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Abstract

The eigenvalues and eigenvectors of the molecular dynamics propagator (or transfer

operator) contain the essential information about the molecular thermodynamics and

kinetics. This includes the stationary distribution, the metastable states, and state-to-state

transition rates. Here we present a variational approach for computing these dominant

eigenvalues and eigenvectors. This approach is analogous the variational approach used

for computing stationary states in quantum mechanics. A corresponding method of linear

variation is formulated. It is shown that the matrices needed for the linear variation

method are correlation matrices that can be estimated from simple MD simulations for a

given basis set. The method proposed here is thus, to first define a basis set able to capture

the relevant conformational transitions, then compute the respective correlation matrices,

and then to compute their dominant eigenvalues and eigenvectors, thus obtaining the key

ingredients of the slow kinetics.

1 Introduction

Biomolecules, in particular proteins, often act as small but highly complex machines. Ex-

amples range from allosteric changes1,2 to motor proteins, such as kinesin, which literally
∗To whom correspondence should be addressed
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walks along microtubules,1,3 and the ribosome, an enormous complex of RNA molecules

and proteins responsible for the synthesis of proteins in the cell.1,4 To understand how these

biomolecular machines work, it does not suffice to know their structure, i.e. their three-

dimensional shape. One needs to understand how the structure gives rise to the particular

conformational dynamics by which the function of the molecule is achieved. Protein folding

is the second field of research in which conformational dynamics plays a major role. Proteins

are long polymers of amino acids which fold into particular three-dimensional structure. The

astonishingly efficient search for this native conformation in the vast conformational space

of the protein can be understood in terms of its conformational dynamics. Besides time-

resolved experiments, molecular dynamics simulations are the main technique to investigate

conformational dynamics. To date, these simulations yield information on the structure and

dynamics of biomolecules at a spatial and temporal resolution which can not be paralleled by

any experimental technique. However, the extraction of kinetic models from simulation data

is far from trivial, since kinetic information cannot be inferred from structural similarity.5,6

Similar structures might be separated by large kinetic barriers, and structures which are far

apart in some distance measure might be kinetically close.

A natural approach towards modeling the kinetics of molecules involves the partitioning of

conformation space into discrete states.7–17 Subsequently, transition rates or probabilities be-

tween states can be calculated, either based on rate theories,7,18,19 or based on transitions

observed in MD trajectories.6,13,15,16,20–22 The resulting models are often called transition

networks, Master equation models or Markov (state) models (MSM),23–25 where “Marko-

vianity” means that the kinetics are modeled by a memoryless jump process between states.

In Markov state models it is assumed that the molecular dynamics simulations used represent

an ergodic, reversible and metastable Markov process.25 Ergodicity means that every possible

state would be visited in an infinitely long trajectory and every initial probability distribution

of the system converges to a Boltzmann distribution. Reversibility reflects the assumption

that the system is in thermal equilibrium. Metastability means that there are parts of the state

space in which the system remains over timescales much longer than the fastest fluctuations

of the molecule. In order to construct an MSM, the conformational space of the molecule
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is discretized into non-overlapping microstates, and the observed transitions between pairs

of microstates are counted. One obtains a square matrix with transition probabilities, the

so-called transition matrix, from which a wide range of kinetic and thermodynamic proper-

ties can be calculated. The equilibrium probability distribution (in the chosen state space) is

obtained as the first eigenvector of the transition matrix. Directly from the matrix elements,

one can infer kinetic networks and transition paths.26,27 The dominant eigenvectors of the

transition matrix are used to identify metastable states.28–32 Each dominant eigenvector can

be interpreted as a kinetic process, and the associated eigenvalue is related to the timescale

on which this process occurs.25 All this information can be combined to reconstruct the hi-

erarchical structure of the energy landscape.31,33 Finally, transition matrices represent a very

useful framework to connect data from time-resolved experiments with simulation data.34,35

Over the past decade, extensive knowledge on which factors determine the quality of an

MSM has been accumulated. For example, MSMs which are constructed using the inter-

nal degrees of freedom of the molecule tend to yield better results than those which were

constructed using global descriptors of the structure (H-bond patterns, number of native con-

tacts).31 Also, degrees of freedom which are not included in the model should decorrelate on

short timescales from those which are included.36 Naturally, the sampling of the transitions

limits the accuracy of an MSM, and tools to account for this error have been developed.37–39

On the whole, the research field has matured to a point at which well-tested protocols for the

construction of MSMs from MD data have been established,25,40,41 and software to construct

and validate Markov state models from MD data is freely available.42,43 MSMs have been ap-

plied to analyze the conformational dynamics of peptides5,31,44 and of small protein domains,

such as Villin head piece,45 pin WW,46 FiP35 WW.45 Recently, it has become possible to

analyze the folding equilibria of full fast-folding proteins.47–49 MSMs have also been used

to investigate conformational changes, such as the self-association step in the maturation of

HIV-protease,50 ligand binding51 or the oligomerization of peptide fragments into amyloid

structures.52

An important aspect that has limited the routine use of MSMs is the difficulty to obtain a state

space discretization that will give rise to an MSM that precisely captures the slow kinetics.
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The high-dimensional molecular space is usually first discretized using clustering methods

in some metric space. The form and location of these clusters, sometimes called “MSM

microstates”, are crucial for determining the quality of the estimated transition rates.53–55

Various metrics and clustering methods have been attempted for different molecular systems.

Small peptides can be well described by a direct discretization of their backbone dihedrals.31

Ref.56 has suggested to use a dihedral principal component analysis to reduce the dihedral

space to a low-dimensional sub-space and subsequently cluster this space using e.g. k-means.

A rather general metric is the pairwise minimal RMSD-metric in conjunction with some clus-

tering method, such as k-centers or k-medoids.25,30,41 Recently, the time-lagged independent

component analysis (TICA) method was put forward, a dimension reduction approach in

which a “slow” low-dimensional subspace is identified that has been shown to provide im-

proved MSMs over previously employed metrics.57,58

In recent years, it has been established that the precision of an MSM depends on how well the

discretization approximates the shape of the eigenfunction of the underlying dynamical oper-

ator (propagator or transfer operator) of the dynamics.55 When the dynamics are metastable,

these eigenfunctions will be almost constant on the metastable states, and change rapidly at

the transition states.59 Thus, methods that have sought to construct a maximally metastable

discretization30,60 have been relatively successful for metastable dynamics. However, the

MSM can be improved by using a non-metastable discretization, especially when it finely

discretizes the transition states, so as to trace the variation of the eigenfunction in these re-

gions.25,55 An alternative way of achieving a good resolution at the transition state without

using a fine discretization is to use appropriately placed smooth basis functions, such as the

smooth partition-of-unity basis functions suggested in.61–63 The core-based discretization

method proposed in11 effectively employs a smooth partition-of-unity basis defined by the

committor functions between sets.64

All of the above methods have in common that they attempt to construct an appropriate

discretization based on the simulation data. This has a twofold disadvantage: (1) differ-

ent simulation runs will produce different discretizations, making them hard to compare, (2)

data-based clusters have no intrinsic meaning. Interpretation in terms of structural transitions
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must be recovered by analyzing the molecular configurations contained in specific clusters.

With all of the above methods, choosing an appropriate combination of the metric, the clus-

tering method, the number and the location of clusters or cores, is still often a trial-and-error

approach.

Following the recently introduced variational principle for metastable stochastic processes,65

we propose a variational approach to molecular kinetics. Starting from the fact that the molec-

ular dynamics propagator is a self-adoint operator, we can formulate a variational principle.

