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Abstract We have developed a hidden Markov model and optimization procedure for photon-based single-
molecule FRET data, which takes into account the trace-dependent background intensities. This analysis
technique reveals an unprecedented amount of detail in the folding kinetics of the Diels-Alderase ribozyme. We
find a multitude of extended (low-FRET) and compact (high-FRET) states. Five states were consistently and
independently found in two FRET constructs and three Mg?t concentrations. Structures generally tend to
become more compact upon addition of Mg?*. Some compact structures are found to significantly depend on
Mg?* concentration, suggesting a tertiary fold stabilized by Mg?™ ions. One compact structure was found to
be Mg?*-independent, consistent with stabilization by tertiary Watson-Crick base pairing found in the folded
Diels-Alderase structure. A hierarchy of timescales was found, including dynamics of 10 ms or faster, likely
due to tertiary structure fluctuations, and slow dynamics on the seconds timescale, presumably associated with

significant changes in secondary structure.
secondary structures.

The folding pathways proceed through a series of intermediate
There exist both, compact pathways and more complex ones, which display tertiary

unfolding, then secondary refolding and, subsequently, again tertiary refolding.

1 Introduction

RNA molecules are not merely simple carriers of ge-
netic information, but can assemble into complex ter-
tiary structures and even catalyze reactions. In fact,
the existence of catalytic RNA molecules (ribozymes)
has led to the proposition of the RNA world hypothe-
sis.! In modern cells, RNA molecules catalyze just
two classes of chemical reactions: modifications of
phosphodiester bonds (DNA and RNA cleavage, RNA
splicing) and peptide bond formation.? Artificially de-
signed ribozymes, however, are known to catalyze a
wide range of chemical reactions.?

In some ribozymes, the slow opening and closing
of tertiary structure (RNA breathing) is believed to
be essential for product release.* Therefore, cataly-
sis may not be decoupled from RNA folding. This
latter process is hierarchical, first proceeding on the
secondary structure level via formation of fairly sta-
ble Watson-Crick base pairs.  Subsequently, sec-
ondary structure elements fold into a compact, three-
dimensional structure.

RNA folding into the native tertiary fold may
proceed via a complex sequence of secondary struc-
tures.2®  The associated breaking of transiently
formed (“misfolded”) base pairs often involves typ-
ical timescales of seconds or longer.>® Any given
secondary structure may be associated with a range
of tertiary structures.” Formation of compact ter-
tiary structures may require the presence of coun-
terions, particularly divalent cations such as Mg?*,
which screen the intrinsic negative charges on the
RNA phosphate groups and, thereby, stabilize certain

tertiary motifs.” ® Even small modifications of single
nucleotides may result in different tertiary structures
and hence different energy landscapes.® 1911 Indeed,
RNA sequence, structure and function interact in a
complex, not yet fully understood fashion,? and the
characterization of RNA folding kinetics, including the
pathways of secondary and tertiary structure changes,
remains an intricate problem.®

In this work, we have investigated the conforma-
tional equilibrium and the folding pathway of the
49mer single-stranded RNA ribozyme Diels-Alderase
(DAse)!'? using a novel hidden Markov model (HMM)
analysis of single-molecule FRET data. DAse cat-
alyzes a Diels-Alder reaction,'® i.e., the [4+2] cy-
cloaddition reaction between anthracene dienes and
maleimide dienophiles. DAse is a true multiple-turn-
over catalyst and shows remarkable enantioselectiv-
ity (> 95% enantiomeric excess).!® It has a well-
defined folded structure, as revealed by X-ray crys-
tallography. The folded state consists of three helices
arranged around a pseudoknot region, in which the
catalytic pocket of the ribozyme is located (Fig. 1b).
A continuous sequence of stacking interactions runs
from the bottom of helix II to the top of helix IIT and
has been termed the “spine” of the folded structure.™
The tertiary fold is held together by a pseudoknot, in
which the 5-G1-G2-A3-G4 segment bridges the un-
paired strands of the asymmetric bulge (Fig. 1a). The
precise hydrogen-bond pattern in the pseudoknot re-
gion is known to be crucial both for thermal stabil-
ity of the overall fold as well as for the shape of the
catalytic pocket.%% 1415 The crystallographic struc-
ture contains six Mg?* cations.® Recent experimen-



tal and computational evidence showed that cations
specifically bind to certain sites that stabilize the ter-
tiary fold, without interfering with the catalytic re-
action.*1® Low Mg?* concentrations were found to
destabilize the folded conformation® % 1® and to dra-
matically decrease the catalytic activity of the ri-
bozyme.!3

