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ABSTRACT
Path reweighting is a principally exact method to estimate dynamic properties from biased simulations—provided that the path probability
ratio matches the stochastic integrator used in the simulation. Previously reported path probability ratios match the Euler–Maruyama scheme
for overdamped Langevin dynamics. Since molecular dynamics simulations use Langevin dynamics rather than overdamped Langevin dynam-
ics, this severely impedes the application of path reweighting methods. Here, we derive the path probability ratio ML for Langevin dynamics
propagated by a variant of the Langevin Leapfrog integrator. This new path probability ratio allows for exact reweighting of Langevin dynam-
ics propagated by this integrator. We also show that a previously derived approximate path probability ratio Mapprox differs from the exact ML

only by O(ξ4Δt4
) and thus yields highly accurate dynamic reweighting results. (Δt is the integration time step, and ξ is the collision rate.) The

results are tested, and the efficiency of path reweighting is explored using butane as an example.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0038408., s

I. INTRODUCTION

Molecular dynamics are astonishingly complex and occur in
a wide range of length and timescales.1–3 To elucidate the mecha-
nisms by which different parts of a molecular system interact and
how macroscopic properties arise from these interactions, molec-
ular dynamics (MD) simulations have become an indispensable
tool.4–9 Because the timescales covered by MD simulations are often
orders of magnitude lower than the slowest timescale of the system,
a wide variety of enhanced sampling techniques have been devel-
oped, which distort the dynamics of the simulation such that rare
molecular transitions occur more frequently. This can be achieved
by raising the temperature or by adding a bias to the potential energy
function.10,11 How to extract the correct values of dynamical prop-
erties (mean-first passage times, residence times, binding rates, or
transition probabilities) from these accelerated dynamics is an open
question and a very active field of research.

The goal of dynamical reweighting methods is to estimate
dynamical properties of the system at a target state S̃ from a trajec-
tory generated at simulation state S. S could correspond to a higher

temperature or to a biased potential. Starting points for the deriva-
tion of dynamical reweighting methods are Kramers rate theory,12–15

the likelihood function for estimating the transition probabilities
from MD trajectories,16–19 or a discretization of the Fokker–Planck
equation.7,20–22 The methods differ in the ease of use and the severity
of the assumptions they make.23

A principally exact formalism to reweight dynamic properties is
path reweighting methods, which have been reported already early
in Refs. 24–28. In path reweighting methods, the trajectory gener-
ated at state S is split into short paths ω. Then, the path probabil-
ity P̃L(ω;Δt∣(x0, v0)) of a given ω at the target state S̃ is calculated
by reweighting the path probability PL(ω; Δt|(x0, v0)) of ω at the
simulation state S,

P̃L(ω;Δt∣(x0, v0)) ≈M ⋅ PL(ω;Δt∣(x0, v0)). (1)

(x0, v0) is the initial state of the path ω, and Δt is the integra-
tion time step. M(ω) is the path probability ratio or reweight-
ing factor. Equation (1) is exact if the path probability ratio M
= P̃L(ω;Δt∣(x0, v0))/PL(ω;Δt∣(x0, v0)) is derived from the numer-
ical integration scheme used to generate ω. The mathematical basis
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for path reweighting methods is the Girsanov theorem,29,30 or else,
they can be derived from the Onsager–Machlup action.24–27,31 A pre-
requisite for path reweighting is that a stochastic integrator is used
in the MD simulation, e.g., a Langevin thermostat.

However, it has been challenging to apply path reweighting
to simulations of large molecular systems. For example, the vari-
ance of the reweighting estimators increases rapidly with increasing
path length such that for long paths, reweighting becomes inefficient
compared to direct simulation of the target state. Combining path
reweighting techniques with Markov state models (MSMs) alleviates
this problem.32–35 In MSMs,36–42 the dynamics of the system is repre-
sented by transitions between discrete states in the conformational
space of the molecular system, where the lag time τ of the transi-
tion is much shorter than the slow timescales of the system. Thus,
only short paths of length τ are needed to estimate and reweight the
transition probabilities.

Second, a number of technical difficulties arise. The path prob-
ability ratio M decreases exponentially with the path length τ such
that the standard numerical accuracy is quickly exceeded. This prob-
lem can be solved by using high precision arithmetic libraries.35

To calculate the path probability ratio M, one needs to know the
trajectory and the random numbers of the stochastic integrator at
every integration time step. Writing this information to disk at every
integration time step is not a workable option. We, therefore, pro-
posed to calculate the path reweighting factor “on-the-fly” during
the simulation and to write out intermediate results at regular inter-
vals, e.g., whenever the positions are written to disk. The additional
storage requirements and computational costs for the “on-the-fly”-
calculations are negligible compared to the overall cost of the simu-
lation.34,35 Having solved the technical challenges, we tested the path
reweighting method on several peptides using path lengths of up to τ
= 600 ps.34,35 Applications to larger systems and longer path lengths
are likely within reach.

Yet, the equation for the path probability ratio M poses a bar-
rier to a more widespread use of path reweighting methods. Because
M is derived from the stochastic integration scheme used to simulate
the system, one cannot readily apply a path probability ratio derived
for one integration scheme to a simulation generated by another
integration scheme.

In temperature reweighting, i.e., when simulation and target
state differ in the temperature, only the random term of the stochas-
tic integrator is affected by the change in temperature. Path proba-
bility ratios for temperature reweighting have been constructed by
rescaling the normal distributions of the random or noise terms of
the stochastic integration scheme.32,43

In potential reweighting, i.e., when simulation and target state
differ in the potential energy function, one needs to account for
changes in the drift terms of the stochastic integration scheme.
The path probability ratio Mo for the Euler–Maruyama scheme
for overdamped Langevin dynamics has been reported multiple
times.24–26,33 However, the dynamics of large molecular systems is
better reproduced by Langevin dynamics, and MD programs imple-
ment a wide variety of Langevin integration schemes.44–53 The time-
continuous Onsager–Machlup action for Langevin dynamics has
been reported,27 but to the best of our knowledge, path probabil-
ity ratios for Langevin integration schemes ML have not yet been
reported. Thus, exact path reweighting for Langevin dynamics has
not been possible, so far.

In Refs. 34 and 35, we demonstrated that path reweighting
can be applied to biased simulations of large molecular systems,
nonetheless. We used an approximate path probability ratio Mapprox
that is based on the path probability ratio for the Euler–Maruyama
scheme but uses the random numbers that are generated dur-
ing the Langevin MD simulation. We tested Mapprox extensively,
and for low-dimensional model systems and for molecular sys-
tems, this approximate path probability ratio yielded very accurate
results. In these two publications, we used a variant of the Langevin
Leapfrog integration scheme developed by Izaguirre, Sweet, and
Pande49 to propagate the system. Both the Langevin Leapfrog inte-
gration scheme and its variant are implemented in OpenMM54 (see
Appendix A). We will abbreviate the variant by the “ISP scheme.”

In this contribution, we derive the path probability ratio ML
for Langevin dynamics propagated by a variant of the Langevin
Leapfrog integrator.49 ML allows for exact reweighting of Langevin
dynamics (Sec. IV). We analyze why Mapprox is an excellent approx-
imation to ML (Sec. VI), and we discuss whether there are scenarios
in which Mo is a viable approximation to ML (Sec. V). The general
framework of the path reweighting equations and the correspond-
ing equations for the Euler–Maruyama scheme are summarized in
Secs. II and III. Section VIII reports the computational details.

II. PATH REWEIGHTING
The path probability P(ω; Δt|(x0, v0)) is the probability to gen-

erate a time-discretized path ω = (x0, x1, . . ., xn) starting in a pre-
defined initial state (x0, v0) at the simulation potential V(x). The
notation emphasizes that the probability is conditioned on an ini-
tial state (x0, v0) and that the path has been generated with a fixed
time step Δt, whereas ω is the argument of the function. In short,
P(ω; Δt|(x0, v0)) maps a path in position space to a probability. Its
functional form depends on the integration scheme used to generate
ω and the potential energy function.

The path probability ratio is the ratio between the probability
P̃(ω;Δt∣(x0, v0)) to generate a path ω at a target potential,

Ṽ(x) = V(x) + U(x), (2)

and the probability P(ω; Δt|(x0, v0)) to generate the same path ω at
the simulation potential V(x),

M(ω;Δt∣(x0, v0)) =
P̃(ω;Δt∣(x0, v0))

P(ω;Δt∣(x0, v0))
. (3)

The potential energy function U(x) is usually called perturbation or
bias.

In integration schemes for stochastic dynamics, random num-
bers are used to propagate the system. If a single random number
is drawn per integration step, then the probability to generate ω is
equal to the probability P(η) to generate the corresponding random
number sequence η = (η0, η1, . . ., ηn−1),

P(ω;Δt∣(x0, v0)) = P(η), (4)

where ω and η are linked by the equations for the integration
scheme. Since the random numbers ηk are drawn from a Gaussian
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TABLE I. References to the equations for the properties introduced in Sec. II.

Overdamped Langevin Langevin

Equation of motion Eq. (11) Eq. (19)
Integration scheme Eq. (12) Eqs. (20) and (21)
Path probability P(ω; Δt|(x0, v0)) Eq. (13) Eq. (22)
Path probability ratio M(ω; Δt|(x0, v0)) Eq. (14) Eq. (23)
Random number ηk Eq. (15) Eq. (24)
Random number difference Δηk Eq. (17) Eq. (26)
Random number probability ratio M(ω, η; Δt|(x0, v0)) Eq. (18) Eq. (27)

distribution with zero mean and unit variance, the functional form
of P(η) is

P(η) = N exp(−
1
2

n−1

∑
k=0

η2
k) , N = (

1
2π
)

n
2
. (5)

P(η) is a function that maps a random number sequence to a
probability. One can interpret Eq. (4) as a change in variables from ω
to η, where the change is defined by the equations for the integration
scheme.