Using the method of linear variation we derive a Roothaan-Hall-type generalized eigenvalue

problem that yields an optimal representation of eigenvectors of the propagator in terms of

an arbitrary basis set. Both ordinary MSMs using crisp clustering and MSMs with a smooth

discretization can be understood as special cases of this variational approach. In contrast to

previous MSMs using smooth discretization, our basis functions do not need to be a partition

of unity, although this choice has some merits.

Besides its theoretical attractiveness, the variational approach has some advantages over

MSMs. Firstly, the data-driven discretization is replaced by a user-selection of an appro-

priate basis set, typically of internal molecular coordinates. The chosen basis set may reflect

chemical intuition - for example basis functions may be predefined to fit known transition

states of backbone dihedral angles, or formation/dissociation of tertiary contacts between hy-

drophobically or electrostatically interacting groups. As a result, one may obtain a precise

model with fewer basis functions needed than discrete MSM states. Moreover, each basis

function is associated with a chemical meaning, and thus the interpretation of the estimated

eigenfunctions becomes much more straightforward than for MSMs. When using the same

basis set for different molecular systems of the same class, one obtains models that are di-

rectly comparable in contrast to conventional MSMs. The representation of the propagator

eigenfunctions can still be systematically improved by adding more basis functions, or by

varying the basis set.

Our method is analogous to the method of linear variation used in quantum chemistry.66 The

major difference is that the propagator is self-adjoint with respect to a non-Euclidean scalar

product, whereas the Hamiltonian is self-adjoint with respect to the Euclidean scalar product.

5



The derivation of the method is detailed in section 2 and appendices A - C.

2 Theory

2.1 The dynamical propagator

Consider the conformational space X of an arbitrary molecule consisting of N atoms, i.e.

the 3N− 6-dimensional space spanned by the internal degrees of freedom of the molecule.

The conformational dynamics of the molecule in this space can be represented by a dy-

namical process {xt}, which samples at a given time t a particular point xt ∈ X . In this

context, xt is often called a trajectory. This process is governed by the equations of motion,

and it can be simulated using standard molecular-dynamics programs. We assume that an

implementation of thermostatted molecular dynamics is employed which ensures that xt is

time-homogeneous, Markovian, ergodic and reversible with respect to a unique stationary

density (usually the Boltzmann distribution). We introduce a propagator formulation of these

dynamics, following.65 Readers familiar with this approach might want to skip to section 2.2.

Next, consider an infinite ensemble of molecules of the same type, distributed in the confor-

mational space according to some initial probability density |ρ0(x)〉. This initial probability

density evolves in time in a definite manner which is determined by the aforementioned equa-

tions of motion for the individual molecules. We assume that the time evolution is Markovian

p(x,y;τ)dy = P(xt+τ ∈ ydy|xt = x) (1)

= P(xτ ∈ ydy|x0 = x) (2)

where τ is a finite time step, and p(x,y;τ) is the so-called transition density, which is as-

sumed to be independent of time t (time-homogeneous). Figure 1 shows an example of the

time-evolution of a probability density in a one-dimensional two-well potential. Eq. 2 implies

that the probability of finding a molecule in conformation ydy at time t + τ depends only on

the conformation x it has occupied one time step earlier, and not on the sequence of confor-

mations is has visited before t. The unconditional probability density of finding a molecule
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in conformation y at time t + τ is obtained by integrating over all starting conformations x

ρt+τ(y) =
∫

X
p(x,y;τ)ρt(x)dx . (3)

This equation in fact defines an operator P(τ) which propagates the probability density by

a finite time step τ

|ρt+τ(x)〉 = P(τ) |ρt(x)〉 (4)

|ρt+nτ(x)〉 = Pn(τ) |ρt(x)〉 . (5)

P(τ) is called a propagator, and the time step τ is often called the lag time of the propagator.

One says the propagator is parametrized with τ . Like p(x,y;τ), the propagator P(τ) in Eq. 5

is time-homogeneous, i.e. it does not depend on t. The way it acts on a density |ρ(x, t)〉 is

not a function of the time t at which this density occurs, but only a function of the time step

τ by which the density is propagated (Figure 1).
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Figure 1: Illustration of two propagators acting on a probability density |ρt(x)〉. Grey surface: time evolution of |ρt(x)〉; black dotted

line: snap shots of |ρt(x)〉; cyan line: equilibrium density |π(x)〉 to which |ρt(x)〉 eventually converges; red, blue: propagators with different

lag times τ , which propagate an initial density by a time step τ in time.

The way the propagator acts on the density can be understood in terms of its eigenfunctions

{|lα(x)〉} and associated eigenvalues {λα}, which are defined by the following eigenvalue

equation

P(τ) |lα(x)〉= λα |lα(x)〉 . (6)

For the class of processes which are discussed in this publication, the eigenfunctions form a

complete set of R3N (see below). Hence, any probability density (in fact any function) in this
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space can be expressed as linear combination of {lα(x)}. Eq. 5 can be rewritten as

|ρt+nτ(x)〉 = ∑
α

cα λ
n
α |lα(x)〉 (7)

= ∑
α

cα e−nτ/tα |lα(x)〉 , (8)

where n is the number of discrete time steps τ . The eigenfunctions can be interpreted as

kinetic processes which transport probability density from one part of the conformational

space to another, and thus modulate the shape of the overall probability density. See25 for a

detailed explanation of the interpretation of eigenfunctions. The eigenvalues are linked to the

timescales tα on which the associated kinetic processes take place by

tα = − τ

ln(λα)
. (9)

These timescales are of particular interest because they may be accessible using various ki-

netic experiments.35,67–69

Given the aforementioned properties of the molecular dynamics implementation, P(τ) is an

operator with the following properties. A more detailed explanation can be found in appendix

A.

• P(τ) has a unique stationary density, i.e. there is a unique solution |π(x)〉 to the

eigenvalue problem P(τ) |π(x)〉= |π(x)〉 .

• Its eigenvalue spectrum is bounded from above by λ1 = 1 . Also, λ1 is the only eigen-

value of absolute value equal to one.

• P(τ) is self-adjoint w.r.t. the weighted scalar product 〈 f |g〉
π−1 =

∫
Ω

f (x)g(x)π−1(x)dx .

Consequently, its eigenfunctions |lα(x)〉 form an orthonormal basis of the Hilbert space

of square-integrable functions w.r.t. this scalar product. Its eigenvalues are real and can

be numbered in descending order:

1 = λ1 > λ2 ≥ λ3 ≥ . . . (10)
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2.2 Variational principle and the method of linear variation.

A variational principle can be derived for any operator whose eigenvalue spectrum is bound

(either from above or from below) and whose eigenvectors form a complete basis set and are

orthonormal with respect to a given scalar product. The variational principle for propagators

was derived in.65 The derivation is analogous to the derivation of the variational principle of

the quantum-mechanical Hamilton operator.66 For convenience, we give a compact deriva-

tion in appendix B.

The variational principle can be summarized in three steps: Firstly, for the exact eigenfunc-

tion |lα(x)〉, the following equality holds:

〈lα |P(τ) | lα〉π−1 = λα(τ) = e−τ/tα . (11)

The expression 〈 f |P(τ) | f 〉
π−1 is the analogue of the quantum-mechanical expectation value

and has the interpretation of a time-lagged auto-correlation (c.f. sec. 2.3). The autocorrelation

of the α th eigenfunction is identical to the α th eigenvalue.

