the three residue-centered functions

shown in Fig. 1. The corresponding processes of the MSM are given as a superposition of

the three basis functions (weighted by the corresponding equilibrium distribution). Fig. 3c

and 3d show that, in each process, only one of the basis functions makes a contribution to

this superposition. That is, the variational approach correctly recovers the results of the

MSM.

B. Terminally blocked dipeptides

We applied the variational approach to the terminally blocked dipeptides Ac-AV-NHMe

and Ac-VA-NHMe using the complete set of nine basis functions for these molecules. The

basis functions have the form χij = RA
i ⊗ RV

j for Ac-AV-NHMe and χij = RV
i ⊗ RA

j for

Ac-VA-NHMe. For the mapping between {i, j} and the index of the basis function, see

Tab. IA. The results are compared to direct MSM in which the φ-ψ-space of each amino

acid was discretized into 3 states, yielding 3 · 3 = 9 microstates for the dipeptides. (The

estimation of a model using the same discretization as the basis functions is numerically still

feasible for two residues (see SI sec.V A). However, the model is constructed on a number of

discretized states of the same order of magnitude than the available data points, therefore

making the estimation of the transition probabilities subject to high statistical uncertainty).

Both the variational estimate and the 9-microstate MSM yield the same implied time scales

for Ac-AV-NHMe and Ac-AV-NHMe (Fig. 4.a and 4.b). The two slow kinetic processes

of Ac-AV-NHMe have implied timescales of 4 ns and 3.5 ns, respectively. The slow kinetic

processes of Ac-AV-NHMe have slightly larger implied timescale: 6.5 ns and 4 ns.

Fig. 5 compares the dynamical processes identified by the two models, constructed at

lag time τ = 1 ns. Fig. 5a and 5b show histograms of the absolute values of the expansion

coefficients in eq. 13. In Ac-AV-NHMe, each of the processes is dominated by a single

basis function. Process one, which is the stationary process, is represented by χ11 = RA
1 ⊗

RV
1 , i.e. the stationary process in both residues. Process two (4 ns) and three (3.5 ns)

are dominated by χ12 = RA
1 ⊗ RV

2 and χ21 = RA
2 ⊗ RV

1 , respectively. χ12 represents a

conformational transition across the barrier φ=0 in the second residue (valine), and χ21 a

transition across φ=0 in first residue (alanine). In Ac-VA-NHMe, the first and the third

process are each represented by a single basis function: χ11 = RV
1 ⊗RA

1 and χ21 = RV
2 ⊗RA

1 ,
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respectively. Interestingly, the second dynamic mode (6.5 ns) shows the contribution of two

basis functions, χ12 = RV
1 ⊗ RA

2 and χ22 = RA
2 ⊗ RV

2 , suggesting a coupled motion of the

residues.

How do the variational results compare to the results of the direct MSM? Fig. 5c and

5d show an analysis of the eigenvectors of the 9-micorstate MSM eigenvectors. As the mi-

crostates have no intrinsic meaning, a direct interpretation of the eigenvectors is not feasible.

One therefore first identifies long-lived conformations, and then interprets the eigenvectors

as transitions between these conformations19,25. The scatterplots show projections of the

(visited) microstates onto the second and third right MSM eigenvector (second and third

kinetic process). The size of each point is proportional to the stationary probability of the

corresponding microstate. The emerging clusters of microstates can be interpreted as long-

lived conformational states19,26,40. The structural characterization of each cluster is shown

next to the scatter plots as the Ramachandran plots of both residues, where the coloring of

the Ramachandran planes indicates whether the corresponding region is populated in the

respective cluster.

In Ac-AV-NHMe (Fig. 5c) cluster one corresponds to backbone conformations, in which

both residues are in the α-helical or the β-sheet conformation. By contrast, in cluster two,

V2 is in the Lα conformation (φ2 > 0), and in cluster three, A1 is in the Lα conformation.