Suppose that η is the random number sequence needed to gen-
erate ω at a simulation potential V(x). To generate the same path at
a target potential Ṽ(x), one would need a different random number
sequence η̃ = (η̃0, η̃1, . . . , η̃n−1), with

η̃k = ηk + Δηk. (6)

Δηk is the random number difference, and it depends on the inte-
gration scheme and the difference between the two potentials. The
random number probability ratio is the ratio between the probability
of drawing η and the probability of drawing η̃k,

P(η̃)
P(η)

=

N exp(− 1
2

n−1
∑
k=0
(ηk + Δηk)2

)

N exp(− 1
2

n−1
∑
k=0

η2
k)

= exp(−
n−1

∑
k=0

ηk ⋅ Δηk) ⋅ exp(−
1
2

n−1

∑
k=0
(Δηk)

2
). (7)

Mathematically, the following has happened in the previous
paragraph. The path ω remained unchanged. The functional form
of the path probability has changed as P̃(ω;Δt∣(x0, v0)) because the
potential energy enters the equations for the integration scheme.
Likewise, the change in variables from ω to η̃ has changed. The func-
tional form of the random number probability remains the same
[Eq. (5)]. The analogon to Eq. (4) for the target potential is

P̃(ω;Δt∣(x0, v0)) = P(η̃), (8)

where ω and η̃ are linked by the equations for the integration scheme
using Ṽ(x). Given the two changes in variables for the simula-
tion and the target potential, the path probability ratio [Eq. (3)]
and the random number probability ratio [Eq. (7)] are equal. Note
that Eq. (3) is a ratio of two different functions that have the same

argument ω, whereas Eq. (7) is the ratio of the same function with
different arguments η and η̃.

Equation (7) is of little practical use because η̃ is not avail-
able from a simulation at the simulation state. However, the random
number difference Δηk can be expressed as a function of ω, and the
random number probability ratio can thus be expressed as a function
of ω and η,

M(ω,η;Δt∣(x0, v0)) =
P(η̃)
P(η)

. (9)

For a path ω and the corresponding random number sequence η that
was used to generate this path, we will use the following equality:

M(ω,η;Δt∣(x0, v0)) =M(ω;Δt∣(x0, v0)). (10)

The functional form and the value of the properties intro-
duced in this section depend strongly on the integration scheme.
In Sec. III, we summarize the equations for the Euler–Maruyama
scheme for overdamped Langevin dynamics. In Sec. IV, we derive
the corresponding equations for the ISP integration scheme for
Langevin dynamics (see Table I). Throughout this manuscript, prop-
erties associated with Langevin dynamics are subscripted with L,
and properties associated with overdamped Langevin dynamics are
subscripted with o.

III. OVERDAMPED LANGEVIN DYNAMICS
A. Equation of motion and integration scheme

Consider a one particle system that moves in a one-dimensional
position space with temperature T and potential energy function V.
The overdamped Langevin equation of motion is

ẋ(t) = −
∇V(x(t))

ξm
+

√
2kBT
ξm

η(t), (11)

with particle mass m, position x, velocity v = ẋ, and Boltzmann con-
stant kB. x(t) ∈ Ωo is the state of the system at time t, where Ωo ⊂ R
is the state space of the system. The collision rate ξ (in units of s−1)
models the interaction with the thermal bath. η(t) ∈ R describes
an uncorrelated Gaussian white noise with unit variance centered at
zero, which is scaled by the volatility

√
2kBT
ξm .

A numerical algorithm to calculate an approximate solution to
Eq. (11) is the Euler–Maruyama integration scheme,30,55
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xk+1 = xk −
∇V(xk)

ξm
Δt +

√
2kBT
ξm
√
Δt ηo,k, (12)

where Δt is the time step, xk is the position, and ηo ,k is the random
number at iteration k. The random numbers are drawn from a Gaus-
sian distribution with zero mean and unit variance. For k = 0, . . .,
n − 1, Eq. (12) yields a time-discretized overdamped Langevin path
ωo = (x0, x1, . . ., xn), which starts at the pre-defined initial position
x0. Note that while the state of the system at iteration k is defined by
the position xk, the progress to xk+1 depends on xk and on the value
of the random number ηo ,k. The random number sequence that was
used to generate a specific ωo is denoted by ηo = (ηo ,0, . . ., ηo ,n−1).

B. Path probability and path probability ratio
The probability to observe a path ωo generated by the Euler–

Maruyama scheme [Eq. (12)] is28,34,56,57

Po(ωo;Δt∣x0)

=

⎡
⎢
⎢
⎢
⎢
⎣

√
ξm

4πkBTΔt

⎤
⎥
⎥
⎥
⎥
⎦

n

⋅ exp(−
ξm

4kBTΔt

n−1

∑
k=0
(xk+1 − xk +

Δt
ξm
∇V(xk))

2
). (13)

For the Euler–Maruyama scheme, the path probability Po(ωo; Δt|x0)
does not depend on the initial velocity; hence, we dropped v0 in the
notation. However, it does depend on the potential energy function
V(x) that has been used in Eq. (12) to generate the path ωo.

The path probability that the same path ωo has been gener-
ated at a target potential Ṽ(x) [Eq. (2)] is P̃o(ωo;Δt∣x0), which is
obtained by replacing the potential V(x) with Ṽ(x) in Eq. (13). The
ratio between the two path probabilities is

Mo(ωo;Δt∣x0)

=
P̃o(ωo;Δt∣x0)

Po(ωo;Δt∣x0)

= exp

⎛
⎜
⎜
⎜
⎜
⎝

−

n−1
∑
k=0
(xk+1 − xk)(∇Ṽ(xk) − ∇V(xk))

2kBT

⎞
⎟
⎟
⎟
⎟
⎠

× exp

⎛
⎜
⎜
⎜
⎜
⎝

−

n−1
∑
k=0
(∇Ṽ2

(xk) − ∇V2
(xk))Δt

4kBTξm

⎞
⎟
⎟
⎟
⎟
⎠

. (14)

Equation (14) is a function of the path ωo and does not depend
on the random number sequence ηo explicitly. It is equivalent to
Eq. (B4) in Ref. 34.

C. Random numbers and random number
probability ratio

Given ωo, the sequence of random numbers ηo that was used to
generate ωo at the simulation potential V(x) can be back-calculated
by rearranging Eq. (12) for ηo ,k,

ηo,k =

√
ξm

2kBTΔt
(xk+1 − xk +

∇V(xk)
ξm

Δt). (15)

We remark that the path probability [Eq. (13)] can formally be
derived by inserting Eq. (15) into Eq. (5). Since Eq. (15) defines a
coordinate transformation from xk to ηo ,k, one needs to normalize
with respect to the new coordinates in order to obtain the correct
normalization constant. The random number sequence η̃o needed
to generate ωo at a target potential Ṽ(x) is calculated by inserting
Eq. (2) into Eq. (15),

η̃o,k =

√
ξm

2kBTΔt
(xk+1 − xk +

∇V(xk)
ξm

Δt) +
√

Δt
2kBTξm

∇U(xk)

= ηo,k + Δηo,k. (16)

Equation (15) defines the change in variables from ω to ηo for
the Euler–Maruyama scheme at the simulation potential. Likewise,
Eq. (16) defines the change in variables from ω to η̃o at the target
potential. The random number difference is

Δηo,k =

√
Δt

2kBTξm
∇U(xk). (17)

It depends on the perturbation U(x), but not on the simulation
potential V(x). Inserting Δηo ,k [Eq. (17)] into Eq. (7) yields the
random number probability ratio,

Mo(ωo,ηo;Δt∣x0)

= exp
⎛

⎝
−

n−1

∑
k=0

√
Δt

2kBTξm
∇U(xk) ⋅ ηo,k

⎞

⎠

⋅ exp(−
1
2

n−1

∑
k=0

Δt
2kBTξm

(∇U(xk))
2
). (18)

Because of Eq. (10), Eqs. (14) and (18) are equal. However, the
two probability ratios use different time-series and different infor-
mation on the system to evaluate the path probability ratio. To
evaluate Eq. (14), one needs the path ωo, the simulation poten-
tial V(x), and the target potential Ṽ(x). To evaluate Eq. (18), one
needs the path ωo, the random number sequence for the simulation
potential ηo, and the perturbation U(x). Because U(x) often only
affects a few coordinates of the systems, i.e., it is low-dimensional,
Eq. (18) is computationally more efficient. Besides the force cal-
culation −∇V(x) needed to generate the path ωo, it requires an
additional force calculation −∇U(x) only along the coordinates that
are affected by the perturbation. By contrast, Eq. (14) requires an
additional force calculation on the entire system −∇Ṽ(x).

IV. LANGEVIN DYNAMICS
A. Equation of motion and integration scheme

Consider a one particle system that moves in a one-dimensional
position space with temperature T and potential energy function V.
The Langevin equation of motion is

mẍ(t) = −∇V(x(t)) − ξmẋ(t) +
√

2kBTξmη(t), (19)

with particle mass m, position x, velocity v = ẋ, acceleration a = ẍ,
and Boltzmann constant kB. The state of the system at time t is deter-

J. Chem. Phys. 154, 094102 (2021); doi: 10.1063/5.0038408 154, 094102-4

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

mined by the position and the velocity (x(t), ẋ(t)) ∈ ΩL, where
ΩL ⊂ R2 is the state space of the system. The collision rate ξ (in units
of s−1) models the interaction with the thermal bath. η ∈ R describes
an uncorrelated Gaussian white noise with unit variance centered at
0, which is scaled by the volatility

√
2kBTξm.

A numerical algorithm to calculate an approximate solution to
Eq. (19) is the ISP scheme,49

xk+1 = xk + exp(−ξΔt) vkΔt − [1 − exp(−ξΔt)]
∇V(xk)

ξm
Δt

+

√
kBT
m
[1 − exp(−2ξΔt)]ηL,k Δt, (20)

vk+1 =
xk+1 − xk

Δt
, (21)

whereΔt is the time step, xk is the position, vk is the velocity, and ηL ,k
is the random number at iteration k (see Appendix A). The random
numbers are drawn from a Gaussian distribution with zero mean

and unit variance. For k = 0, . . ., n − 1, Eqs. (20) and (21) yield a
time-discretized Langevin path ωL = ((x0, v0), (x1, v1), . . ., (xn, vn)),
which starts at the pre-defined initial state (x0, v0). Note that while
the state of the system at iteration k is defined by the tuple (xk, vk)
∈ΩL, the progress to (xk+1, vk+1) depends on (xk, vk) and on the value
of the random number ηL ,k. The random number sequence that was
used to generate a specific ωL is denoted by ηL = (ηL ,0, . . ., ηL ,n−1).

The position xk+1 is treated as a random variable because it
directly depends on a random number [Eq. (20)], while the veloc-
ity vk+1 is calculated from the new position xk+1 and the preceding
position xk. Because the velocity vk in Eq. (20) is determined by the
positions xk and xk−1 [Eq. (21)], it carries a small memory effect into
the time-evolution of x.

B. Path probability and path probability ratio
The probability to generate a path ωL by the ISP scheme

[Eqs. (20) and (21)] at the simulation potential V(x) is

PL(ωL;Δt∣(x0, v0)) = [
n−1

∏
k=0

δ(vk+1 −
xk+1 − xk

Δt
)] ⋅ [

√
m

2πkBTΔt2(1 − exp(−2ξΔt))
]

n

× exp
⎛
⎜
⎜
⎝

−
n−1

∑
k=0

m(xk+1 − xk − exp(−ξΔt)vkΔt + (1 − exp(−ξΔt))∇V(xk)ξm Δt)
2

2kBT(1 − exp(−2ξΔt))Δt2

⎞
⎟
⎟
⎠

. (22)

The derivation of Eq. (22) is shown in Appendixes B and C.
Appendix B explains the strategy for the derivation, and Appendix C
shows how to solve the integrals that appear in the derivation.