Secondly, for any trial function | f 〉 which is normalized according to Eq. 64 the following

inequality holds:

〈 f |P(τ) | f 〉
π−1 =

∫
X

f (x)π−1(x)P(τ) f (x)dx (12)

≤ λ1 = 1 , (13)

where equality 〈 f |P(τ) | f 〉
π−1 = λ1 is achieved if and only if | f 〉= |l1〉. This is at the heart

of the variational principle.

Thirdly, this inequality is applicable to other eigenfunctions: When | f 〉 is orthogonal to the

α−1 first eigenfunctions, the variational principle will apply to the α th eigenfunction/eigen-
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value pair:

〈 f |P(τ) | f 〉
π−1 ≤ λα (14)

〈 f |lβ 〉π−1 = 0 ∀β = 1, ...,α−1. (15)

This variational principle allows to formulate the method of linear variation for the propaga-

tor. Again, the derivation detailed in65 is analogous to the derivation of the method of linear

variation in quantum chemistry.66 The trial function | f 〉 is linearly expanded using a basis of

n basis functions {|ϕi〉}n
i=1

f =
n

∑
i=1

ai |ϕi〉 , (16)

where ai are the expansion coefficients. We only choose basis sets consisting of real-valued

functions because all eigenvectors of P(τ) are real-valued functions. Consequently, the

expansion coefficients ai are real numbers. However, the basis set does not necessarily have

to be orthonormal. In the method of linear variation, the expansion coefficients ai are varied

such that the right-hand side of Eq. 13 becomes maximal, while the basis functions are kept

constant. The variation is carried out under the constraint that | f 〉 remains normalized with

respect to Eq. 64 using the method of Lagrange multipliers. For details, see appendix C. The

derivation leads to a matrix formulation of Eq. 6

Ca = λSa . (17)

a is the vector of expansion coefficients ai, C is the (time-lagged) correlation matrix with

elements

Ci j =
〈
ϕi
∣∣P(τ)

∣∣ϕ j
〉

π−1 , (18)

and S is the overlap matrix of the basis set, where the overlap is calculated with respect to the
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weighted scalar product

Si j =
〈
ϕi
∣∣ϕ j
〉

π−1 . (19)

Solving the generalized eigenvalue problem in Eq. 17, one obtains the first n eigenvectors of

P(τ) expressed in the basis {|ϕi〉}n
i=1 and the associated eigenvalues λα .

2.3 Estimating the matrix elements

To solve the generalized eigenvalue equation (Eq. 17) we need to calculate the matrix el-

ements Ci j. In the quantum chemical version of the linear variation approach, the matrix

elements Hi j for the Hamiltonian H (see appendix A) are calculated directly with respect to

the chosen basis, either analytically or by solving the integral Hi j =
〈
ϕi
∣∣H ∣∣ϕ j

〉
numerically.

Such a direct treatment is not possible for the matrix elements of the propagator. However, we

can use a trajectory xt of a single molecule, as it is generated for example by MD simulations,

to sample the matrix elements and thus obtain an estimate for Ci j. For this, we introduce a

basis set {χi} consisting of the n co-functions of the original basis set {ϕi} by weighting the

original functions with π−1

χi(x) = π
−1(x)ϕi(x) ⇔ ϕi(x) = π(x)χi(x) . (20)

Inserting Eq. 20 into the definition of the matrix elements Ci j (Eq. 18) we obtain

Ci j =
〈
ϕi
∣∣P(τ)

∣∣ϕ j
〉

π−1

=
〈
χiπ
∣∣P(τ)

∣∣πχ j
〉

π−1

=
∫

X

∫
X

χi(z) p(y,z,τ)π(y)χ j(y)dydz. (21)
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The last line of Eq. 21 has the interpretation of a time-lagged cross-correlation between the

functions χi and χ j

cor(χi,χ j,τ) :=
∫

X

∫
X

χi(z)P(xt+τ = z|xt = y) · (22)

χ j(y)P(xt = y)dydz , (23)

which can be estimated from a time-continuous time series xt of length T as

ĉorT (χi,χ j,τ) =
1

T − τ

∫ T−τ

0
χ j(xt)χi(xt+τ)dt , (24)

or from a time-discretized time series xt as

ĉorT (χi,χ j,τ) =
1

NT −nτ

NT−nτ

∑
t=1

χ j(xt)χi(xt+nτ
) , (25)

where NT = T/∆t, nτ = τ/∆t, and ∆t is the time step of the time-discretized time series. In

the limit of infinite sampling and for an ergodic process, the estimate approaches the true

value

Ci j = cor(χi,χ j,τ) = lim
T→∞

ĉorT (χi,χ j,τ) . (26)

Note that the second line in Eq. 21 can also be read as the matrix representation of an operator

which acts on the space spanned by {χi}, the co-functions of {ϕi} (Eq. 20). This is the so-

called transfer operator T (τ).

Ci j(τ) =
〈
χiπ
∣∣P(τ)

∣∣πχ j
〉

π−1 (27)

=
〈
χi
∣∣T (τ)

∣∣χ j
〉

π
, (28)

with

T (τ) | f (z)〉 =
1

π(z)

∫
X

p(y,z,τ)π(y) f (y)dy . (29)
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In particular, T (τ) has the same eigenvalues as the propagator and its eigenfunctions are the

co-functions of the propagator eigenfunctions:

rα(x) = π
−1(x)lα(x) . (30)

We will sometimes refer to the functions rα as right eigenfunctions. For more details on the

transfer operator the reader is referred to.59

2.4 Crisp basis sets - conventional MSMs

Markov state models (MSMs), as they have been discussed up to now in the literature,23–25,28,30,31,40–43,55,70

arise as a special case of the proposed method. Namely, the choice of basis sets in conven-

tional MSMs is restricted to indicator functions, i.e. functions which have the value 1 on a

particular set Si of the conformational space X and the value 0 otherwise

χ
MSM
i (x) =


1 if x ∈ Si

0 else.
(31)

In effect, this is a discretization of the conformational space, for which the estimation of the

matrix C (Eq. 25) reduces to counting the observed transitions zi j between sets Si and S j

Ci j =
1

NT −nτ

NT−nτ

∑
t=1

χ
MSM
j (xt)χ

MSM
i (xt+nτ

) (32)

=
zi j

NT −nτ

. (33)

It is easy to verify,65 that the overlap matrix S is a diagonal matrix, with entries πi equal to

the stationary probabilities of the sets:

Sii =
∫

Si

π(x)dx =: πi. (34)
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Thus, the eigenvalue problem Eq.17 becomes:

Ca = λΠa (35)

Ta = λa, (36)

where C is the correlation matrix, Π = S = diag{π1, ...,πn} is the diagonal matrix of station-

ary probabilities, and T = Π
−1C is the MSM transition matrix. Thus a is a right eigenvector

of the MSM transition matrix. As the equations above provide the linear variation optimum,

using MSMs and their eigenvectors corresponds to finding an optimal step-function approxi-

mation of the eigenfunctions. Moreover, we can use the weighted functions

bα = Πaα (37)

and see that they are left eigenfunctions of T:

TΠ
−1b = λΠ

−1b (38)

bT
Π
−1C = λbT (39)

bT T = λbT . (40)

Note that the crisp basis functions form a partition of unity, meaning that their sum is the

constant function with value one, which is the first exact eigenfunction of the transfer oper-

ator T (τ). For this reason, any state space partition that is a partition of unity solves the

approximation problem of the first eigenvalue/eigenvector pair exactly: the first eigenvalue is

exactly λ1 = 1, the expansion coefficients a1
i of the first eigenvector |r1〉 are all equal to one.