Process two represents the conformational exchange between cluster one and two and hence

requires a rotation around the φ-angle in V2. Process three represents the conformational

exchange between cluster one and three and is mediated by a rotation around the φ-angle

in A1. This is in agreement with the results of the variational approach.

Fig 5d shows the structural interpretation of the clusters in the 9-states MSM of Ac-

VA-NHMe. Cluster one again corresponds to conformations in which both residues are

in the α-helical or the β-sheet conformation. However, in cluster two both residues show

some population in the Lα conformation and hence the conformational exchange between

these two clusters (process two) requires rotations around both φ-torsion angles. This is

in line with the result of the variational approach. Cluster three comprises structures in

which V1 is in the Lα conformation and A2 is in the α-helical or the β-sheet conformation.

Consequently, process three corresponds to a conformational transition in the φ angle of

V1 without coupling to a transition in A2, which is in agreement with the results of the

variational approach.
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C. Hexapeptides VGLAPG and VGVAPG

We constructed variational models of the hexapeptides VGLAPG and VGVAPG, includ-

ing singly and doubly excited states (SD basis set, 42 basis functions, Tab. I B) into the

basis set. The results were compared to direct MSMs constructed on a Ramachandran-based

discretization of 648 states (Fig 1 SI). Fig. 4c and 4d show that, for both peptides, the vari-

ational model (solid lines) and the direct MSM (dashed lines) yield converged results and

similar estimates for the implied timescales.

Besides the stationary process, VGLAPG has two slow kinetic processes, with implied

timescales of 15.6 ns and 2.2 ns (both models for a lag time τ = 2 ns), respectively

(Fig. 4c). The expansion coefficients of the corresponding eigenvectors in the variational

model (Fig. 6a) yield a structural interpretation of these slow processes. The stationary

process (process 1) is mapped to the dynamic ground state (χ011111). The second process

is dominated by basis function 4 (χ012111), which represents a torsion around the φ-angle

of residue L3. The third process is a superposition of the dynamic ground state and basis

function 5 (χ013111), which represents a torsion around the ψ-angle of residue L3. In essence,

the slow dynamics of this hexapeptide is dominated by conformational transitions in the

backbone torsion angles of L3, with all other amino acids equilibrating on timescales shorter

than 2.2 ns. This interpretation is confirmed by the analysis of the MSM eigenvectors (Fig.

6b). Analogously to Fig. 5, the microstates are projected onto the second and third right

eigenvector of the MSM transition matrix and the emerging clusters are characterized us-

ing Ramachandran plots (Fig 4 SI). Of all residues in the peptide, only the Ramachandran

plots of L3 varied from cluster to cluster, confirming that the slow dynamics of VGLAPG

is governed by this residue. In cluster one, L3 is in the Lα conformation and the kinetic

exchange with cluster two and three (process two) requires a torsion around its φ angle.

Furthermore, the kinetic exchange between cluster two and three (process two) is mediated

via conformational exchange along the ψ-torsion angle of L3. Both processes are hence in

agreement with the variational model.

The conformational dynamics of VGVAPG is governed by three slow kinetic processes

with relaxation timescales of 8.7 ns (MSM: 8.6 ns), 8.2 (MSM: 8.4 ns), and 4.5 ns (both

models for a lag time of τ = 3 ns). By comparing Fig. 6c to Fig. 6a, one can directly assess

the effect of substituting L3 by V3 on the conformational dynamics of the hexapeptide.
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As in the previous examples, stationary process (process one) is mapped to the dynamic

ground state (χ011111). The expansion coefficients of process four are very similar to those

of process three in VGLAPG. Both processes represent a torsion around the φ-angle in the

third residue, where the process is associated to a slightly higher relaxation timescales in

VGVAPG than in VGLAPG. Process three in VGVAPG represents a torsion around the φ-

angle in the third residue and is therefore related to process two in VGLAPG. It has however

an additional contribution from basis function 26 (χ012311), which couples this torsion to a

conformational transition in the ψ-angle of A4. Process two in VGVAPG is not related to

any slow process in VGLAPG. It represents a torsion around the φ-angle of A4 coupled

to a torsion around the ψ-angle in V3. Overall, the conformational kinetics of VGVAPG

is governed by correlated conformational transitions in V3 and A4. The coupling between

V3 and A4 is most likely caused by the branching at the Cβ-atom in the valine side chain

which induces a stronger steric interaction with the backbone than the leucine side chain in

VGLAPG (which is only branched at the Cγ-atom).