Single-molecule Forster Resonance Energy Trans-
fer (smFRET) is a powerful tool to follow conforma-
tional fluctuations of biomolecules on length scales
of a few nanometers in real time.!®2! smFRET
measurements with surface-immobilized molecules re-
vealed that DAse is highly dynamic and can exist
in substantially different conformations, which were
found to interconvert on timescales of hundreds of mil-
liseconds.? The concentration of Mg?T influences the
shape or population of the accessible conformational
states, as indicated by the Mg?* dependence of the
FRET efficiency histograms and the apparent folding
rates.” Consistent with conformational fluctuations,
a poor resolution of DAse spectra was found in sub-
sequent NMR studies.* The Mg?t-dependent FRET
efficiency histograms revealed at least two conforma-
tional ensembles: (¢) a high FRET state, attributed to
the folded conformation, whose population increases
with increasing Mg?* concentration, and (i) a distri-
bution of intermediate FRET efficiencies, whose pop-
ulation decreases with increasing Mg?* concentration.
The intermediates were observed to spread out over a
wide range of FRET efficiency values and, presum-
ably, comprise multiple conformations with different
secondary and tertiary structures.’

In practice, only two or three states with signifi-
cantly different FRET efficiencies can be distinguished
in histogram-based analysis.” ! The emission inten-
sity from an individual fluorophore is small. Conse-
quently, stochastic fluctuations of the number of pho-
tons within a time bin (shot noise) significantly con-
tribute to the widths of the FRET distributions and
prevent the separation of states with similar mean
FRET efficiencies.” Of note, histogram analysis uti-
lizes only FRET efficiency information. It completely
neglects the time sequence of events in the single
molecule trajectories and, thus, discards a substantial
part of the available information. In contrast, Hidden-
Markov Models?? can distinguish states in the data by
using both the differences in FRET efficiency and the
time sequence of events, and, thus, can decompose
states with similar FRET efficiencies but different ki-
netic properties. Recent studies on single-molecule
protein and RNA datasets?3 26 have demonstrated the
power of HMMSs to resolve a multitude of states. HMM
analysis has its intrinsic challenges, however, because
(7) the results depend on the number of states used,
(i) the HMM optimization may get stuck in local
minima, (#47) models with many states are difficult
to validate, and (iv) the quality of the model depends
crucially on the validity of the underlying likelihood
function (i.e., the stochastic model of the measured

process). Here, we present an HMM analysis scheme
that addresses these problems.

At the core of this scheme is the idea that the num-
ber of states required to describe the kinetics in a hier-
archical energy landscape is not fixed, but depends on
the timescales of interest (Fig. 2).272% Directly esti-
mating HMMs with a few states often yields wrong ki-
netics,2%:30 as they tend to prefer models whose states
have clearly different FRET efficiency. However, in
real data, distinct and slowly-interconverting confor-
mations may have strongly overlapping FRET effi-
ciency distributions, which are difficult to separate.
Therefore, we construct an initial HMM with many
states (corresponding to a fine discretization of con-
formational space). The initial number of states is
determined by a validation scheme, which tests re-
producibility and consistency of the model with the
underlying data set. The initial states are subse-
quently coarse-grained based on their kinetics.3!32
This approach allows us to model (coarse) states even
when they strongly overlap in their FRET efficiencies
and have very irregular (e.g., non-Gaussian) FRET
distributions. Our HMM uses a Poissonian likeli-
hood function to model the physical process of pho-
ton emission.?373% This approach is preferable over
using Gaussian likelihood functions of the FRET effi-
ciency.?> 26 For a detailed discussion, see Supporting
Information. In addition, we have developed an ap-
proach to account for the trace-specific background
noise.

Independent HMM analyses were carried out on
two differently labeled DAse constructs, referred to as
constructs I and II. Altogether four different data sets
were analyzed (DAse construct I at Mg?t concentra-
tions of 0.0, 5.0, and 40.0 mM, and DAse construct II
at Mg?* concentration 5.0 mM), yielding HMMs with
seven to nine conformational states. These HMMs
provide comprehensive models of the dynamics on mil-
lisecond timescales. We also determined relaxation
times, identified the associated conformational tran-
sitions by an eigenvector/eigenvalue analysis of the
transition matrix,?® and computed the ensemble of
RNA folding pathways.?¢ Based on their kinetics, the
original states were lumped together to effective 5-
state (on timescales of tens of milliseconds), and to
3- or 4-state models (on timescales of hundreds of
milliseconds). Most notably, we identified consistent,
characteristic features of the kinetic network of DAse
in all four data sets. To the best of our knowledge,
these results represent the most detailed RNA fold-
ing models obtained from single-molecule measure-
ments to date. They confirm the hierarchical nature of
the RNA folding landscape. Furthermore, they reveal
that the transition rates in this landscape change sub-
stantially as the Mg?* concentration is varied, while
the general topology of the landscape (position of min-
ima, relative height of energy barriers) is not affected.
At all Mgt concentrations, the observed kinetic pro-
cesses can be attributed to either secondary or tertiary



structure rearrangements.