The corresponding first left eigenvector b1 = Πa1 fulfills the stationarity condition:

bT
1 = bT

1 T (41)

and is therefore, when normalized to an element sum of 1, the stationary distribution π of T.
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2.5 Stationary probability distribution in the variational approach

All previous MSM approaches – including the most common “crisp” cluster MSMs, but also

the smooth basis function approaches used in24,61,64 – have directly or indirectly used basis

functions that are a partition of unity. The reason for this is that using such a partition of unity,

one can recover the exact first eigenvector, and thus a meaningful stationary distribution.

In the present contribution, we give up the partition of unity condition, in order to be able

to fully exploit the variational principle of the propagator with an arbitrary choice of basis

sets. Therefore, we must investigate whether this approach is still meaningful and can give

us “something” like the stationary distribution.

Revisiting the MSM case, the stationary probability numbers πi can be interpreted as station-

ary probabilities of the sets Si, or, in other words, they measure the contribution of these sets

to the full partition function Z:

πi =
Zi

Z
(42)

Zi =
∫

Si

e−v(x)dx =
∫

X
χ

MSM
i (x)e−v(x)dx (43)

∑
i

πi = ∑
i

Zi

Z
= 1, (44)

where v(x) is a reduced potential.

If we move on to a general basis, we can maintain a similar interpretation of the vector

b1 = Sa1, as long as the first estimated eigenvalue λ1 remains equal to one. If we use the

general definition of Zi as the local density of the basis function χi:

Zi =
∫

X
χi(x)e−v(x)dx. (45)

Then we still have

bi =
Zi

C
(46)
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for all i, where

C =
∫

X
∑

i
χi(x)e−v(x)dx. (47)

Interestingly, this relation also becomes approximately true if the estimated eigenvalue λ1 ap-

proaches one, as proved in appendix D. As a result, the concept of the stationary distribution

is still meaningful for basis sets that do not form a partition of unity. Moreover, it is com-

pletely consistent with the variational principle, because the vector b1 becomes a probability

distribution in the optimum λ1 = 1.

2.6 Estimation method

We summarize by formulating a computational method to estimate the eigenvectors and

eigenvalues of the associated propagator from a time series (trajectory) xt using an arbitrary

basis set.

1. Choose a basis set {χi}.

2. Estimate the matrix elements of the correlation matrix C and of the overlap matrix S

using Eq. 25 with lag times τ and 0, respectively.

3. Solve the generalized eigenvalue problem in Eq. 17. This yields the α th eigenvalue λα

of the propagator (and the transfer operator) and the expansion coefficients aα
i of the

associated eigenvector.

4. The eigenvectors of the transfer operator are obtained directly from the expansion co-

efficients aα
i via:

rα =
n

∑
i=1

aα
i |χi〉 . (48)

5. If an estimate of the stationary density π is available, the eigenvectors of the propagator

P(τ) are obtained from

lα =
n

∑
i=1

aα
i |ϕi〉=

n

∑
i=1

aα
i |πχi〉 . (49)
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3 Methods

3.1 One-dimensional diffusion models

3.1.1 Simulations.

We first consider two examples of one-dimensional diffusion processes xt governed by Brow-

nian dynamics. The process is then described by the stochastic differential equation

dxt =−∇v(xt)dt +
√

2DdBt , (50)

where v is the reduced potential energy (measured in units of kBT , where kB is the Boltzmann

constant and T is the temperature), D is the diffusion constant, and dBt denotes the differential

of Brownian motion. For simplicity, we set all of the above constants equal to one. The

potential function is given by the harmonic potential

v(x) = 0.5x2, x ∈ R, (51)

in the first case, and by the periodic double-well potential

v(x) = 1+ cos(2x), x ∈ [−π,π), (52)

in the second case. In order to apply our method, we first produced finite simulation trajec-

tories for both potentials. To this end, we picked an (also artificial) time-step ∆t = 10−3, and

then used the Euler-Maruyama method, where position xk+1 is computed from position xk as

xk+1 = xk−∆t∇v(xk)+
√

2D∆tyt (53)

yt ∼ N (0,1). (54)

In this way, we produced simulations of 5 ·106 time-steps for the harmonic potential and 107

time-steps for the double-well potential.
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3.1.2 Gaussian model.

We apply our method with Gaussian basis functions to both problems. To this end, n =

2,3, . . . ,10 centers are chosen at uniform distance between x=−4 and x= 4 for the harmonic

potential and between x =−π and x = π for the double-well potential. In the latter case, the

basis functions are modified to be periodic on [−π,π). Subsequently, an "optimal" width

of the Gaussians is picked by simply trying out several choices for the standard deviations

between 0.4 and 1.0 and using the one which yields the highest second eigenvalue. From

this choice, the matrices C and S are estimated and the eigenvalues, -functions and implied

timescales are computed.

3.1.3 Markov models.

As a reference for our methods, we also compute Markov state models for both processes.

To this end, the simulation data is clustered into n = 2,3, . . . ,10 disjoint clusters using the

kmeans algortihm. Subsequently, the EMMA software package43 is used to estimate the

MSM transition matrices and to compute eigenvalues and timescales.

3.2 Alanine dipeptide

3.2.1 MD simulations.

We performed 20 simulations of 200 ns of all-atom explicit solvent molecular dynamics of

alanine dipeptide using the AMBER ff-99SB-ILDN force field.71 The detailed simulation

setup is found in the appendix.

3.2.2 Gaussian model.

Similar to the previous example, we use periodic Gaussian functions which only depend on

one of the two significant dihedral angles of the system (see Sec. 4.2) to apply our method.

For both dihedrals, we separately perform a pre-selection of the Gaussian trial functions. To

this end, we first project the data onto the coordinate, then we solve the projected optimiza-

tion problem for all possible choices of centers and widths, and then pick the ones yielding
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Figure 2: Illustration of the method with two one-dimensional potentials, the harmonic potential in the left half and a periodic double-

well potential in the right half of the figure. Panel A shows the potential v together with its invariant distribution π (shaded) next to two

possible choices of basis functions: A three-element crisp basis and a set of three Gaussian functions. Panel B shows the exact right and

left second eigenfunctions, |r2〉 and |l2〉. In Panel C, the approximation results for these second eigenfunctions obtained from the basis sets

shown above are displayed.

the highest eigenvalues. In every step of the optimization, we select three out of four equidis-

tributed centers between −π and π , and one of eleven standard deviations between 0.04π

and 0.4π . In this way, we obtain three Gaussian trial functions per coordinate, resulting in a

full basis set of six functions. Having determined the parameters for both angles, we use the

resulting trial functions to apply our method as before. A bootstrapping procedure is used to

estimate the statistical uncertainty of the implied timescales.

Note that the variations of basis functions described here to find a “good” basis set could be

conducted once for each amino acid (or short sequences of amino acids) for a given force

field, and then be reused.

3.2.3 Markov models.

This time, we cluster the data into n = 5,6,10,15,20,30,50 clusters, again using the k-means

algorithm. From these clustercenters, we build Markov models and estimate the eigenvalues

and eigenvectors using the EMMA software.
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3.3 Deca-alanine.