The projection of the microstates on the second, third, and fourth right eigenvectors of

the MSM in Fig. 6d shows four clusters, whose structural characterization is presented in

Fig. 5 in the SI. The clusters differ in the backbone conformations of V3 and A4 in line with

the results of the variational model. Process two represents the kinetic exchange of cluster

one with the rest of the conformational ensemble, which is mediated by transitions in the

φ and ψ-torsion angles of A4 possibly coupled to a conformational change in V3. Process

three, which represents the kinetic exchange of cluster one and three with the rest of the

ensemble, is dominated by a transition in the φ-angle of V3 coupled to a conformational

change in A4. The conformational exchange between cluster two and four (process four)

involves a transition in the ψ-angle of V3. The MSM results are in agreement with the

variational model. However, Fig. 6d and Fig. 5 in the SI also highlight the difficulties in

interpreting direct MSMs. First, the analysis is much more complex and time-consuming

then the interpretation of the expansion coefficients in the variational approach. Second, the

clustering as well as the interpretation of the conformational exchange between the clusters

comprise (to a certain degree) arbitrary decisions. Third, due to the small population of the

clusters (e.g. cluster one), it is not always easy to decide whether a certain conformation does

not belong to the cluster or whether it is simply not sampled, which affects the interpretation

of the conformational exchange processes.
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D. Basis set size and choice of basis functions

The variational results for the hexapeptides suggest the slow kinetics of these peptides is

dominated by only a few basis functions and that hence a very small basis set is sufficient to

obtain a valid kinetic model. We thus constructed minimal variational models consisting of

only the basis functions which contributed the most to the slow processes in Fig. 6. These

were basis functions 1, 4, and 5 (i.e χ011111, χ012111, and χ013111, Tab. I.B) for VGLAPG, and

basis functions 1, 4, 5, 6, 26, and 27 (i.e χ011111, χ012111, χ013111, χ011211, χ012311, and χ013211,

Tab. I.B) for VGVAPG.

For both basis sets, we obtained converged models (Fig. 7c and 7b). The implied

timescales are similar to those of the variational model with singly and doubly excited

basis functions (SD basis set, 42 basis functions) and to the MSM model. For VGLAPG,

the amplitudes assigned to the basis functions 1, 4, and 5 in the SD variational model are

compared to amplitudes in the minimal model in Fig. 7b. The amplitudes in process one and

two are virtually identical. For process three, the contribution of basis function 5 (χ013111)

is a bit stronger in the minimal model. For VGVAPG, the amplitudes of the minimal model

are compared to those of the SD variational model in Fig. 7d. Process one and four have

again identical or very similar amplitudes. Process two and three are however swapped in

the minimal model. The swapping of process two and process three is not very surprising

since the implied timescales of these processes result so close (variational model: 8.7 ns /

8.2 ns, MSM: 8.6 ns / 8.4 ns) that the processes are in effect degenerate.

In Fig. 8 and Fig.6 in the SI, the effect of increasing the basis set is investigated. We

successively added triply, quadruply and quintuply excited basis functions to the basis set.