The path probability P̃L(ωL;Δt∣(x0, v0)) to generate a path ωL
by the ISP scheme at the target potential is obtained by insert-
ing Ṽ(x) [Eq. (2)] into Eq. (22). The path probability ratio for
overdamped Langevin dynamics is

ML(ωL;Δt∣(x0, v0))

=
P̃L(ωL;Δt∣(x0, v0))

PL(ωL;Δt∣(x0, v0))

= exp

⎛
⎜
⎜
⎜
⎜
⎝

−

n−1
∑
k=0
(xk+1 − xk)(∇Ṽ(xk) − ∇V(xk))

kBTξ(1 + exp(−ξΔt))Δt

⎞
⎟
⎟
⎟
⎟
⎠

⋅ exp

⎛
⎜
⎜
⎜
⎜
⎝

n−1
∑
k=0

vk(∇Ṽ(xk) − ∇V(xk))

kBTξ(1 + exp(ξΔt))

⎞
⎟
⎟
⎟
⎟
⎠

⋅ exp

⎛
⎜
⎜
⎜
⎜
⎝

−
exp(ξΔt) − 1
exp(ξΔt) + 1

⋅

n−1
∑
k=0
(∇Ṽ2

(xk) − ∇V2
(xk))

2kBTξ2m

⎞
⎟
⎟
⎟
⎟
⎠

.

(23)

Analogous to Eq. (14), Eq. (23) is a function of the path ωL and does
not depend on the random number sequence ηL.

C. Random numbers and random number
probability ratio

Given ωL, the sequence of random numbers ηL, which was
used to generate ωL at the simulation potential V(x), can be back-
calculated by rearranging Eq. (20) for ηL ,k,

ηL,k =

√
m

kBT(1 − exp(−2ξΔt))Δt2

×(xk+1 − xk − exp(−ξΔt)vkΔt

+ (1 − exp(−ξΔt))
∇V(xk)

ξm
Δt). (24)

The random number sequence η̃L needed to generate ωL at a target
potential Ṽ(x) is calculated by inserting Eq. (2) into Eq. (24),

η̃L,k =

√
m

kBT(1 − exp(−2ξΔt))Δt2

×(xk+1 − xk − exp(−ξΔt)(xk − xk−1)

+ (1 − exp(−ξΔt))
∇V(xk)

ξm
Δt)

+
√

1
kBTξ2m

⋅
1 − exp(−ξΔt)
√

1 − exp(−2ξΔt)
∇U(xk)

= ηL,k + ΔηL,k. (25)
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Equation (24) defines the change in variables from ω to ηL for the
ISP scheme at the simulation potential. Likewise, Eq. (25) defines the
change in variables from ω to η̃L at the target potential. The random
number difference is

ΔηL,k =

√
1

kBTξ2m
⋅

1 − exp(−ξΔt)
√

1 − exp(−2ξΔt)
∇U(xk). (26)

Again, the random number difference depends on the perturbation
potential U(x), but not on the simulation potential V(x). Inserting
ΔηL ,k [Eq. (26)] into Eq. (7) yields the random number probability
ratio,

ML(ωL,ηL;Δt∣(x0, v0))

= exp

⎛
⎜
⎜
⎜
⎜
⎝

−
1 − exp(−ξΔt)
√

1 − exp(−2ξΔt)
⋅

n−1
∑
k=0
∇U(xk)ηL,k

√
kBTξ2m

⎞
⎟
⎟
⎟
⎟
⎠

× exp

⎛
⎜
⎜
⎜
⎜
⎝

−
(1 − exp(−ξΔt))2

1 − exp(−2ξΔt)
⋅

n−1
∑
k=0
∇U2
(xk)

2kBTξ2m

⎞
⎟
⎟
⎟
⎟
⎠

. (27)

Analogous to the path probability ratio for overdamped Langevin
dynamics, ML(ωL; Δt|(x0, vo)) [Eq. (23)] and ML(ωL, ηL; Δt|(x0, v0))
[Eq. (27)] yield the same path probability ratio for a given path ωL
that has been generated using the random number sequence ηL, but
they use different arguments. Again, the path probability from ran-
dom numbers ML(ωL, ηL; Δt|(x0, v0)) requires an additional force
calculation −∇U(x) only along the coordinates that are affected
by the perturbation, making it computationally more efficient than
ML(ωL; Δt|(x0, v0)) in most cases.

V. COMPARING LANGEVIN AND OVERDAMPED
LANGEVIN DYNAMICS
A. Test system

Our test system is a one-dimensional one particle system at
the simulation potential V(x) (Fig. 1, orange line) and at the target
potential Ṽ(x) (Fig. 1, black line). The trajectories generated at V(x)
will be reweighted to the target potential Ṽ(x). The black lines in
Fig. 4(b) represent the first three dominant MSM eigenfunctions40

associated with the target potential. The implied timescales37 are
t0 = ∞, t1 = 20.5 s, and t2 = 6.0 s, which are shown as black lines
in Fig. 4(c). Computational details are reported in Sec. VIII.

B. From random numbers η to paths ωo and ωL
Given a random number sequence η = (η0, . . ., ηn−1) and a

starting state (x0, v0), one can use the Euler–Maruyama scheme to
generate an overdamped Langevin path ωo, or else, one can use the
ISP scheme to generate a Langevin path ωL. We discuss briefly how
the difference between ωo and ωL depends on the combined param-
eter ξΔt, which can be interpreted as the number of collisions per
time step.

In the limit of high friction ξmẋ ≫ mẍ, the Langevin
dynamics [Eq. (19)] approaches the overdamped Langevin dynamics

FIG. 1. Simulation potential V(x) (orange) and target potential Ṽ(x) (black).

[Eq. (11)]. More specifically, in Eq. (19), set mẍ = 0, and rearranging
yields Eq. (11). However, even though the equation of motion for
Langevin dynamics converges to the equation of motion for over-
damped Langevin dynamics, the ISP scheme [Eqs. (20) and (21)]
does not converge to the Euler–Maruyama scheme [Eq. (12)] in the
limit of high friction. By “high friction,” we denote the range of col-
lision rates ξ for which e−ξΔt ≈ 0 in Eq. (20), but ∣∇Vξm ∣ > 0. (As
reference, e−0.1 = 0.904, e−1 = 0.368, and e−5 = 0.007.) If e−ξΔt ≈ 0,
then also e−2ξΔt

≈ 0, and Eq. (20) becomes

xk+1 ≈ xk −
∇V(xk)

ξm
Δt +

√
kBT
m

ηL,k Δt. (28)

The first two terms on the right-hand side are identical to the Euler–
Maruyama scheme [Eq. (12)], but the random number term differs
from the Euler–Maruyama scheme. Thus, even in the limit of high
friction, the two algorithms yield different paths for a given random
number sequence η. The difference between a Langevin path ωL and
an overdamped Langevin path ωo can be scaled by the combined
parameter ξΔt. For some value ξΔt > 1, the difference between the
two paths becomes minimal before increasing again, but for no value
of ξΔt, the two paths fully coincide.

When Langevin integration schemes are used as a thermostat in
MD simulations, the optimal friction coefficient should reproduce
the expected temperature fluctuations and therefore depends on
the system and the simulation box.58 Reported collision rates49,50,59

(while keeping the time step at Δt = 0.002 ps) range from 0.1 ps−1

to ∼100 ps−1, corresponding to ξΔt = 0.0002 to ξΔt = 0.2. However,
even for a large collision rate of 100 ps−1, e−ξΔt = e−0.2 = 0.819 ≉ 0.
For these two reasons—MD simulations are not conducted in the
high-friction regime, and even in the high-friction regime, ωo differs
from ωL—a simulation with the ISP scheme yields a materially dif-
ferent path ensemble than a simulation with the Euler–Maruyama
scheme.

C. From a path ω to random numbers ηo and ηL
In Sec. V B, we showed that given a random number sequence

η, the path generated by the Euler–Maruyama integration scheme
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FIG. 2. Overview of path probabilities and path probability ratios for a sample path
ω = (x0, . . . xn).

for overdamped Langevin dynamics differs from the path generated
by the ISP integration scheme for Langevin dynamics. More rele-
vant for path reweighting is the reverse situation: Given a sample
path ω = (x0, . . ., xn) in position space and the parameters of the
dynamics (m, V, T, ξ, kB, and Δt), how does the random number
sequence ηo needed to generate ω with the Euler–Maruyama scheme
[Eq. (12)] differ from the random number sequence ηL needed to
generate the same ω with the ISP scheme [Eqs. (20) and (21)]? An
equivalent question is as follows: How does the path probability that
ω has been generated by the Euler–Maruyama scheme differ from

the path probability that ω has been generated by the ISP scheme?
How does this difference affect the path probability ratios between
the simulation and a target potential? Figure 2 gives an overview of
the quantities we will compare. Note that we dropped the index o or
L from the path ω because ω is a given dataset, which will be analyzed
using various approaches to calculate the path probabilities.

First, we need to discuss whether such a comparison between
the ISP scheme and the Euler–Maruyama scheme is even possible.
From an algorithmic view point, this is clearly possible because both
integrators [Eqs. (12) and (20)] use a single random number per
integration time step. The path probabilities are then equal to the
probability of the different random number sequences ηL and ηo
needed to generate ω. From a physical view point, the answer is not
as clear because overdamped Langevin dynamics evolves in position
space (xk), whereas Langevin dynamics evolves in phase space (xk,
vk). The velocity vk enters the integration scheme [Eq. (20)] and the
path probability [Eq. (22)]. However, vk is fully determined by the
current position xk and the previous position xk−1 [Eq. (21)]. Thus,
if the initial velocity v0 is known, the position trajectory is enough
to evaluate the path probability [Eq. (22)], and the comparison to
overdamped Langevin dynamics is possible.

We consider the test system described in Sec. V A at the sim-
ulation potential V(x) (double-well potential) simulated by the ISP
scheme for Langevin dynamics. With ξ = 50 s−1 and Δt = 0.01 s,
we have e−ξΔt = e−0.5 = 0.607 ≉ 0, meaning that the system is not
in the high-friction limit. Figure 3(a) additionally shows that with
these parameters O(ξmẋ) ≈ O(mẍ) and also according to the crite-
rion for the stochastic differential equation, the system is not in the
high-friction limit.