3.3.1 MD simulations.

We performed six 500ns all-atom explicit solvent molecular-dynamics simulations of deca-

alanine using the Amber03 force field. See appendix for the detailed simulation setup

3.3.2 Gaussian model.

As before, we use Gaussian basis functions which depend on the backbone dihedral angles

of the peptide, which means that we now have a total of 18 internal coordinates. A pre-

selection of the trial functions is performed for every coordinate independently, similar to the

alanine dipeptide example. In order to keep the number of basis functions acceptably small,

we select two trial functions per coordinate. As before, their centers are chosen from four

equidistributed centers along the coordinate, and their standard deviations are chosen from

eleven different values between 0.04π and 0.4π . We also build a second Gaussian model

using five functions per coordinate, with equidistributed centers and standard deviations op-

timized from the same values as in the first model. Having determined the trial functions, we

estimate the matrices C and S and compute the eigenvalues and eigenvectors, and again use

bootstrapping to estimate uncertainties.

3.3.3 Markov models.

We construct two different Markov models from the dihedral angle data. The first is built

using kmeans clustering with 1000 cluster centers on the full data set, whereas for the sec-

ond, we divide the φ −ψ plane of every dihedral pair along the chain into three regions

corresponding to the α-helix, β -sheet and left-handed α-helix conformation, see section 4.2.

Thus, we have three discretization boxes for all dihedral pairs, which yields a total of 83

discrete states to which the trajectory points are assigned.
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4 Results

We now turn to the results obtained for the four systems presented in the previous section.

4.1 One-dimensional potentials

The two one-dimensional systems are toy examples where all important properties are ei-

ther analytically known or can be computed arbitrarily well from approximations. For the

harmonic potential, the stationary distribution is just a Gaussian function

|π(x)〉= |l1(x)〉=
1√
2π

exp(−x2

2
). (55)

The exact eigenvalues λα(τ) are given by

λα(τ) = exp(−(α−1)τ), (56)

and the associated right eigenfunction rα is given by the (α − 1)-th normalized Hermite

polynomial

|rα(x)〉= |Hα−1(x)〉 ∼ (−1)α−1 exp(
x2

2
)

dα−1

dxα−1 exp(−x2

2
). (57)

The left halves of Figure 2.A and Figure 2.B show the harmonic potential and its station-

ary distribution, as well as the second right and left eigenfunction. The sign change of |l2〉

indicates the oscillation around the potential minimum, which is the slowest equilibration

process. Note, however, that there is no energy barrier in the system, i.e. this process is not

metastable. On the right hand sides of Figure 2.A and Figure 2.B, we see the same for the

periodic double-well potential. The invariant density is equal to the Boltzmann distribution,

where the normalization constant was computed numerically. The second eigenfunction was

computed by a very fine finite-element approximation of the corresponding Fokker-Planck

equation, using 1000 linear elements. The slowest transition in the system is the crossing of

the barrier between the left and right minimum. This is reflected in the characteristic sign

change of the second eigenfunction. Figure 2.A and Figure 2.B also show two choices of
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Figure 3: Analysis of the discretization error for both 1D-potentials. In the upper figure of both panels, we show the L2-approximation

error of the second eigenfunction from both crisp basis functions and Gaussian basis functions, dependent on the size of the basis set. The

lower figures show the convergence of the second implied timescales t2(τ) dependent on the lag time τ . Dotted lines represent the crips

basis sets and solid lines the Gaussian basis sets. The colours indicate the size of the basis.

basis sets which can be used to approximate these eigenfunctions: A three element Gaussian

basis set and a three state crisp set. The resulting estimates of the right and left eigenfunc-

tions are displayed in Figure 2.C. Already with these small basis sets, a good approximation

is achieved.

Let us analyze the approximation quality of both methods in more detail. To this end, we first

compute the L2-approximation error between the estimated second eigenfunction |̂r2〉 and the

exact solution |r2〉, i.e. the integral

δ =
∫

X
(|r2〉(x)− |̂r2〉(x))2

π(x)dx. (58)

22



We expect this error to decay if the basis sets grow. Indeed, this is the case, as can be seen

in the upper graphics of Figure 3.A and Figure 3.B, but the error produced by the Gaussian

basis sets decays faster. Even for the ten state MSM, we still have a significant approximation

error. Another important indicator is the implied timescale tα(τ), associated to the eigenvalue

λα(τ). It is the inverse rate of exponential decay of the eigenvalue, given by tα(τ) =− τ

λα (τ)

and corresponds to the equilibration time of the associated slow transition. The exact value

of tα is independent of the lag time τ . But if we estimate the timescale from the approximate

eigenvalues, the estimate will be too small due to the variational principle. However, with

increasing lag time, the error is expected to decay, as the approximation error also decays

with the lag time. The faster this decay occurs, the better the approximation will be. In the

lower graphics of Figure 3.A and Figure 3.B, we see the lag time dependence of the second

timescale t2 for growing crisp and Gaussian basis sets. We observe that it takes only four to

five Gaussian basis functions to achieve much faster convergence compared even to a ten state

Markov model. For 7 or more Gaussian basis functions, we achieve precise estimates even

for very short lag times, which can not be achieved with Markov models with a reasonable

number of states.

4.2 Alanine dipetide

Alanine dipeptide (Ac-Ala-NHMe, i.e. an alanine linked at either end to a protection group) is

designed to mimic the dynamics of the amino acid alanine in a peptide chain. Unlike the pre-

vious examples, the eigenfunctions and eigenvalues of alanine dipeptide cannot be calculated

directly from its potential energy function, but have to be estimated from simulations of its

conformational dynamics. However, alanine dipeptide is a thoroughly studied system, many

important properties are well-known, though their estimated values depend on the precise

potential energy function (force field) used in the simulations. Most importantly, it is known

that the dynamical behaviour can be essentially understood in terms of the two backbone

dihedral angles φ and ψ: Figure 4.A shows the free energy landscape obtained from popu-

lation inversion of the simulation, where white regions correspond to non-populated states.

We find the three characteristic minima in the upper left, central left, and central right part of
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the plane, which correspond to the β -sheet, α-helix and left-handed α-helix conformation of

the amino acid. The two slowest transitions occur between the left half and the left handed

α-helix, and from β -sheet to α-helix within the main well on the left, respectively.

Figure 4.B shows the weighted second and third eigenfunctions. They are obtained from

applying our method with a total of six basis functions (3 for each dihedral), and from an

MSM constructed from thirty clustercenters. The resulting estimates of |r2〉 and |r3〉 are then

weighted with the population estimated from the trajectory, in order to emphasize the regions

of phase space which are related to the structural transitions. Almost identical results are

achieved, and the sign pattern of both approximations clearly indicates the aforementioned

processes.

Lastly, in Figure 4.C, we again investigate the convergence of the slowest implied timescales.

Different MSMs with a growing number of crisp basis functions (cluster centers) were used

and compared to the six basis function Gaussian model. The colors indicate the number of

basis functions used, the thinner lines correspond to the Markov models, whereas the thick

solid line is obtained from the Gaussian model. In agreement with the previous results, we

find that thirty or more crisp basis functions are needed to reproduce a similar approximation

quality like a six-Gaussian basis set.
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Figure 4: Illustration of the method using the 2D dihedral angle space (φ ,ψ) of alanine dipeptide trajectory data. A) Free energy

landscape obtained by direct population inversion of the trajectory data. B1 and B2) Color-coded contour plots of the second and third

eigenfunctions of the propagator (|l2〉, |l3〉), obtained by approximating the functions |r2〉 and |r3〉 by a Gaussian basis set with six functions,

cf Eq. 48, and weighting the results with the estimated stationary distribution from A). C1 and C2) Color-coded contour plots of the second

and third eigenfunctions of the propagator (|l2〉, |l3〉), obtained by approximating the functions |r2〉 and |r3〉 by a Markov state model with

thirty clustercenters, cf Eq. 48, and weighting the results with the estimated stationary distribution from A). D1 and D2) Convergence of

implied timescales tα (τ) (in picoseconds) corresponding to the second and third eigenfunction, as obtained from Markov models using

n = 5,6,10,15,20,30,50 clustercenters (thin lines), compared to the timescales obtained from the Gaussian model with a total of six basis

functions (thick green line). Thin vertical bars indicate the error estimated by a bootstrapping procedure.
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4.3 Deca alanine

As a third and last example, we study deca alanine, a small peptide which is about five times

the size of alanine dipeptide. A sketch of the peptide is displayed in Figure 5.A.