Since the N-terminal valine is not included in the model, the quintuply excited basis set

corresponds to the full basis set. Increasing the basis functions had no significant effect on

the estimated implied timescales (Fig.6 and Tab II in the SI). However, the amplitudes of

the additional basis functions are not negligible. Especially large amplitudes are assigned

to quadruply and quintuply excited basis functions (basis functions index > 98). This is

shown for process two and three of VGVAPG in Fig. 8. These basis functions with multiple

excitations represent kinetic processes with fast relaxation timescales, typically much faster

than the lag-time of the correlation matrix. Hence, the conformational exchange associated

to these processes equilibrates within the lag time τ of the model and the estimation of
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the time-lagged cross-correlation to slowly decaying processes is numerically instable. The

large amplitudes in Fig. 8 are therefore numerical artifacts. More research is needed for an

optimal strategy to pre-select the basis functions which contribute to the slow dynamics of

the peptide from the full basis set and to verify the numerical accuracy of the estimated

amplitudes. For now, we suggest to use the time-lagged autocorrelation of a basis functions

(Fig. 8.c) as an indicator of the relaxation timescales of the cross-correlations involving this

basis functions. This amounts to calculating the diagonal elements of C(τ) and to truncating

the basis set at excitation levels at which this autocorrelation becomes negligible.

V. CONCLUSIONS

We have proposed and tested a basis set for peptides to be used in the variational ap-

proach to molecular kinetics. The basis functions are constructed as tensor products of

residue-centered functions which represent the (local) kinetic modes of the corresponding

residue. That is, a given basis functions represents either a conformational transition in a

specific residue (singly excited basis functions) or concerted conformational transitions in

different residues (multiply excited basis functions). The slow kinetic modes of the peptides

emerge as a superposition of isolated and concerted conformational transitions and can be

concisely represented as histogram of the expansion coefficients. Because the basis functions

have intrinsic meaning, the interpretation of the model is much simpler and considerably

less tedious than the interpretation of a conventional MSM, which requires an additional

clustering in the space of the dominant eigenvectors and a structural characterization of the

resulting clusters.

By comparing the histograms of the expansion coefficients of different peptides one can

directly quantify changes in the peptide dynamics which are induced by a modification in

the peptide sequence. By comparing the hexapeptides VGLAPG and VGVAPG we demon-

strated that the comparison of the histograms answers questions such as: are the relaxation

timescale of a given process altered? Is a specific conformational transition suppressed?

Are additional residues contributing to the slow conformational kinetics? We believe that

the basis set will be particularly suited to model intrinsically disordered peptides, because

their conformational kinetics often changes drastically upon the exchange of a single amino

acid5,6,57, and because they are difficult to model using conventional MSMs due to their
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ernormous conformational space27.

The comparison of VGLAPG and VGVAPG also revealed that the β-branched valine

introduced a coupling to A4, which was absent in VGLAPG. This indicates that at least for

β-branche side chains it might be useful to include the conformational transitions in the first

side-chain torsion angle χ1 into basis set. This can be accomplished via two routes: (i) the

residue-centered functions are re-estimated on the space of the φ-,ψ- and χ1 torsion angle:

RX
k = RX

k (φ, ψ, χ1), where X is replaced by the one-letter code of the amino acid and k is

the index of the dynamical mode (excitation level). (ii) a separate MSM is estimated for

the χ1-torsion angles on model peptides and the residue-centered functions are constructed

from the dynamical modes SXl of the side chain (index l) and the dynamical modes of the

backbone RX
k as RX

k,l = RX
k (φ, ψ)⊗ SXl (χ1). Both routes are straight-forward to implement

but numerically more demanding than the basis functions presented in this paper. Towards

more general basis sets that would also be suitable for describing the kinetics of proteins,

one might have to include additional terms which represent solvent exposure and long-

range interactions such as salt bridges, contact formation and dissociation between different

secondary structure elements.