Figure 3(b) shows a sample path ω = (x0, x1, . . ., x10).
Figure 3(c) shows the random numbers ηo needed to generate ω
with the Euler–Maruyama scheme [blue solid line, calculated using
Eq. (15)] and the random numbers ηL needed to generate ω with the
ISP scheme [green solid line, calculated using Eq. (24)]. As expected
for the low-friction regime, these two random number sequences
differ markedly.

Consequently, the path probabilities differ. Figure 3(d) shows
the unnormalized path probability for generating ω with the Euler–
Maruyama scheme (blue solid line),

Po(ω;Δt∣x0)

∼ exp(−
ξm

4kBTΔt

n−1

∑
k=0
(xk+1 − xk +

Δt
ξm
∇V(xk))

2
), (29)

and for generating ω with the ISP scheme (green solid line),

PL(ω;Δt∣(x0, v0)) ∼ exp
⎛
⎜
⎜
⎝

−
n−1

∑
k=0

m(xk+1 − xk − exp(−ξΔt)vkΔt + (1 − exp(−ξΔt))∇V(xk)ξm Δt)
2

2kBT(1 − exp(−2ξΔt))Δt2

⎞
⎟
⎟
⎠

, (30)

where we omitted those factors from Eqs. (13) and (22) that cancel in
the path probability ratio. We checked that the path probabilities are
consistent with P(ηo) and P(ηL). The two path probabilities diverge
from the first simulation step on. After ten integration time steps,

they differ by two orders of magnitude. Clearly, PL(ω; Δt|(x0, v0))
cannot be used as an approximation for Po(ω; Δt|x0).

However, an interesting observation arises when we consider
reweighting ω to the target potential Ṽ(x) (triple-well potential).
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FIG. 3. (a) The acceleration term mẍ
and the friction ξmẋ for the test system
at V(x). (b) Example path ω of length
n = 10. (c) Random number sequences
ηL (green solid), ηo (blue solid), η̃L
(green dashed), and η̃o (blue dashed)
that correspond to ω. (d) Path probabili-
ties PL(ω; Δt|(x0, v0)) (green solid), P(ω;
Δt|x0) (blue solid), P̃L(ω;Δt∣(x0, v0))

(green dashed), and P̃o(ω;Δt∣x0) (blue
dashed). (e) Path probability ratios:
ML(ω, Δt|(x0, v0)) (green) and Mo(ω;
Δt|x0) (blue).

Figure 3(c) shows the random numbers η̃o needed to generate ω
with the Euler–Maruyama scheme at Ṽ(x) [blue dashed line, cal-
culated using Eq. (16)] and the random numbers η̃L needed to gen-
erate ω with the ISP scheme at Ṽ(x) [green dashed line, calculated
using Eq. (25)]. The corresponding unnormalized path probabilities
∼ P̃o(ω;Δt∣x0) and ∼ P̃L(ω;Δt∣(x0, v0)) are shown as dashed lines
in Fig. 3(d). Strikingly, a change in the integration scheme from the
Euler–Maruyama scheme to ISP has a much stronger influence on
the random numbers and the path probability than the modification
of the potential energy function. Figure 3(e) shows the path prob-
ability ratios, i.e., the ratio between the dashed and the solid lines
in Fig. 3(d), for the Euler–Maruyama scheme Mo = Mo(ω; Δt|x0)
= Mo(ω, ηo; Δt|x0) (blue line) and the ISP scheme ML = ML(ω;
Δt|(x0, v0)) = ML(ω, ηL; Δt|(x0, v0)) (green line). Because, within
an integration scheme, the path probability does not change dras-
tically when going from the simulation potential V(x) to the target
potential Ṽ(x), both path probability ratios remain at ≈1 through-
out the path and follow similar curves, that is, the path probability
ratios for Langevin and overdamped Langevin dynamics are much
more similar than the underlying path probabilities.

D. Path reweighting

We return to the scenario described in the Introduction and
ask the following: are the two path probability ratios similar enough
that we can use Mo as an approximation to ML in Eq. (1)?
Figure 4(a) compares different ways to calculate the path proba-
bility P̃L(ω;Δt∣(x0, v0)), i.e., the probability with which an example
path ω would have been generated at the target potential Ṽ(x). The

black line is the reference solution calculated by inserting Ṽ(x) into
Eq. (22). It is identical to the green dashed line in Fig. 3(d). The
green line in Fig. 4(a) shows the reweighted path probability, where
we used the exact path probability ratio for the ISP scheme, ML(ω;
Δt|(x0, v0)) [Eq. (23)], in Eq. (1). As expected, this reweighted path
probability coincides with the directly calculated path probability.
The blue line shows the reweighted path probability, where we used
the path probability ratio for the Euler–Maruyama scheme, Mo(ω;
Δt|x0) [Eq. (14)], as an approximation to ML in Eq. (1). The path
probability deviates from the reference solution, but overall follows
a similar curve.

Figure 4(a) merely serves to illustrate the concepts. With only
ten steps, the example path ω is far too short to judge the accu-
racy of the two path probability ratios for reweighting dynamic
properties. We, therefore, constructed MSMs for the target poten-
tial Ṽ(x). The reference solution has been generated from simula-
tions at the target potential Ṽ(x) using the ISP scheme. The dom-
inant MSM eigenfunctions and associated implied timescales are
shown as black lines in Figs. 4(b) and 4(c). Next, we ran simula-
tions at the simulation potential V(x) using the ISP scheme and
constructed a reweighted MSM using the exact reweighting factor
ML(ω; Δt|(x0, v0)) [Eq. (23)]. The dominant MSM eigenfunctions
are shown as green lines in Fig. 4(b). They exactly match the ref-
erence solution. The reweighted implied timescales are shown as
green lines in Fig. 4(c) and are in good agreement with the ref-
erence solution. Finally, we used the simulation at V(x) to con-
struct a reweighted MSM using the reweighting factor for the Euler–
Maruyama scheme Mo(ω; Δt|x0) [Eq. (14)]. The dominant MSM
eigenfunctions are shown as blue lines in Fig. 4(b). The eigenfunc-
tions differ considerably from the reference solution. Most notably,
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FIG. 4. (a) Reference and reweighted path probabilities for ω for Langevin dynamics. (b) Reference and reweighted first three dominant MSM left eigenfunctions l1, l2, and l3
associated with Ṽ(x) for Langevin dynamics. (c) Reference and reweighted implied timescales corresponding to l2 and l3.

the stationary distribution is not reproduced correctly [blue line in
the upper panel of Fig. 4(b)]. The left peak is reduced to a shoulder
of the central peak, and the relative heights of central peak and the
right peak do not match those of the reference solution. Likewise,
the implied timescales [blue line in Fig. 4(c)] are severely underesti-
mated. This indicates that using the path probability ratio for over-
damped Langevin dynamics, Mo(ω; Δt|x0), to reweight Langevin
trajectories does not yield acceptable results.

VI. APPROXIMATE PATH PROBABILITY RATIO
A. Derivation and numerical results

With the results from Sec. IV, the exact random number prob-
ability ratio ML(ω, ηL; Δt|(x0, v0)) [Eq. (7)] for the ISP scheme is
straightforward to evaluate from a simulation at V(x): the random
number sequence η = ηL can be recorded during the simulation,
and the random number difference Δη = ΔηL is given by Eq. (26).
Inserting ηL and ΔηL into Eq. (7) yields ML(ω, ηL; Δt|(x0, v0)). How-
ever, ΔηL ,k in Eq. (26) is specific to the ISP scheme. If one uses
a different Langevin integration scheme to simulate the dynam-
ics at V(x), one needs to adapt Eq. (26) via the strategy outlined
in Sec. IV.

Fortunately, the random number difference for overdamped
Langevin dynamics Δηo ,k [Eq. (17)] is approximately equal to ΔηL ,k
for any given perturbation U(x). Figure 3(c) already suggests that.
In Appendix D, we show that the difference between Δη2

L,k and Δη2
o,k

is, in fact, only of O(ξ4Δt4
) so that for ξΔt < 1, we can assume with

high accuracy that

ΔηL,k ≈ Δηo,k,
√

1
kBTξ2m

1 − exp(−ξΔt)
√

1 − exp(−2ξΔt)
⋅ ∇U(xk) ≈

√
Δt

2kBTξm
⋅ ∇U(xk).

(31)

The difference between ΔηL ,k and Δηo ,k is determined by the pref-
actors in front of ∇U(xk) in Eq. (31), which are shown as a func-
tion of ξΔt in Fig. 5(b). For ξΔt < 1, the two curves are virtually
identical.

With the approximation in Eq. (31), we can derive an approx-
imate random number probability ratio, by using the recorded ηL,
but substituting ΔηL ,k [Eq. (26)] by Δηo ,k [Eq. (17)] in Eq. (7), we
obtain

ML(ω,ηL;Δt∣(x0, v0)) ≈Mapprox(ω,ηL;Δt∣x0)

= exp
⎛

⎝
−

n−1

∑
k=0

√
Δt

2kBTξm
∇U(xk) ⋅ ηL,k

⎞

⎠

⋅ exp(−
1
2

n−1

∑
k=0

Δt
2kBTξm

(∇U(xk))
2
).

(32)

Equation (32) has the same functional form as the random number
probability ratio for the Euler–Maruyama scheme Mo(ω, ηo; Δt|x0)
[Eq. (18)], but it uses ηL, the random numbers generated during the
ISP simulation, instead of ηo. Equation (32) is the approximation
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FIG. 5. (a) Sketch of a step xk → xk +1 and the quantities of influence for Langevin and overdamped Langevin dynamics. (b) Prefactors of ΔηL ,k and Δηo ,k as a function
of ξΔt. (c) Absolute difference (absolute error) between the random numbers ⟨|ηo ,k − ηL ,k |⟩ and the random number differences ⟨|Δηo ,k − ΔηL ,k |⟩ as a function of ξΔt.
(d) Relative difference (relative error) between the random numbers ⟨|(ηo ,k − ηL ,k )/ηL ,k |⟩ and the random number differences ⟨|(Δηo ,k − ΔηL ,k )/ΔηL ,k |⟩ as a function
of ξΔt.

that we used in Refs. 34 and 35 because we had not yet derived ML(ω,
ηL; Δt|(x0, v0)) [Eqs. (23) and (27)].

Figure 4 demonstrates the accuracy of the approximate ran-
dom number probability ratio Mapprox(ω, ηL; Δt|x0) [Eq. (32)] for
our test system. The orange dashed line in Fig. 4(a) shows the
reweighted path probability for the short example path, where we
used Mapprox(ω, ηL; Δt|x0) [Eq. (32)], in Eq. (1). It exactly matches
the reference solution (black line).