The slow structural processes of deca alanine are less obvious compared to alanine dipeptide.

The Amber03 force field used in our simulation produces a relatively fast transition between

the elongated and the helical state of the system, with an associated timescale of 5 to 10

nanoseconds. As we can see in Figure 5.B, we are able to recover this slowest timescale

with our method, t2 converges to roughly 6.5 ns for both models. Comparing this to the two

Markov models constructed from the same simulation data, we see that both yield slightly

higher timescales: The k-means based MSM returns a value of about 8 ns and the finely

discretized one ends up with 8.5 ns. Note that the underestimate of the present Gaussian

basis set is systematic, and likely due to the fact that all basis functions were constructed as

a function of single dihedral angles only, thereby neglecting the coupling between multiple

dihedrals.

Despite this approximation, we are able to determine the correct structural transition. In order

to analyse this, we evaluate the second eigenfunction |r2〉, obtained from the smaller model,

for all trajectory points, and plot a histogram of these values as displayed in Figure 5.C. We

then select all frames which are within close distance of the peaks of that histogram, and

produce overlays of these frames as shown underneath. Clearly, large negative values of the

second eigenfunction indicate that the peptide is elongated, whereas large positive values

indicate that the helical conformation is attained. This is in accord with a similar analysis of

the second right Markov model eigenvector: In Figure 5.D, we show overlays of structures

taken from states with the most negative and most positive values of the second eigenvector,

and we find that the same transition is indicated, although the most negative values correspond

to a slightly more bent arrangement of the system.

In summary, it is possible to use a comparatively small basis of 36 Gaussian functions to

achieve results about the slowest structural transition which are comparable to those of MSMs

constructed from about 1000 and 6500 discrete states, respectively. However, the differences

in the timescales point to a weakness of the method: The fact that increasing the number of
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basis functions does not alter the computed timescale indicates that coordinate correlation

cannot be appropriately captured using sums of one-coordinate basis functions. In order to

use the method for larger systems, we will have to study ways to overcome this problem.
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Figure 5: Illustration of the method using dihedral angle coordinates of the deca alanine molecule. A) Graphical representation of

the system. B) Convergence of the estimated second implied timescale (in nanoseconds) depending on the lag time. We show the results

of both Gaussian models and of both the kmeans based MSM and the adapted MSM. Thin vertical bars indicate the error estimated by a

bootstrapping procedure. C) Assignment of representative structures for the second slowest process: The histogram shows how the values

of the second estimated eigenfunction |r2〉 of the smaller model are distributed over all simulation trajectories. Underneath, we show an

overlay of structures taken at random from the vicinity of the peaks at −2.7, −1.6, 0.7 and 1.3. D) Overlays of structures corresponding to

the most negative (left) and most positive (right) values of the second Markov model eigenvector, taken from the kmeans MSM.
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5 Conclusions

We have presented a variational approach for computing the slow kinetics of biomolecules.

This approach is analogous to the variational approach used for computing stationary states

in quantum mechanics, but uses the molecular dynamics propagator (or transfer operator)

rather than the quantum-mechanical Hamiltonian. A corresponding method of linear vari-

ation is formulated. Since the MD propagator is not analytically tractable for practically

relevant cases, the matrix elements cannot be directly computed. Fortunately, these matrix

elements can be shown to be correlation functions that can be estimated from simple MD

simulations. The method proposed here is thus, to first define a basis set able to capture the

relevant conformational dynamics, then compute the respective correlation matrices, and then

to compute their dominant eigenvalues and eigenvectors, thus obtaining the key ingredients

of the slow kinetics.

Markov state models (MSMs) are found to be a special case of the variational principle for-

mulated here, namely for the case that indicator functions (also known as crisp sets or step

functions) on the MSM clusters are used as a basis set.

We have applied the variational approach using Gaussian basis functions on a number of

model examples, including one-dimensional diffusion systems and simulations of the alanine

dipeptide and deca alanine in explicit solvent. Here we have used only one-dimensional basis

sets that were constructed on single coordinates (e.g. dihedral angles), but it is clear that

multidimensional basis functions could be straightforwardly used. Despite the simplicity of

our bases, we could recover, and in most cases improve the results of n-state MSMs with

much less than n basis functions in the applications shown here.

Note that practically all MSM approaches presented thus far use data-driven approaches to

find the clusters on which these indicator functions are defined. Such a data-driven approach

impairs the comparability of Markov state models of different simulations of the same system,

and even more so of Markov state models of different systems. (Essentially, every Markov

state model which has been published so far has been parametrized with respect to its own

unique basis set). In contrast, the method proposed here allows to define basis sets which are

in principle transferable between different molecular systems. This improves the compara-
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bility of models made for different molecular systems. The second — and possibly decisive

— advantage of the proposed method is that the basis sets can be chosen such that they reflect

knowledge about the conformational dynamics or about the forcefield with which xt has been

simulated. It is thus conceivable that optimal basis sets are constructed for certain classes

of small molecules or molecule fragments (e.g. amino acids or short amino acid sequences),

and then combined for computing the kinetics of complex molecular systems.

As mentioned earlier, future work will have to focus on a systematic basis set selection and

on an efficient use of multidimensional trial functions. Related to this is the question of

model validation and error estimation. Due to the use of finite simulation data, use of a very

fine basis set can lead to a growing statistical uncertainty of the estimated eigenvalues and

eigenfunctions. In order to improve the basis set while balancing the model error and the

statistical noise, a procedure to estimate this uncertainty is needed. While the special case

of a Markov model allows for a solid error-theory based on the probabilistic interpretation of

the model,72 this is an open topic here and will have to be treated in the future.
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Appendix

A Propagators of reversible processes

In the following, we explain in more detail the properties of the dynamical propagator P(τ),

as introduced in section 2.

A.1 Stationary density.

For any time-homogeneous propagator, there exists at least one stationary density |π(x)〉,

which does not change under the action of the operator: P(τ) |π(x)〉= |π(x)〉. Another way

of looking at this equation is to say that |π(x)〉 is an eigenfunction of P(τ) with eigenvalue

λ1 = 1. It is guaranteed that π(x) ≥ 0 everywhere as the transfer density is normalized. We

additionally assume that π(x) > 0. In molecular systems, π(x) is a Boltzmann density and

π(x)> 0 is obtained when the temperature is nonzero and the energy is finite for all molecular

configurations.

A.2 Bound eigenvalue spectrum.

The eigenvalue λ1 = 1 always exists for any propagator. It is also the eigenvalue with the

largest absolute value: |λi| ≤ 1, i.e., the eigenvalue spectrum of P(τ) is bound from above

by the value 1. This is due to the fact that the transfer density is normalized

∫
X

p(x,y;τ)dy = 1 , (59)

i.e. the probability of going from state xt = x to anywhere in the state space (including x)

during time τ has to be one.73,74
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A.3 Ergodicity.

If the dynamics of the molecule are ergodic, then λ1 is non-degenerate. As a consequence

there is only one unique stationary density |π(x)〉 associated to P(τ).