2 DMaterials and methods

2.1 Single-molecule FRET
ments and data processing

experi-

By using a combinatorial strategy, we had earlier syn-
thesized a set of nine DAse FRET constructs with dyes
attached at different nucleotide positions.’® Construct
I was chosen for in-depth studies because it showed
the most pronounced changes in its FRET histogram
with varying the Mg?* concentration. Here we have
also performed surface-immobilized measurements on
a second variant, Construct II, because (1) its FRET
histogram was multimodal, suggesting that multiple
states could be distinguished by the HMM, and (2) it
was not too different from construct I and, therefore,
could serve for validation (see below).

Single-molecule fluorescence time traces of surface-
immobilized DAse were obtained for construct I (Cy3
at U6 and Cy5 at U42) at Mgt concentrations of 0,
5 and 40 mM, and for construct IT (Cy3 at the 5’ end
and Cy5 at U30) at a Mg?" concentration of 5 mM.
Details on the data, the experimental procedures and
the effects of surface immobilization are included in
Supporting Information, Table S1, and Figs. S2 and
S4. For each trace, the rates of the background noise,
kabg an kqpg, in the acceptor and the donor chan-
nel, respectively, as well as the amount of spectral
crosstalk, x, from the donor into the acceptor channel
were estimated, as described in Supporting Informa-
tion.

2.2 HMM workflow

We have developed an HMM and associated optimiza-
tion algorithms for single-molecule FRET. The HMM
analysis scheme has the following features:

e The HMM works with discrete photon counts,
which are assumed to obey Poissonian statistics.

e Background noise levels of measured photon
traces are taken into account explicitly by em-
ploying an appropriate emission probability.

e The reproducibility of the HMMs is tested.

e The number of states of the HMM is maximized
under a number of constraints, which ensures
that the model reproduces physically and chem-
ically relevant quantities.

e The final HMM represents a fine discretization
into states that, depending on the timescale, are
lumped into larger states according to kinetic
proximity.

A workflow diagram of the HMM analysis scheme is
shown in Fig. 3. The algorithms are described in full

detail in Supporting Information, and the salient char-
acteristics of the workflow are discussed in the follow-
ing sections.

2.3 Illustration of a HMM

Fig. 2 illustrates the type of information conveyed
by HMM analysis. Consider the hypothetical en-
ergy landscape with five minima in the first graph
in Fig. 2a. Each minimum corresponds to a confor-
mational state and is associated with a mean FRET
efficiency, F; ( Fig. 2b), and a fractional population in
equilibrium, m; ( Fig. 2¢), where i denotes the number
of the state. Using HMM analysis, these five states
can be extracted from smFRET traces of a molecule
diffusing in this free energy landscape. We represent
the main characteristics of the states of the HMMs by
scatter plots (Fig. 2d-e): Each state is marked by a
disc, the position of which encodes the mean FRET
efficiency of the state and its lifetime, ;. The area of
the disc is proportional to the stationary probability
m; of the state, as computed from the HMM.

The HMM transition matrix has eigenvalues cor-
responding to timescales of transitions, and eigen-
vectors, denoting states that interconvert on these
timescales. This information induces kinetic cluster-
ing. Here, states i and ii interconvert on timescales of
10 ms (Fig. 2a). Thus, when computing a FRET his-
togram with an averaging window much longer than
10 ms, these two states merge into a single appar-
ent state. Likewise, states iv and v kinetically merge
for timescales longer than 10 ms, as depicted by the
red and blue regions in Fig. 2e. States i and ii ki-
netically merge with state iii for timescales above 100
ms (Fig. 2f). Complete equilibration occurs for times
longer than 1 s.

In a high-dimensional energy landscape, kinetic
merging may not necessarily involve only neighboring
states along the FRET efficiency axis. In fact, high
FRET efficiency states can merge kinetically with low
FRET efficiency states even if there are states with
intermediate FRET efficiencies in between.