Next, we constructed a reweighted MSM for the target poten-
tial Ṽ(x) based on our simulations at the simulation potential V(x)
using Mapprox(ω, ηL; Δt|x0) [Eq. (32)] to reweight the transition
counts. The dominant MSM eigenfunctions of the reweighted MSM
are shown as orange dashed lines in Fig. 4(b). They exactly match
the reference solution. The reweighted implied timescales are shown
as orange dashed lines in Fig. 4(c) and seem to match the refer-
ence solution even better than the ones calculated using the exact
path probability ratio [green line in Fig. 4(c)]. However, the dif-
ference between the orange dashed line and the green line is likely
within statistical uncertainty. In summary, Mapprox(ω, ηL; Δt|x0) is
a highly accurate approximation to ML(ω, ηL; Δt|x0) for ξΔt < 1.
Using Mapprox(ω, ηL; Δt|x0) instead of ML(ω, ηL; Δt|x0) could even
have the following advantages: (i) the implementation is less error-
prone because the functional form of Mapprox is simpler than that of
ML and (ii) Mapprox might be numerically more stable because the
calculation of exponential function on the left-hand side of Eq. (31)
is avoided.

B. Intuition
We discuss why Mapprox(ω, ηL; Δt|x0) is a better approxima-

tion to ML(ω, ηL; Δt|x0) than Mo(ω; Δt|x0) = Mo(ω, ηo; Δt|x0).
Figure 5(a) shows one integration time step of a stochastic integra-
tion scheme from xk to xk+1 (black line). From k to k + 1, the system
has progressed by Δx = xk+1 − xk. In the ISP scheme, this progress is
composed of a progress

Δxdrift,L = exp(−ξΔt) vkΔt − [1 − exp(−ξΔt)]
∇V(xk)

ξm
Δt (33)

due to the drift force and the velocity of the system [second and third
terms on the right-hand side of Eq. (20)] and a progress

Δxrandom,L =

√
kBT
m
[1 − exp(−2ξΔt)]ηL,k Δt (34)

due to the random force [fourth term on the right-hand side of
Eq. (20)] such that Δx = Δxdrift,L + Δxrandom,L. Δxdrift,L and Δxrandom,L
are illustrated as green solid lines in Fig. 5(a). The probability of
generating the step xk → xk+1 is determined by Δxrandom,L, which is
proportional to the random number ηL ,k (green solid arrow).

With a different potential energy function Ṽ(x) at xk, the dis-
placement due to the drift force differs from the original Δxdrift,L.
To achieve the same overall displacement Δx, Δxrandom,L needs to
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be adjusted (green dotted line). The corresponding random number
η̃L,k is shown as a green dotted arrow, and the difference between
the two random numbers ΔηL ,k is shown as a red line. In path
reweighting, one constructs η̃L,k by adding ΔηL ,k to ηL ,k,

η̃L,k = ηL,k + ΔηL,k (35)

[analogous to Eq. (6)], which then yields the general form of the
random number probability ratio in Eq. (7).

An analogous analysis applies to the Euler-Maruyama scheme,
where the progress due to the drift force is

Δxdrift,o = −
∇V(xk)

ξm
Δt (36)

[second term on the right-hand side of Eq. (12)], and the progress
due to the random force is

Δxrandom,o =

√
2kBT
ξm
√
Δt ηo,k (37)

[third term on the right-hand side of Eq. (12)]. In Fig. 5(a), Δxdrift,o
and Δxrandom,o are illustrated as blue solid lines, and the random
number is represented as a blue solid arrow. With a different poten-
tial energy function Ṽ(x) at xk, the progress due to the drift force dif-
fers from the original Δxdrift,o. To achieve the same overall progress
Δx, Δxrandom,o needs to be adjusted (blue dotted line). The corre-
sponding random number η̃o,k is shown as a blue dotted arrow, and
the difference between the two random numbers Δηo ,k is shown as
an orange line.

In Sec. VI A, we have shown that ΔηL ,k ≈ Δηo ,k (for ξΔt < 1).
Thus, approximating ΔηL ,k by Δηo ,k in Eq. (35), or, visually, approx-
imating the red line by the orange line in Fig. 5(a), is valid. However,
the displacement due to the drift Δxdrift,o in the Euler–Maruyama
scheme can differ strongly from Δxdrift,L in the ISP scheme, and con-
sequently, the random numbers needed to generate the same overall
progress Δx differ

ηL,k ≉ ηo,k (38)
[blue solid and green solid arrow in Fig. 5(a)]. Consequently,
approximating ηL ,k by ηo ,k in Eq. (35), or visually approximating the
green solid arrow by the blue solid arrow in Fig. 5(a), is not valid.

The exact random number probability ratio ML(ω, ηL; Δt|(x0,
v0)) [Eq. (27)] uses the exact ηL recorded during the simulation and
the exact ΔηL [Eq. (26)]. It therefore yields results that exactly match
the reference solutions (green lines in Fig. 4). Mapprox(ω, ηL; Δt|x0)
uses the exact ηL recorded during the simulation but approximates
ΔηL ,k by Δηo ,k. This introduces only a small error but still yields
excellent reweighting results in our test system (orange dashed lines
in Fig. 4). However, in Mo(ω; Δt|x0) = Mo(ω, ηo; Δt|x0), one addi-
tionally approximates ηL by ηo. The difference between ηL and ηo
is much larger than the difference between ΔηL and Δηo, and this
additional approximation leads to the distorted reweighting results
we observed as the blue lines in Fig. 4.

The proportions in Fig. 5(a) are not exaggerated. The black line
in Fig. 5(c) shows the average absolute difference between the ran-
dom numbers ⟨|ηo ,k − ηL ,k|⟩ as a function of ξΔt. Visually, this is the
difference between the green solid arrow and the blue solid arrow in
Fig. 5(a). The orange line in Fig. 5(c) shows the average absolute dif-
ference between the random number differences ⟨|Δηo ,k − ΔηL ,k|⟩,

i.e., the difference between the orange and the red line in Fig. 5(a).
The graph has been calculated by averaging over a path with 106 time
steps. The standard deviations are shown as vertical bars. ⟨|Δηo ,k
− ΔηL ,k|⟩ is close to 0 for all values of ξΔt, whereas there is a substan-
tial difference between ηL and ηo. ⟨|ηo ,k − ηL ,k|⟩ has a minimum at
ξΔt ≈ 2 because the difference between the Euler–Maruyama scheme
and the ISP scheme is minimal for ξΔt ≈ 2 (see Sec. V B). Figure 5(d)
shows the corresponding average relative errors. For ξΔt > 1, ⟨|(ηo
− ηL)/ηL|⟩ (black line) decreases in accordance with the decrease
in the absolute difference ⟨|(ηo − ηL)|⟩ and ⟨|(Δηo − ΔηL)/ΔηL|⟩
(orange line) increases, reflecting the fact that the approximation
[Eq. (31)] does not hold for ξΔt > 1. However, for ξΔt < 1, the region
in which MD simulations are conducted, the relative error for the
random numbers is much larger than the relative error for the ran-
dom number difference. This reinforces that the random numbers
ηL ,k should not be approximated in the path probability ratio but,
instead, should be recorded from the simulation at V(x). By contrast,
the random number difference ΔηL ,k can reliably be approximated
by Eq. (31).

VII. MOLECULAR EXAMPLE: BUTANE
The slowest degree of freedom in butane is the torsion around

the C2–C3 bond, which exhibits three metastable states: the trans-
conformation at ϕ = π and the two gauche-conformations at ϕ
= ± 1

3π. Consequently, butane has three dominant MSM eigen-
vectors, where l1 corresponds to the stationary density and l2 and
l3 represent slow transitions along ϕ [Fig. 6(a)]. Because the two
gauche-conformations are equally populated, l2 and l3 are degener-
ate [Fig. 6(b)]. We simulated butane in implicit water at three differ-
ent temperatures, T = 300 K, T = 200 K, and T = 150 K, using direct
and biased simulations. As we lower the temperature, we expect that
the relative population of the trans-conformation increases, but that
otherwise, the overall shape and sign-structure of the eigenvectors
remain unchanged.

At T = 300 K and T = 200 K, the reweighting results using
Mapprox(ω, ηL; Δt|x0) [Eq. (32), orange dashed line] or ML(ω, ηL;
Δt|(x0, v0)) [Eq. (23), green solid line] match the MSM obtained
by direct simulation. In particular, the eigenvectors are repro-
duced with very high precision. By contrast, the reweighted results
using Mo(ω; Δt|x0) [Eq. (14), blue line] deviate considerably from
the reference MSMs obtained by direct simulations. The station-
ary distribution l1 is not reproduced correctly, which then leads
to further errors in the dominant eigenvectors l2 and l3. The
associated implied timescales are underestimated. Moreover, for
T = 200 K and T = 150 K, the use of Mo(ω; Δt|x0) yielded numer-
ically instable transition matrices for lag times of τ > 100 ps. This
demonstrates that path reweighting with an appropriate path prob-
ability ratio, such as Mapprox(ω, ηL; Δt|x0) or ML(ω, ηL; Δt|(x0, v0)),
yields accurate results. However, Mo(ω; Δt|x0) should not be used
as an approximation for the exact path probability ratio ML(ω, ηL;
Δt|(x0, v0)).

Note that reweighting results using the approximate probability
ratio Mapprox(ω, ηL; Δt|x0) are virtually indistinguishable from the
results using the exact probability ratio ML(ω, ηL; Δt|(x0, v0)) for all
three temperatures. This confirms our analysis that Mapprox(ω, ηL;
Δt|x0) can be used as highly accurate approximation to ML(ω, ηL;
Δt|(x0, v0)).
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FIG. 6. Dynamics of the torsion angle in butane at T = 300 K, 200 K, and 150 K. (a) Dominant left eigenfunctions l1, l2, and l3 of the MSM along the torsion angle ϕ, obtained
by evaluating direct simulations at the target potential, as well as by reweighting biased simulations. (b) Implied timescales corresponding to l2 and l3 in (a). Solid lines: mean
and shaded area: standard deviation. Standard deviations for the eigenvectors are too small to be shown.