The size of the full basis set grows rapidly with the number of residues, it therefore has

the same scaling behavior as the number of crisp states in a conventional MSM. However,

since the basis functions are constructed by combining the actual kinetic modes of the

individual residues, only a small fraction of the full basis set is needed to accurately model

the slow dynamics of the peptides. For the hexapeptides VGLAPG and VGVAPG, 3 and

6 basis functions out of 162 were sufficient. This opens up the task of devising a method

which selects the important basis functions from the basis set before actually constructing

the variational model. This could be accomplished by first identifying the residues which

contribute to the slow kinetic modes using singly or doubly excited basis functions and

then by refining the model by adding basis functions which represent multiple excitations of

these residues. Alternatively, the exponential scaling behavior of the basis set can also be

addressed by efficient tensor approaches, such as the tensor-train format58. In future work,

we will combine these two strategies.

Finally, it is important to point out that the basis set is force-field dependent. Although

most force fields identify the same type of conformational transitions in terminally blocked

amino acids (Fig. 1) as AMBER ff-99SB-ILDN51, which was used in the present study, the

22



precise shape of the corresponding MSM eigenvectors differs significantly across force fields48.

Therefore, a separated set of residue-centered functions should be parametrized when the

method is applied to a simulation with a different force field.

Appendix A: Variational principle

In45, we derived the following variational principle for the transfer operator of conforma-

tion dynamics:

1. The normalized Rayleigh coefficient of eigenfunction ri is identical to the ith eigen-

value:
〈ri(xt) · ri(xt+τ )〉t
〈r2i (xt)〉t

= λi(τ)

2. Any approximate function r̂i, that is orthogonal to the previous eigenfunctions 1, ..., i−
1,

〈r̂i | rj〉π = 0 ∀j ∈ {1, ..., i− 1}

has a Rayleigh coefficient that underestimates the ith eigenvalue:

〈r̂i(xt) · r̂i(xt+τ )〉t
〈r̂2i (xt)〉t

= λ̂i(τ) ≤ λi(τ)

As the approximate eigenfunctions r̂i(x) are orthonormal, one can derive a stronger vari-

ational principal for them45. Now the variational principle applies to each approximate

eigenvalue:

λ̂i ≤ λi i ∈ {1, ...,M} , (A1)

implying that we always underestimate timescales (t̂i ≤ ti) and overestimate rates (κ̂i =

t̂−1i ≥ t−1i = κi). A trivial consequence is that the sum of eigenvalues is underestimated:

M∑
i=1

λ̂i ≤
M∑
i=1

λi (A2)

This quantity, elsewhere named generalized matrix Rayleigh quotient59 has been suggested

to be used as a criterion to select amongst different kinetic models. Another formulation is

that the sum of rates is overestimated:
M∑
i=1

κ̂i ≥
M∑
i=1

κi (A3)

Eq. A2 and A3 hold for any model of the conformational kinetics which can be formulated

as a variational approach (see appendix B).
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Appendix B: Markov state models

In conventional Markov state models, the state space X is discretized into a set of M

non-overlapping states {si}Mi=1, and the transition probabilities tij(τ) between pairs of states

are estimated from MD trajectories. The states can be represented by indicator functions19

χMSM

i (x) =

1 if x ∈ si

0 otherwise .
(B1)

The set of indicator functions {χMSM
i (x)}Mi=1 can be regarded as a basis set and can be used

in equation eq. 21 and eq. 22. The resulting expressions for the estimates of Cij and Sij

are28,45

ĈMSM

ij (τ) =
1

NT − nτ

NT−nτ∑
t=1

χMSM

j (xt)χ
MSM

i (xt+nτ ) =
zij

NT − nτ
(B2)

and

ŜMSM

ij =
1

NT

NT∑
t=1

χMSM

j (xt)χ
MSM

i (xt) = πi δij . (B3)

where zij are the number of observed transitions from state si to state sj within lag time τ ,

πi is the relative equilibrium probability of state si, and δij is the Kronecker delta. Finally,

the familiar expressions for the estimation of a Markov state model transition matrix T(τ)

arise28,45, if one considers that T(τ) = [SMSM]−1CMSM(τ), and hence

T̂ij(τ) =
1

πi

zij
NT − nτ

=
NT − nτ∑

j zij

zij
NT − nτ

=
zij∑
j zij

. (B4)

In summary, Markov state models are a special case of the variational approach in which

indication functions (eq. B1) are used as a basis set. However, since the slow dynamic

modes of larger molecules tend to have a smoothly sloped rather than a step-like shape,

typically many of these indicator functions are needed to achieve a good approximation of

the dynamics of the system19,31.