2.4 Hidden Markov models for single-
molecule FRET

Hidden markov models (HMMSs)?? are stochastic mod-
els, A = (T,e), of the observed (measured) trace,
O = (o1, ...,0n), With 0; = (nq, nq,;) containing the
number of photons observed in the acceptor and donor
channels at each time step i. In the construction of
HMDMs, it is assumed that the observation is gener-
ated by a hidden Markov chain with transition matrix
T, whose states represent regions in the conforma-
tional space of the molecule. At every timestep in
the Markov chain, an additional stochastic process,
P(o; | s;), is invoked, which represents the measure-
ment. The emission probability, P(o; | s;), describes
the conditional probability of observing the signal, o;,



given that the molecule is currently in conformation
(hidden state) s;. One typically chooses the same
functional form of P(o; | s;) for all hidden states,
but uses a parameter e; to adapt it to a specific hid-
den state. The parameters e; form a vector e and
are part of the model \. The HMM optimization
problem maximizes the likelihood (i.e., the conditional
probability of observing the measured trace O, given
that the molecule is accurately described by the model
A= (T,e)):

tmax

Y maPlor|s1) [T T Plor ] 50)

all paths S t=2
(1)

over all values of (T, e) and all possible hidden paths.
For a given number of states, IV, the model A consists
of a N x N transition matrix, T, and of an observation-
parameter, vector e, of length N. HMM classes differ
by the way how the hidden process and the measure-
ment process are modeled, and by the way how corre-
sponding parameters are optimized.

P(O|T,e) =

2.5 The emission probability for
FRET  experiments including
background correction

It is crucial to choose an emission probability, P(o; |
s;), that models the measurement process as accu-
rately as possible. The HMM scheme presented here
works with discrete photon counts. The arrival times
of the photons are assumed to obey Poissonian statis-
tics, which is validated in Fig. S3. The functional form
of the emission probability is hence

P(ng,nq | si) = Pois(ks; na)Pois(kq; na). (2)

Pois(k,n) is a Poisson distribution of variable n with
rate coefficient k. The acceptor and donor photon
count rates, k, and kg, are given as

ke =
kqg =

Ei kmol

(1 — Ei)kmol , (3)

where E; is the apparent FRET efficiency of the cur-
rent hidden state s;, and k,,.; is the detection rate
of photons emitted by the labeled molecule (either
through the donor or acceptor).333%

A problem inherent in the experimental data is the
presence of trace-dependent background noise, which
may cause identical conformational states to display
different apparent FRET efficiencies in different time
traces. The trace specific background rates, k, ;4 and
kq.bg, can be estimated from the bleached phase of the
measured photon traces. Given these rates, we de-
rive a likelihood of observing (n,,nq) photons during
a time step, At, in the acceptor and donor channels,
respectively (see Supporting Information). The emis-
sion probability has the functional form given in eq. 2,
but the photon count rates are now given as

ke = eikmo + ka,bg

kd = (1 - ei)kmol + kd,bg 3 (4)
We assume that background noise may vary from
trace to trace, but that all other measurement er-
rors, including spectral cross-talk and differences in
the quantum yield of the chromophores, depend on
the conformational state, but are identical for differ-
ent traces. Then, e contains the apparent FRET ef-
ficiencies (without background noise) of the hidden
states. These apparent FRET efficiencies can be cor-
rected for spectral cross-talk a posteriori to obtain the
true FRET efficiencies (see Supporting Information).

2.6 HMM optimization and number of
hidden states

HMM optimization is done by using the expectation-
maximization algorithm, which finds a local maximum
of P(O | T,e) from an initial guess of the parame-
ters (T, e). To facilitate finding the global optimum,
the HMMSs presented here are obtained by first run-
ning 100 explorations that optimize random starting
values of (T,e) for a few steps only. Subsequently,
the parameter set with the largest likelihood is op-
timized to full convergence. Nonetheless, the HMM
algorithm might find different local maxima for differ-
ent initial parameters. Hence, for each Mg?* concen-
tration, we compute ten HMMs in the described way
to test for reproducibility. Two HMMs are accepted
as identical if their log-likelihoods differ by less than
1.0. By a heuristic criterion, an HMM optimization is
reproducible if identical maximum likelihood HMMs
are found in at least two out of the ten trials.