The variation of the temperature from 300 K to 200 K and 150 K
illustrates under which circumstances path reweighting is an effi-
cient method. At T = 300 K, many transitions across the torsion
angle barriers are observed in the direct simulation. Path reweight-
ing and direct simulation yield identical results. However, path
reweighting has a larger statistical uncertainty. At T = 200 K, fewer
transitions are observed in the direct simulations, which results in
an increased statistical uncertainty in the direct MSM. Finally, at T
= 150 K, the transitions in the direct simulation are insufficient to
correctly sample the stationary density. The MSM of the direct sim-
ulation predicts a higher population for the gauche-conformation at

ϕ = + 1
3π than for the gauche-conformation at ϕ = − 1

3π, which is
clearly a sampling error. This error in the stationary density then
leads to vastly incorrect estimates for l2 and l3. Additionally, the
direct MSM predicts that the degeneracy is lifted. By contrast, the
results of the reweighted MSM are in line with what we expect:
the gauche-conformations are equally populated, the overall shapes
of the dominant eigenvectors correspond to those of the eigenvec-
tors at higher temperatures, and l2 and l3 are degenerate. In con-
clusion, path reweighting in combination with enhanced sampling
techniques is a promising tool in situations, where the stationary
density cannot be sampled accurately by direct simulation.
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VIII. METHODS
A. Simulations of the test system

The test system is a one-dimensional one particle system with
mass m = 1 kg and kBT = 2.494 J (corresponding to kB = 0.008 314
J/K and T = 300 K). The simulation potential (orange line in
Fig. 1) is

V(x) = (x2
− 1)2, (39)

and the target potential (black line in Fig. 1) is

Ṽ(x) = 4(x3
−

3
2
x)

2
− x3 + x. (40)

For the results in Figs. 3–5, we simulated the system using the ISP
scheme [Eqs. (20) and (21)] with a time step of Δt = 0.01 s. The initial
conditions were x0 = 1.50 m, v0 = 0 m/s. The number of time steps
Nt , the collision rate ξ, and the potential energy function used are
summarized in Table II.

In Fig. 3(a), we computed the acceleration ẍ = a as ak+1
=

vk+1−vk
Δt . Figure 3(b) displays the first ten steps of the simulation

as an example path ω, and all quantities displayed in Figs. 3(c)–3(e)
are calculated from this short path.

The absolute and relative differences of the random numbers in
Fig. 5 were calculated as

⟨∣ηo,k − ηL,k∣⟩ =
1

Nt − 1

Nt−1

∑
k=0
∣ηo,k − ηL,k∣ (41)

and

⟨∣
ηo,k − ηL,k

ηL,k
∣⟩ =

1
Nt − 1

Nt−1

∑
k=0
∣
ηo,k − ηL,k

ηL,k
∣. (42)

Analogous equations were used for ⟨|Δηo ,k − ΔηL ,k|⟩ and ⟨|(Δηo ,k
− ΔηL ,k)/ΔηL ,k|⟩. ηL ,k was recorded during the simulation. We used
Eq. (26) to calculate ΔηL ,k, Eq. (15) to calculate ηo ,k, and Eq. (17) to
calculate Δηo ,k.

The reference MSM in Figs. 4(b) and 4(c) has been constructed
from the simulation at the target potential Ṽ(x). The state space has
been discretized using a regular grid of 100 microstates (S1, . . ., S100)
in the range −1.7 ≤ x ≤ 1.6. Transition counts between microstates
were calculated as

cij(τ) =
1

Nt − τ

Nt−τ
∑
k=0

χi(xk)χj(xk+τ), (43)

TABLE II. Simulation parameters.

Figures Nt ξ Potential

3(a) 105 50 s−1 V(x)
4(b) and 4(c) 107 50 s−1 V(x)
4(b) and 4(c) 107 50 s−1 Ṽ(x)
5(c) and 5(d) 107 0.1 s−1–1000 s−1 V(x)

with

χi(x) = {
1 if x ∈ Si
0 else,

(44)

where xk is the trajectory and lag time τ = 200 steps. The result-
ing count matrix C(τ) was symmetrized as C(τ) + C⊺(τ) to enforce
detailed balance and row-normalized to obtain the MSM transi-
tion matrix T(τ). The dominant MSM eigenvectors li and associ-
ated eigenvalues λi(τ) were calculated from T(τ) using a standard
eigenvalue solver, and the implied timescales were calculated as
ti = −τ/ln(λi(τ)).

The reweighted MSMs in Figs. 4(b) and 4(c) have been con-
structed from the simulation at the simulation potential V(x) using
the same grid and lag time as for the reference MSM. Transition
counts between microstates were counted and reweighted as34,35

c̃ij(τ) =
1

Nt − τ

Nt−τ
∑
k=0

W((xk, xk+1, . . . , xk+τ);Δt∣(xk, vk))

χi(xk)χj(xk+τ). (45)

The weight W is defined as

W((xk, xk+1, . . . , xk+τ);Δt∣(xk, vk))
= g(xk) ⋅M((xk, xk+1, . . . , xk+τ);Δt∣(xk, vk)), (46)

with M being the path probability ratio [Eq. (3)] and g being

g(xk) = exp(−
U(xk)
kBT

), (47)

where the perturbation U is defined in Eq. (2). The remaining
procedure was analogous to the reference MSM.

B. Butane—Direct simulations
We performed all-atom MD simulations of n-butane in implicit

water using the OpenMM 7.4.154 simulation package. The GAFF
(Generalized Amber Force Field)60 was used to model butane, and
the GBSA (Generalized Born Surface Area) model61 was used to
model implicit water. Interactions beyond 1 nm were truncated. The
trajectory was propagated according to the ISP integration scheme
for a 3N-dimensional system,

xik+1 = x
i
k + exp(−ξΔt) vikΔt − [1 − exp(−ξΔt)]

∇iV(xk)
ξmi

Δt

+

√
kBT
mi
[1 − exp(−2ξΔt)]ηiL,k Δt, (48)

vik+1 =
xik+1 − x

i
k

Δt
, (49)

with i = 1, 2, . . ., 3N and N being the number of atoms. xik, vik, and ηik
are the position, velocity, and random number along dimension i at
iteration step k, mi is the mass of dimension i, and ∇iV(xk) denotes
the gradient of V(xk) along dimension i measured at the position
xk, with x ∈ R3N . We implemented the ISP integration scheme using
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the simtk.openmm.openmm.CustomIntegrator62 class of OpenMM.
The collision rate was ξ = 10 ps−1. The simulation time step was Δt
= 0.002 ps. Positions were written to disk every txout = 50 steps
= 0.1 ps. We generated three trajectories with 500 ns each at T
= 300 K, T = 200 K, and T = 150 K. These direct simulations
correspond to simulations at the target potential Ṽ(x).

For the analysis, we cut each trajectory into five pieces of length
100 ns. For each 100-ns-trajectory, we constructed a MSM follow-
ing the procedure outlined in Sec. VIII A. As state space we chose
the C2–C3 dihedral angle ϕ, which we discretized using a regular
grid of 100 microstates in the range 0 ≤ ϕ ≤ 2π. This resulted in five
MSMs for each temperature. Figure 6 shows the mean and the stan-
dard deviation of the first three left MSM eigenvectors (evaluated at
lag time τ = 1 ps) and the mean and the standard deviations of the
associated implied timescale.

C. Butane—Path reweighting
We biased the simulations along the C2–C3 dihedral angle ϕ.

To generate the bias potential U(ϕ), we constructed a histogram of
the free-energy function F̃(ϕ),

F̃(ϕ) = −kBT ln(̃p(ϕ)), (50)

where p̃(ϕ) is the stationary density along ϕ as measured from the
500 ns direct simulations at T = 300 K. Fitting the histogram with a
third order Fourier series yielded

F̃300 K(ϕ) = 8.985 + 3.122 cos(ωϕ) + 0.959 cos(2ωϕ)
+ 7.742 cos(3ωϕ) + 0.095 sin(ωϕ)
+ 0.047 sin(2ωϕ) + 0.002 sin(3ωϕ), (51)

with ω = 0.989. The same procedure for the simulation at T = 200 K
yielded

F̃200 K(ϕ) = 8.311 + 2.847 cos(ωϕ) + 0.841 cos(2ωϕ)
+ 7.697 cos(3ωϕ) + 0.046 sin(ωϕ)
+ 0.026 sin(2ωϕ) + 0.004 sin(3ωϕ), (52)

withω = 0.989. F̃300 K(ϕ) and F̃200 K(ϕ) are almost identical. The sim-
ulation atT = 150 K did not yield a converged stationary density, and
thus, no free-energy function was constructed for this temperature,
and instead, F̃300 K(ϕ) was used.

The biased simulations were carried out with the potential

Vα(x) = Ṽ(x) − α ⋅ F̃(ϕ(x)), (53)

where Ṽ(x) is the target potential and α ∈ [0, 1] specifies the bias
strength. Vα(x) corresponds to the “simulation potential” within the
terminology of this paper; thus,

U(ϕ(x)) = α ⋅ F̃(ϕ(x)). (54)

α was set to 0.1 in all biased simulations, corresponding to “10% of
the full metadynamics potential.” We carried out biased simulations
at three temperatures T = 300 K, T = 200 K, and T = 150 K, with bias
potentials U300 K(ϕ) = 0.1 ⋅ F̃300 K(ϕ), U200 K(ϕ) = 0.1 ⋅ F̃200 K(ϕ), and

U150 K(ϕ) = 0.1 ⋅ F̃300 K(ϕ). All other simulation parameters were as
described in Sec. VIII B.

The path probability ratios for the biased simulations were cal-
culated on-the-fly34,35 and were written to disk at the same frequency
txout as the positions. For the approximate path probability ratio
Mapprox, we calculated

Mapprox(b) =
3N

∑
i=1

b⋅txout−1

∑
k=(b−1)⋅txout

⎛

⎝
−

√
Δt

2kBTξmi
∇iU(xk)η

i
L,k

−
Δt

4kBTξmi
(∇iU(xk))

2⎞

⎠
(55)

and constructed the complete path probability ratio as

Mapprox(ω,ηL;Δt∣x0) = exp(
A

∑
b=1

Mapprox(b)) (56)

during the construction of the MSM, where A ∈ N such that
τ = A ⋅ txout ⋅Δt.

For the Langevin path probability ratio ML, we calculated the
terms

ML,1(b) =
3N

∑
i=1

b⋅txout−1

∑
k=(b−1)⋅txout

(xik+1 − x
i
k)(∇iṼ(xk) − ∇iV(xk)), (57)

ML,2(b) =
3N

∑
i=1

b⋅txout−1

∑
k=(b−1)⋅txout

vik(∇iṼ(xk) − ∇iV(xk)), (58)

ML,3(b) =
3N

∑
i=1

b⋅txout−1

∑
k=(b−1)⋅txout

((∇iṼ(xk))
2
− (∇iV(xk))2

)

mi
(59)

and constructed the complete path probability ratio as

ML(ω,Δt∣x0)

= exp[
A

∑
b=1
(−

ML,1(b)
kBTξ(1 + exp(−ξΔt))Δt

+
ML,2(b)

kBTξ(1 + exp(ξΔt))
−

exp(ξΔt) − 1
exp(ξΔt) + 1

ML,3(b)
2kBTξ2 )] (60)

during the construction of the MSM, where A ∈ N such that τ
= A ⋅ txout ⋅Δt.