A.4 Reversibility.

If the dynamics of the individual molecules in the ensemble occur under equilibrium condi-

tions, they fulfill reversibility (also sometimes called “detailed balance" or “micro-reversibility”)

with respect to the stationary distribution π

π(x)p(x,y;τ) = π(y)p(y,x;τ) ∀x,y . (60)

Eq. 60 implies that if the ensemble is in equilibrium, i.e. its systems are distributed over the

state space according to |π(x)〉, the number of systems going from state x to state y during

time τ is the same as the number of systems going from y to x. Or: the density flux from

x to y is the same as in the opposite direction, and this is true for all state pairs {x,y}. For

reversible processes, the stationary density becomes an equilibrium density and is equal to

the Boltzmann distribution. In the following, we will only consider operators of reversible

processes.

A consequence of reversibility is that λ1 is the only eigenvalue with absolute value 1. To-

gether with the previous properties, the eigenvalues can be sorted by their absolute value

|λ1|= 1 > |λ2| ≥ |λ3|... (61)

A.5 Self-adjoint operator.

Another consequence of reversibility is self-adjointness of the propagator, i.e.

〈 f |P(τ) |g〉
π−1 = 〈g |P(τ) | f 〉

π−1 , (62)
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with respect to the weighted scalar product 〈· | ·〉
π−1

〈 f |g〉
π−1 =

∫
X

g(x)π
−1(x) f (x)dx , (63)

and the norm

| f |=
√
〈 f | f 〉

π−1 , (64)

where π−1(x) = 1/π(x) is the reciprocal function of π(x) and the bar denotes complex con-

jugation. This is verified directly:

〈P(τ) f |g〉
π−1 =

∫
X

[∫
X

p(x,y,τ) f (x)dx
]

× π
−1(y)g(y)dy (65)

=
∫

X

[∫
X

p(y,x,τ)
π(y)
π(x)

f (x)dx
]

× π
−1(y)g(y)dy (66)

=
∫

X

∫
X

p(y,x,τ) f (x)

× π
−1(x)g(y)dydx (67)

=
∫

X
f (x)π−1(x)[∫

X
p(y,x,τ)g(y)dy

]
dx (68)

=〈 f |P(τ)g〉
π−1 . (69)

In the second line, we have used reversibility (Eq. 60) to replace p(x,y,τ) by p(y,x,τ)π(y)
π(x) .

Note that we could omit the complex conjugate in Eq. 63 because f , P(τ), and g are real-

valued functions. Self-adjointness of P(τ) implies that its eigenvalues are real-valued, and

its eigenfunctions form a complete basis of R3N , which is orthonormal with respect to the

weighted scalar product 〈· | ·〉
π−1

〈
lα
∣∣ lβ〉π−1 = δαβ . (70)
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A.6 Comparison to the QM Hamilton operator.

With these properties of the propagator, Eq. 6 can be compared to the stationary Schrödinger

equation H |χ〉 = E |χ〉. Both equations are eigenvalue equations of self-adjoint operators

with a bound eigenvalue spectrum. The equations differ in some mathematical aspects: P(τ)

is an integral operator, whereas H is a differential operator; P(τ) is self-adjoint with re-

spect to a weighted scalar product, whereas H is self-adjoint with respect to the Euclidean

scalar product. Also, they are not analogous in their physical interpretation. In contrast to

the quantum-mechanical Hamilton operator, which acts on complex-valued wave functions,

P(τ) propagates real-valued probability densities. Moreover, the eigenfunctions of the prop-

agator do not represent quantum states, such as the ground and excited states, they represent

the stationary distribution and the perturbations to the stationary distribution from kinetic

processes. Nonetheless, the mathematical structures of Eq. 6 and the stationary Schrödinger

equation are similar enough that some methods which are applied in quantum chemistry can

be reformulated for the propagator.

B Variational principle

The variational principle for propagators is derived and discussed in detail in.65 We expand

a trial function in terms of the eigenfunctions of P(τ)

| f 〉 = ∑
α

cα |lα〉 , (71)

where the αth expansion coefficients is given as

cα = 〈lα | f 〉π−1 . (72)

38



The norm (Eq. 64) of the trial function | f 〉 is then given as

〈 f | f 〉
π−1 = ∑

α

∑
β

cαcβ

〈
lα
∣∣ lβ〉π−1 = ∑

α

c2
α . (73)

We therefore require that | f 〉 is normalized

〈 f | f 〉
π−1 = 1 . (74)

With this, an upper bound for the following expression can be found

〈 f |P(τ) | f 〉
π−1 = ∑

α

∑
β

cαcβ

〈
lα
∣∣P(τ)

∣∣ lβ〉π−1 (75)

= ∑
α

∑
β

cαcβ λβ

〈
lα
∣∣ lβ〉π−1 (76)

= ∑
α

c2
αλα (77)

≤ ∑
α

c2
αλ1 = 〈 f | f 〉π−1 λ1 = 1, (78)

and hence

λ1 = 1 ≥ 〈 f |P(τ) | f 〉
π−1 . (79)

The above functional of any trial function is smaller than or equal to one, where the equality

only holds if and only if | f 〉= |l1〉.

Furthermore, from the equations above it directly follows that for a function fi that is orthog-

onal to eigenfunctions |l1〉 , ..., |li−1〉:

〈
fi
∣∣ l j
〉

π−1 = 0 ∀ j = 1, ..., i−1 (80)

the variational principle results in

〈 f |P(τ) | f 〉
π−1 ≤ λi. (81)
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C Method of linear variation

Given the variational principle for the transfer operator (Eq. 79), the function | f 〉 can be

linearly expanded using a basis of n basis functions {|ϕi〉}n
i=1

f =
n

∑
i=1

ai |ϕi〉 , (82)

where ai are the expansion coefficients. All basis functions are real functions, but the basis

set is not necessarily orthonormal. Hence, the expansion coefficients are real numbers. In the

method of linear variation, the expansion coefficients ai are varied such that the right-hand

side of Eq. 79 becomes maximal, while the basis functions are kept constant. The derivation

leads to matrix formulation of Eq. 6. Solving the corresponding matrix diagonalization

problem, one obtains the first n eigenvectors of P(τ) expressed in the basis {|ϕi〉}n
i=1 and

the associated eigenvalues. Inserting Eq. 16 into Eq. 79 one obtains

1 ≥

〈
n

∑
i=1

aiϕi

∣∣∣∣∣P
∣∣∣∣∣ n

∑
j=1

a jϕ j

〉
π−1

(83)

=
n

∑
i, j=1

aia j
〈
ϕi
∣∣P ∣∣ϕ j

〉
π−1 (84)

=
n

∑
i, j=1

aia jCi j , (85)

where we have introduced the matrix element of the correlation matrix C

Ci j =
〈
ϕi
∣∣P ∣∣ϕ j

〉
π−1 . (86)

The maximum of the expression of right-hand side in Eq. 79 is found by varying the coeffi-

cients ai, i.e.