Similarly, other versions of Markov state model analysis can be formulated as special

cases of the variational approach. For example, the time-lagged independent component

analysis (TICA) method uses the mean-free molecular coordinates as basis functions27. In

the core-based Markov state models, committor functions between cores are used as basis

set60.
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A: Basis set: Ac-AV-NHMe

# A V # A V # A V

1 1 1 4 2 1 7 3 1

2 1 2 5 2 2 8 3 2

3 1 3 6 2 3 9 3 3

B: Basis set: VGVAPG

# V G V A P G # V G V A P G

1 0 1 1 1 1 1 22 0 2 1 1 1 3

2 0 2 1 1 1 1 23 0 3 1 1 1 2

3 0 3 1 1 1 1 24 0 3 1 1 1 3

4 0 1 2 1 1 1 25 0 1 2 2 1 1

5 0 1 3 1 1 1 26 0 1 2 3 1 1

6 0 1 1 2 1 1 27 0 1 3 2 1 1

7 0 1 1 3 1 1 28 0 1 3 3 1 1

8 0 1 1 1 2 1 29 0 1 2 1 2 1

9 0 1 1 1 1 2 30 0 1 3 1 2 1

10 0 1 1 1 1 3 31 0 1 2 1 1 2

11 0 2 2 1 1 1 32 0 1 2 1 1 3

12 0 2 3 1 1 1 33 0 1 3 1 1 2

13 0 3 2 1 1 1 34 0 1 3 1 1 3

14 0 3 3 1 1 1 35 0 1 1 2 2 1

15 0 2 1 2 1 1 36 0 1 1 3 2 1

16 0 2 1 3 1 1 37 0 1 1 2 1 2

17 0 3 1 2 1 1 38 0 1 1 2 1 3

18 0 3 1 3 1 1 39 0 1 1 3 1 2

19 0 2 1 1 2 1 40 0 1 1 3 1 3

20 0 3 1 1 2 1 41 0 1 1 1 2 2

21 0 2 1 1 1 2 42 0 1 1 1 2 3

TABLE I. Map between basis function index (#) and basis function definition (notation according

to Fig. 2). A: Ac-AV-NHMe complete basis set (analogous for Ac-VA-NHMe); B: VGVAPG ground

state (# 1), singly (# 2-10) and doubly (# 11-42) excited states (analogous for VGLAPG);
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FIG. 1. Slow kinetic modes of the terminally blocked amino acids alanine (A), valine (V), leucine

(L), proline (P), glycine (G), and alanine (A) followed by proline, which are used as residue-centered

functions (eq. 27). The modes are obtained as the first three right eigenvectors of a MSM transition

matrix estimated at lag time τ= 50 ps using a discretization of the φ−ψ-space by a regular 36×36

grid.
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FIG. 2. Construction of basis functions for the hexapeptide VGVAPG from residue-centered func-

tions RXk .
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FIG. 3. Variational model for the terminally blocked amino acids: alanine (A) and valine (B). a

and b: relaxation timescales of process two (blue lines) and process three (red lines). Dashed gray

lines: MSM bootstrap means, shaded area: 95% confidence interval of the MSM bootstrap sample.

c and d: absolute values of the expansion coefficients (eq. 13)
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FIG. 4. Relaxation timescales of the terminally blocked dimers Ac-AV-NHMe (a), Ac-VA-NHMe

(b), and hexapeptides VGLAPG (c) and VGVAPG (d) estimated using the variational approach

with the SD basis set (42 basis functions, solid line) or conventional MSMs (dashed lines). Dashed

gray lines: MSM bootstrap means, shaded area: 95% confidence interval of the MSM bootstrap

sample.
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