For the overdamped Langevin path probability ratio Mo, we
calculated the terms

Mo,1(b) =
3N

∑
i=1

b⋅txout−1

∑
k=(b−1)⋅txout

(xik+1 − x
i
k)(∇iṼ(xk) − ∇iV(xk)), (61)

Mo,2(b) =
3N

∑
i=1

b⋅txout−1

∑
k=(b−1)⋅txout

((∇iṼ(xk))
2
− (∇iV(xk))2

)

mi
(62)

and constructed the complete path probability ratio as

Mo(ω,Δt∣x0) = exp[
A

∑
b=1
(−

Mo,1(b)
2kBT

−
Mo,2(b)Δt

4kBTξ
)] (63)
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during the construction of the MSM, where A ∈ N such that
τ = A ⋅ txout ⋅Δt.

For the analysis, we cut each trajectory into five pieces of length
100 ns. For each 100-ns-trajectory, we constructed a MSM following
the procedure outlined in Sec. VIII A. As state space we chose the
C2–C3 dihedral angle ϕ, which we discretized using a regular grid of
100 microstates in the range 0 ≤ ϕ ≤ 2π. Transition counts between
microstates were counted and reweighted as described in Eq. (45)
with xk = ϕk and

g(ϕk) = exp(−
U(ϕk)
kBT

) = exp(−
0.1 ⋅ F̃(ϕk)

kBT
), (64)

where ϕk is the first entry in the path of length τ. This resulted in five
reweighted MSMs for each temperature. Figure 6 shows the mean
and the standard deviation of the first three left MSM eigenvectors
(evaluated at lag time τ = 1 ps) and the mean and the standard
deviations of the associated implied timescale.

Example scripts for simulation and analysis are included as the
supplementary material.

IX. CONCLUSION AND OUTLOOK
We have presented two strategies to derive the path probability

ratio ML for the ISP scheme. In the first strategy, the correctly nor-
malized path probability is derived by integrating out the random
number ηk from the one-step transition probability. In the second
strategy, the equations for the ISP scheme are solved for ηk, and
the resulting transformation is used as a change in variables on the
Gaussian probability density of the random numbers. This yields
an unnormalized path probability. The path probability ratio ML
is then calculated as the ratio between the path probability at the
target potential P̃L(ωL;Δt∣(x0, v0)) and the path probability at the
simulation potential PL(ωL; Δt|(x0, v0)).

With ML, we are now able to perform exact path reweighting
for trajectories generated by the ISP integration scheme. Moreover,
the two strategies serve as a blueprint for deriving path probabil-
ity ratios for other Langevin integration schemes, which use Gaus-
sian white noise.44–47,49–53 Thus, path reweighting can now read-
ily be applied to MD simulation conducted at the NVT ensemble
thermostatted with a stochastic thermostat.

We compared the approximate path probability ratio Mapprox

that we used in earlier publications34,35 to the exact path probability
ratio ML, both analytically and numerically. We showed that the two
expressions only differ by O(ξ4Δt4

). Thus, Mapprox is an excellent
approximation to ML for Langevin MD simulations. To understand
why the approximation is so good, we showed that the random num-
ber ηk needed to generate a given step xk → xk+1 is highly dependent
on the integration scheme. However, Δηk, the difference between the
random number η̃k at Ṽ(x) and the random number ηk at V(x), has
about the same value in the ISP scheme and in the Euler–Maruyama
scheme.

In Mapprox, one uses the random numbers directly recorded
during the simulation at V(x), which does not introduce any error
and approximates Δηk by the expression from the Euler–Maruyama
scheme Δηo ,k to construct η̃k.

We have chosen the ISP algorithm for the present analysis in
order to be consistent with our previous work.34,35 However, the

same strategy can be used to derive the path probability ratio for
other Langevin integrators.44–47,49–53 Specifically, solve the integrator
equations for the random number ηk; from there, derive an expres-
sion for Δηk, record ηk during the simulation at V(x) and calculate
Δηk on the fly, and insert ηk and Δηk into Eq. (7). For a large appli-
cation of path reweighting, using a modern Langevin integrator is
likely worthwhile, such as the the BAOAB method51 (or alterna-
tively the VRORV method53). This method is exceptionally efficient
at sampling the configurational stationary distribution, which allows
for increasing the time step.51,53

It is tempting to speculate that Δηk for other Langevin inte-
gration schemes could also have about the same value as Δηo ,k for
the Euler–Maruyama scheme. This would open up a route to a gen-
eral approximate path probability ratio M≈ and would eliminate
the problem that the path probability needs to be adapted for each
integration scheme. On the other hand, the structure of the ISP
scheme is closer to that of the Euler–Maruyama scheme than most
other Langevin integrators. Whether the approximate path proba-
bility can indeed be generalized to these integrators is, therefore, not
yet obvious and needs to be checked carefully.

Our one-dimensional test system and our molecular system
showed that the accuracy of the reweighting sensitively depends on
an accurate representation of ηk in the path probability ratio. For
example, reweighting a Langevin path by the path probability ratio
for the Euler–Maruyama scheme yielded very distorted results. Nei-
ther the MSM eigenvectors nor the implied timescales were repro-
duced correctly. It is, however, possible that the distortion is less
severe in the limit of infinite sampling of the combined space of
molecular states and random numbers (probably less relevant to
actual applications) or if the dynamics is projected onto a reaction
coordinate before the reweighted dynamical properties are evaluated
(probably very relevant to actual applications).

We used path reweighting to reweight MSMs. The dynami-
cal property that is reweighted to estimate a transition probability
is a correlation function. It is important to point out that correla-
tion functions are a combination of path ensemble averages, where
the path is conditioned on a particular initial state (x0, v0) and a
phase-space ensemble average for the initial states. Thus, the total
reweighting factor for MSMs is combined of the path probability
ratio M for the path ensemble average and the Boltzmann probabil-
ity ratio for the phase-space ensemble average g(x) [Eq. (47)].27,32–34

Even though the reweighting of the path ensemble average can be
made exact, by averaging over the initial states within a microstate,
one assumes local equilibrium within this microstate.23 Beyond
local equilibrium, the formalism has been extended to reweight-
ing transition probabilities from non-equilibrium steady-state
simulations.63

When is the combination of enhanced sampling and path
reweighting more efficient than a direct simulation? This depends
on the uncertainty of the transition counts estimated from a direct
simulation [Eq. (43)] compared to the uncertainty of the reweighted
transition counts [Eq. (45)]. The molecular example demonstrated
that path reweighting is particularly useful if the stationary density
cannot be sampled accurately by direct simulation with the available
computer resources. Furthermore, the efficiency of path reweighting
increases if the number of transitions at the enhanced sampling sim-
ulation is large compared to the direct simulation and if the weights
W = g ⋅M are not too small. The path probability ratio M decreases
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with the path length τ and with the dimensionality of the bias poten-
tial U. The path length is kept short by combining path reweighting
with MSMs and can be further limited by using advanced MSM dis-
cretization techniques.64–66 The bottleneck for the dimensionality
U already occurs at the stage of sampling because most enhanced
sampling techniques10 are limited to very low-dimensional biases
in practice. Note that increasing the dimensionality of the overall
system does not lower the efficiency of the path reweighting. The
question of how strong the bias should be is more difficult to answer.
Strong biases increase the transitions in the biased simulation but
reduce both g and M. In Ref. 35, we empirically found that a bias
of ca. 10% of the full metadynamics biasing potential yielded opti-
mal results, but this will likely depend on the system. Here, we have
restricted ourselves to systems with low barriers in the order of kBT
so that we could generate reference solutions by direct simulation.
However, we believe that path reweighting is most useful for systems
with large barriers that cannot be sampled by direct simulation. An
example is the β-hairpin folding equilibrium in Ref. 35.

Path reweighting is closely related to path sampling techniques,
in particular path sampling techniques that aim at optimizing the
path action.67–70 The combination of enhanced sampling, path sam-
pling, and path reweighting might change the way we explore the
molecular state space and investigate rare events.

SUPPLEMENTARY MATERIAL

See the supplementary material for an example OpenMM script
and the corresponding Python3 scripts to construct a reweighted
MSM.
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APPENDIX A: LANGEVIN LEAPFROG
AND THE ISP SCHEME

Izaguirre, Sweet, and Pande developed the following Langevin
Leapfrog algorithm:

vk+ 1
2
= exp(−ξ

Δt
2
)vk − [1 − exp(−ξ

Δt
2
)]
∇V(xk)

ξm

+

√
kBT
m
[1 − exp(−ξΔt)]ηk, (A1)

xk+1 = xk + vk+ 1
2
Δt, (A2)

vk+1 = exp(−ξ
Δt
2
)vk+ 1

2
− [1 − exp(−ξ

Δt
2
)]
∇V(xk+1)

ξm

+

√
kBT
m
[1 − exp(−ξΔt)]ηk+1 (A3)

[Eqs. (14)–(16) in Ref. 49]. First, the velocity vk+ 1
2

is updated by a
half step using vk, xk, and a random number ηk [Eq. (A1)]. Then, the
position update to xk+1 is computed from xk, assuming a constant
velocity vk+ 1

2
in the interval [k, k + 1] [Eq. (A2)]. Finally, the remain-

ing half step of the velocities to vk+1 is computed using xk+1, vk+ 1
2
,

and a new random number ηk+1 [Eq. (A3)].
This Langevin Leapfrog algorithm has been converted to the

following full-step scheme in the C++ CpuLangevinDynamics class
of OpenMM:71

vk+1 = exp(−ξΔt)vk − [1 − exp(−ξΔt)]
∇V(xk)

ξm

+

√
kBT
m
[1 − exp(−2ξΔt)]ηk, (A4)

xk+1 = xk + vk+1Δt, (A5)

where the velocities are propagated by a full step [i.e., Δt/2 in
Eq. (A1) is replaced by Δt, and Δt in Eq. (A1) is replaced by
2Δt] and the position update is based on vk rather than on vk+ 1

2
.

The second half step for the velocities [Eq. (A3)] is omitted. This
integration scheme only uses a single random number per itera-
tion. Equations (A4) and (A5) are the integration scheme we used
in Refs. 34 and 35. To distinguish it from the original Langevin
Leapfrog scheme [Eqs. (A1)–(A3)], we will refer to Eqs. (A4) and
(A5) as the “ISP scheme.”

To be able to analyze the path probability as a function of
the positions, we rearrange Eqs. (A4) and (A5) such that we first
update the positions using a stochastic step [replace vk+1 in Eq. (A5)
by Eq. (A4)] and then update the velocity as finite difference
[rearrange Eq. (A5) with respect to vk+1]. This yields Eqs. (20)
and (21).