∂

∂ak
〈 f |P | f 〉

π−1 =
∂

∂ak

n

∑
i j=1

aia jCi j (87)

= 0 ∀ k = 1,2, ...n , (88)
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under the constraint that | f 〉 is normalized

〈 f | f 〉
π−1 =

n

∑
i j=1

aia j
〈
ϕi
∣∣ϕ j
〉

π−1 =
n

∑
i j=1

aia jSi j (89)

= 1. (90)

Si j is the matrix element of the overlap matrix S defined as

Si j =
〈
ϕi
∣∣ϕ j
〉

π−1 =
〈
ϕ j
∣∣ϕi
〉

π−1 . (91)

To incorporate the constraint in the optimization problem, we make use of the method of

Lagrange multipliers

L =
n

∑
i j=1

aia j
〈
ϕi
∣∣P ∣∣ϕ j

〉
π−1 (92)

−λ

[
n

∑
i j=1

aia j
〈
ϕi
∣∣ϕ j
〉

π−1−1

]
(93)

=
n

∑
i j=1

aia jCi j−λ

[
n

∑
i j=1

aia jSi j−1

]
. (94)

The variational problem then is

1
2

∂

∂ak
L =

1
2

n

∑
j=1

a jCi j +
1
2

n

∑
i=1

aiCi j (95)

−1
2

λ

[
n

∑
j=1

a jSi j +
n

∑
i=1

aiSi j

]
(96)

=
n

∑
i=1

aiCi j−λ

n

∑
i=1

aiSi j (97)

= 0 (98)

∀ k = 1,2, ...n , (99)

where, in the third line, we have used that Ci j = C ji and Si j = S ji (Eqs. 62 and 91). Eq. 95

can be rewritten as a matrix equation

Ca = λSa , (100)
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which is a generalized eigenvalue problem, and identical to

S−1Ca = λa , (101)

where a is a vector which contains the coefficients ai. The solutions of Eq. 101 are orthonor-

mal with respect to an inner product which is weighted by the overlap matrix S:

〈
a f
∣∣∣S ∣∣∣ag

〉
= δ f g , (102)

where δ f g is the Kronecker delta. Then, any two functions f = ∑i a f
i |ϕi〉 and g = ∑i ag

i |ϕi〉

are orthonormal with respect to the π−1-weighted inner product, as it is expected for the

eigenfunctions of the transfer operator

〈 f |g〉
π−1 =

〈
∑

i
a f

i ϕi

∣∣∣∣∣∑j
ag

jϕ j

〉
π−1

(103)

=
〈

a f
∣∣∣S ∣∣∣ag

〉
(104)

= δ f g. (105)

D Left eigenvectors and stationary properties

We want to show that the first “left” eigenvector b1 = Sa1 approximates the stationary distri-

bution even for basis sets that do not form a partition of unity.

Let us assume we have a sequence of basis sets {χi} j, such that the corresponding first eigen-

value λ1 j converges to one. Let us denote the local densities of basis set j by Z j
i , the total

density from Eq. 47 by C j, and the entries of the normalized first left eigenvector of basis set

j by b j
i . We would like to show

b j
i −

Z j
i

C j → 0 (106)

as j→ ∞, or in other words

b j
i C

j−Z j
i → 0. (107)
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To do so, we multiply by the inverse partition function 1
Z and rewrite this expression as:

1
Z
(b j

i C
j−Z j

i ) =
1
Z

∑k a1 j
k s j

ik(
∑l,k a1 j

k s j
lk

) ·∫ ∑
l

χl je−v(x)

− 1
Z

∫
χi je−v(x) (108)

=
∑k a1 j

k

〈
χi j
∣∣χk j

〉
π

∑l,k a1 j
k

〈
χl j
∣∣χk j

〉
π

·

〈
∑

l
χl j

∣∣∣∣∣1
〉

π

−
〈
χi j
∣∣1〉

π
. (109)

We can use Eq. 48 to pull the summation over k into the second argument of the brackets:

1
Z
(b j

i C
j−Z j

i ) =

〈
χi j
∣∣r1 j

〉
π〈

∑l χl j
∣∣r1 j

〉
π

·

〈
∑

l
χl j

∣∣∣∣∣1
〉

π

−
〈
χi j
∣∣1〉

π
.

(110)

From the convergence of the eigenvalue λ1 j towards one, it follows that the approximate first

eigenfunction
∣∣r1 j
〉

converges to the true first eigenfunction, the constant function with value

one, in the scace L2
π . This can be shown using an orthonormal basis expansion. Consequently,

we can use the Cauchy-Schwarz inequality to estimate the expression

∣∣〈χi j
∣∣r1 j

〉
π
−
〈
χi j
∣∣1〉

π

∣∣ =
∣∣〈χi j

∣∣r1 j−1
〉

π

∣∣ (111)

≤ ‖χi j‖‖r1 j−1‖. (112)

As the second term tends to zero by the L2-convergence, the complete expression likewise

decays to zero, provided that the L2-norms of the basis functions remain bounded, which is

reasonable to assume. By a similar argument, we can show that the remaining fraction

〈
∑l χl j

∣∣1〉
π〈

∑l χl j
∣∣r1 j

〉
π

(113)

converges to one, provided that the L2-norm of the sum of all basis functions also remains

bounded. Combining these two observations, we can conclude that Eq. 110 tends to zero,

which was to be shown.
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E Simulation setups

Alanine dipeptide. We performed all-atom molecular dynamics simulations of acetyl-alanine-

methylamide (Ac-Ala-NHMe), referred to as alanine dipeptide in the text, in explicit water

using the GROMACS 4.5.575 simulation package, the AMBER ff-99SB-ILDN force field,71

and the TIP3P water model.76 The simulations were performed in the canonical ensemble

at a temperature of 300 K. The energy-minimized starting structure of Ac-Ala-NHMe was

solvated into a cubic box with a minimum distance between solvent and box wall of 1 nm,

corresponding to a box volume of 2.72 nm3 and 651 water molecules. After an initial equi-

libration of 100 ps, 20 production runs of 200 ns each were performed, yielding a total sim-

ulation time of 4 µs. Covalent bonds to hydrogen atoms were constrained using the LINCS

algorithm77 (lincs_iter = 1, lincs_order = 4), allowing for an integration time step of 2 fs.

The leap-frog integrator was used. The temperature was maintained by the velocity-rescale

thermostat78 with a time constant of 0.01 ps. Lennard-Jones interactions were cut off at 1

nm. Electrostatic interactions were treated by the Particle-Mesh Ewald (PME) algorithm79

with a real space cutoff of 1 nm, a grid spacing of 0.15 nm, and an interpolation order of 4.

Periodic boundary conditions were applied in the x, y, and z-direction. The trajectory data

was stored every 1 ps.

Deca-alanine. We performed all-atom molecular dynamics simulations of deca alanine,

which is protonated at the amino terminus and deprotonated at the carboxy terminus, using

the GROMACS 4.5.5 simulation package,75 the Amber03 force field and the TIP3P water

model. A completely elongated conformation was chosen as an initial structure.

The structure was solvated in a cubic box of volume V = 232.6nm3, with 7647 pre-equilibrated

TIP3P water molecules. First, an equilibration run of 500ps in the NVT ensemble with full

position restraints, using the velocity-rescale thermostat, was carried out. This was followed

by a 500ps NPT equilibration run. The temperature was set to T = 300K. The equilibration

run was followed by a 500ns production run, again at T = 300K. Two temperature coupling

groups were used with a velocity-rescale thermostat and a time constant of 0.01ps.78 Periodic

boundary conditions were applied in the x, y and z direction. For the long range electrostatic
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interaction PME was used with a pme-order of 4 and a Fourier grid spacing of 0.15nm. Co-

valent bonds to hydrogen bonds were constrained using the LINCS algorithm,77 allowing

for a 2fs timestep. A leap frog integrator was used. Data was saved every 1ps, resulting in

5 · 105 data frames. Six independent simulations from the same equilibrated configuration

were carried out resulting in 3 µs total data.
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