APPENDIX B: PATH PROBABILITY
FOR LANGEVIN DYNAMICS

We derive the closed-form expression for PL(ωL; Δt|(x0, v0)) in
Eq. (22) from the integration scheme [Eqs. (20) and (21)] by follow-
ing the approach in Ref. 57. As a first step, we derive a closed-form
expression for the one-step probability PL(xk+1, vk+1; Δt|(xk, vk))
of observing a step (xk, vk) → (xk+1, vk+1). According to Eqs. (20)
and (21), the tuple (xk+1, vk+1) at iteration step k + 1 is entirely
determined by the tuple (xk, vk) at iteration step k if addition-
ally the random number ηk is known. Thus, PL(xk+1, vk+1; Δt|(xk,
vk, ηk)), i.e., the one-step probability with fixed random number
ηk, is a Dirac delta function centered at (xk+1, vk+1). Our strategy
is to derive a closed-form expression for this Dirac delta function
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using Eqs. (20) and (21) and to integrate out the dependency on
ηk. In this Appendix, we omit the index L in ηL ,k to simplify the
notation.

We reformulate the two-dimensional probability PL(xk+1, vk+1;
Δt|(xk, vk, ηk)) as a product of two one-dimensional probabilities,

PL(xk+1, vk+1;Δt∣(xk, vk,ηk)) = PL(vk+1;Δt∣(xk+1, xk, vk,ηk))
⋅PL(xk+1;Δt∣(xk, vk,ηk)) (B1)

using the rule P(A, B|C) = P(A|B, C) ⋅ P(B|C), with A = vk+1, B = xk+1,
and C = (xk, vk, ηk). This rule is the extension of the conditional
probability P(A, B) = P(A|B) ⋅ P(B) to an additional condition C. The
first factor is a Dirac delta function constrained to Eq. (21),

PL(vk+1;Δt∣(xk+1, xk, vk,ηk)) = PL(vk+1;Δt∣(xk+1, xk))

= δ(vk+1 −
xk+1 − xk

Δt
), (B2)

where the first equality emphasizes that vk+1 does not depend on
ηk or vk in Eq. (21). Note that the probability of the velocity vk+1
[Eq. (B2)] does not depend on a random number, which mirrors our
previous observation that vk+1 is not treated as a random variable
in Eq. (21). The second factor in Eq. (B1) is a Dirac delta function
constrained to Eq. (20),

PL(xk+1;Δt∣(xk, vk,ηk)) = δ
⎛

⎝
xk+1 − xk − exp(−ξΔt) vkΔt

+ [1 − exp(−ξΔt)]
∇V(xk)

ξm
Δt

−

√
kBT
m
[1 − exp(−2ξΔt)]ηkΔt

⎞

⎠
.

(B3)

Reinserting the two factors into Eq. (B1) yields the desired closed-
form expression for PL(xk+1, vk+1; Δt|(xk, vk; ηk)). Since we know
that the random numbers ηk are drawn from a Gaussian distribution
P(ηk) with zero mean and unit variance

P(ηk) = N
−1 exp(−

η2
k

2
) , N =

√
2π, (B4)

we can average out the random number dependency in Eq. (B1) to
obtain the one-step probability,

PL(xk+1, vk+1;Δt∣(xk, vk))

= ∫

∞

−∞
dηkP(ηk)PL(xk+1, vk+1;Δt∣(xk, vk,ηk))

= δ(vk+1 −
xk+1 − xk

Δt
)

⋅∫

∞

−∞
dηkPη(ηk)PL(xk+1;Δt∣(xk, vk,ηk)). (B5)

The challenge lies in solving the integral in this equation. The solution, which is detailed in Appendix C, yields the closed-form expression for
the one-step probability,

PL(xk+1, vk+1;Δt∣(xk, vk)) = δ(vk+1 −
xk+1 − xk

Δt
) ⋅

√
m

2πkBTΔt2(1 − exp(−2ξΔt))

× exp
⎛
⎜
⎜
⎝

−
m(xk+1 − xk − exp(−ξΔt)vkΔt + (1 − exp(−ξΔt))∇V(xk)ξm Δt)

2

2kBT(1 − exp(−2ξΔt))Δt2

⎞
⎟
⎟
⎠

. (B6)

Applying the Chapman–Kolmogorov equation72 recursively to the one-step probability yields the closed-form expression for the path
probability PL(ωL; Δt|(x0, v0)), shown in Eq. (22).

APPENDIX C: SOLVING THE DOUBLE INTEGRAL
We compute the integral

PL(xk+1;Δt∣(xk, vk)) =
∞

∫
−∞

dηk P(ηk)PL(xk+1;Δt∣(xk, vk,ηk)) (C1)

from Eq. (B5). First, we replace P(ηk) according to Eq. (B4). Sec-
ond, we substitute PL(xk+1; Δt|(xk, vk, ηk)), which is a δ-function

[Eq. (B3)], with its Fourier transform

δ(z − z′) =
+∞

∫
−∞

dw
2π

exp(iw(z − z′)), (C2)

where z = xk+1 and z′ is equal to the right-hand side of Eq. (20). This
yields a double integral whose outer integral is with respect to w,
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while the inner integral is with respect to ηk,

PL(xk+1;Δt∣(xk, vk))

=

+∞

∫
−∞

dw
2π

+∞

∫
−∞

dηk
N

exp(−
η2
k

2
)

× exp
⎛

⎝
iw
⎡
⎢
⎢
⎢
⎢
⎣

xk+1 − xk − exp(−ξΔt) vkΔt

+[1 − exp(−ξΔt)]
∇V(xk)

ξm
Δt

−

√
kBT
m
[1 − exp(−2ξΔt)]ηkΔt

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

=

+∞

∫
−∞

dw
2π

exp(iwB)
+∞

∫
−∞

dηk
N

exp(−
η2
k

2
− iwRηk), (C3)

where we moved all terms that do not depend on ηk out of the inner
integral and defined the abbreviations,

B = [xk+1 − xk − exp(−ξΔt) vkΔt

+[1 − exp(−ξΔt)]
∇V(xk)

ξm
Δt],

R = Δt

√
kBT
m
[1 − exp(−2ξΔt)]. (C4)

Both integrals in Eq. (C3) can be solved with the completing-the-
square technique for Gaussian integrals. The goal of this technique
is to expand and rearrange the inner integral such that we can use
the analytic solution

∞

∫
−∞

dx exp(−a(x ± b)2
) =

√π
a

for a, b ∈ R. (C5)

This can be achieved by a systematic step-to-step procedure that can
be applied to all Gaussian integrals of this type,

+∞

∫
−∞

dηk
N

exp(−
η2
k

2
− iwRηk)

=

+∞

∫
−∞

dηk
N

exp
⎛
⎜
⎜
⎜
⎝

−
1
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

η2
k + 2iwRηk

=0
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

+i2w2R2
− i2w2R2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎠

= exp(−
w2R2

2
)

+∞

∫
−∞

dηk
N

exp(−
1
2
(ηk + iwR)2

)

= exp(−
w2R2

2
)

1
N
√

2π

= exp(−
w2R2

2
). (C6)

In the first line, we isolate η2
k by factoring out− 1

2 and complete the
first binomial formula by adding a zero. Then, we separate the expo-
nent into the binomial formula and the term exp(−w2R2

2 ), which can
be moved in front of the integral because it does not depend on ηk. In
the third line, we solve the remaining integral using Eq. (C5), which

can be further simplified by inserting the normalization constant of
the Gaussian distribution: N =

√
2π.

Inserting Eq. (C6) into Eq. (C3) yields the outer integral

+∞

∫
−∞

dw
2π

exp(iwB) exp(−
w2R2

2
) =

+∞

∫
−∞

dw
2π

exp(−
w2R2

2
+ iwB),

which is solved using the same procedure,

+∞

∫
−∞

dw
2π

exp(−
w2R2

2
+ iwB)

=

+∞

∫
−∞

dw
2π

exp

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−
R2

2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w2 +
2iwB
R2

=0
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

+
i2B2

R4 −
i2B2

R4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= exp(−
B2

2R2 )

∞

∫
−∞

dw
2π

exp(−
R2

2
(w +

iB
R2 )

2
)

= exp(−
B2

2R2 )
1

2π

√
2π
R2

=

√
1

2πR2 exp(−
B2

2R2 ). (C7)

Inserting the expressions for the constants R and B [Eq. (C4)] yields

PL(xk+1 ;Δt∣(xk ,vk))

=

√
m

2πkBTΔt2
(1 − exp(−2ξΔt))

× exp
⎛

⎜
⎜

⎝

−

m(xk+1 − xk − exp(−ξΔt)vkΔt + (1− exp(−ξΔt))∇V(xk)
ξm Δt)

2

2kBT(1− exp(−2ξΔt))Δt2

⎞

⎟
⎟

⎠

.

(C8)

This is inserted into Eq. (B5) to yield Eq. (B6).

APPENDIX D: PROOF OF EQ. (31)

(1 − e−x)2

x ⋅ (1 − e−2x)
=

1
2
−
x2

24
+

x4

240
±O(x5

),

(1 − e−x)2
=
x
2
⋅ (1 − e−2x

) −
x2

24
⋅ x ⋅ (1 − e−2x

)

±O(x4
) ⋅ x ⋅ (1 − e−2x

), (D1)

(1 − e−x)2
=
x
2
⋅ (1 − e−2x

) −O(x4
).

The first line shows the Taylor expansion of the expression on
the right-hand side. To obtain the second line, we multiplied by
x ⋅ (1 − e−2x

). In the third line, we used the fact that the leading term
of the Taylor expansion of x ⋅ (1 − e−2x

) is 2x2, thus yielding an error
of O(x4

). Substituting x = ξΔt yields
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(1 − e−ξΔt)
2
=
ξΔt

2
⋅ (1 − e−2ξΔt

) −O(ξ4Δt4
),

(1 − e−ξΔt)
2
≈
ξΔt

2
⋅ (1 − e−2ξΔt

),
(D2)

and multiplying by 1
kBT ξ2 m (1−e−2ξΔt)(∇U(xk))

2 yields

1
kBTξ2m

(1 − e−ξΔt)
2

1 − e−2ξΔt (∇U(xk))
2
≈

Δt
2kBTξm

(∇U(xk))
2,

Δη2
L,k ≈ Δη

2
o,k.

(D3)

Thus, the difference between Δη2
L,k [Eq. (26)] and Δη2

o,k [Eq. (17)] is
of order O(ξ4Δt4

). Equation (D3) is Eq. (31) squared. ◽
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