The number of states, N, is an input parame-
ter for the HMM optimization algorithm. As argued
in Supporting Information, information-criteria based
choices of the number of states are inadequate for
the present data. To determine the number of hid-
den states, we instead adopt a viewpoint for the con-
struction of direct Markov models that is well estab-
lished in the community:3® Rather than finding the
“ideal” number of states to statistically classify the
data, we require the HMM to have sufficiently many
states. Consequently, the resulting discretization of
state space will be fine enough that the HMMs can
reproduce the stationary and long-time kinetic behav-
ior of the data. The resulting states can subsequently
be grouped according to kinetic connectivity given by
T, as described in refs.3"32 and illustrated in Fig. 2.
Following this approach, we build HMMs for varying
number of states, N = 2,3, ..., and choose the largest
number of states for which HMMs can be constructed
reproducibly.

2.7 HMM validation

Different tests were used to check whether the HMMs
are consistent with the data set from which they were
parametrized, and whether the hidden paths obtained



from the HMMs are consistent with Markovian dy-
namics. The consistency of the HMM with the un-
derlying data set was tested by comparing FRET ef-
ficiency histograms obtained from the data with the
histograms estimated from the HMMs. For this test,
we used time windows between 10 and 100 ms. As
previously discussed,?” this approach tests both the
stationary and kinetic properties of the model. The
comparison was performed for background-corrected
FRET efficiency distributions. The data-based dis-
tributions were obtained using the likelihood from
Eq. 2, as described in the Supporting Information.
The HMM-based distributions were obtained by sam-
pling hidden trajectories of the time window length
from an equilibrium distribution, and then generat-
ing artificial photon counts using Poisson statistics
with the appropriate output rates (Figs. 4a, S6a, S7a,
and S8a). The Markovianity of individual states was
tested by inspecting their lifetime distributions, which
can be computed from the maximum-likelihood hid-
den paths, §(t), of the HMM. A single exponential de-
cay in these distributions is consistent with Markovian
dynamics (Fig. 4b). States that failed this test were
split using a newly developed Bayesian model selec-
tion algorithm (Supporting Information). The over-
all Markovianity of the HMMs was tested using the
implied timescales test3® that is frequently used for
simulation-based Markov state models. To this end,
the relaxation timescales, MM = _A¢/In \HMM,
were computed, where MM are the eigenvalues of
the HMM transition matrix T. These are compared
to the implied timescales of a Markov model T(7) con-
structed from the maximum likelihood hidden paths,
5(t), for different lag times 7. If the overall dynamics
is Markovian, these timescales should be independent
of the lag time 7 used to compute them, hence yielding
constant functions in Fig. 4c. As an additional test,
they should agree with the HMM timescales, tZMM,
Figure S9 shows FRET traces colored according to
the hidden states in the final model.

3 Results and Discussion

3.1 FRET efficiency histograms

We analyzed three sets of smFRET traces of DAse
construct I (chromophores attached to residues 6 and
42, see Fig. 1), measured at different Mgt concentra-
tions, 0.0, 5.0, and 40.0 mM. Background-corrected
FRET efficiency distributions were calculated from
these data sets by using the likelihood (Eq. 2) and
a bootstrapping procedure to estimate the uncer-
tainty in the data (dotted grey lines and grey areas
in Fig. 4a). These distributions exhibit features that
have been described earlier.” Two ensembles of states
can be visually distinguished: a broad intermediate
state in the FRET efficiency range 0.4 — 0.8 , and
a putative native state at efficiency values of 0.9 —
1.0. With increasing Mg?*t cation concentration, the

populations shift to states with high FRET efficiency.
In ref.,” it was already hypothesized that the broad
ensemble at intermediate FRET efficiencies may con-
sist of multiple conformational states with overlapping
FRET efficiency distributions.

3.2 HMM construction, validation and
refinement

HMMs were constructed for the smFRET data sets
as described in Materials and Methods. The largest
number of states for which HMMs could be repro-
ducibly obtained were eight (0 mM Mg?*), eight (5
mM Mg?*) and seven (40 mM Mg?T) states, where
we used the optimization protocol described in the
Materials and Methods section. The 8-state models
for 0 and 5 mM Mg?* passed the validation test (Fig.
4). A single, weakly populated state with FRET ef-
ficiency £ ~ 0, which was assigned to an acceptor
blinking state, was removed from these models a pos-
teriori. The 7-state model at 40 mM Mg?* required
an intermediate step, in which non-Markovian states
were split and regrouped according to kinetic prox-
imity, yielding a 9-state model. (See Supporting In-
formation for a detailed description of the protocol
employed.)

To test whether the remaining non-exponentiality
came from an actual non-Markovianity of the discrete
state dynamics or just from spurious transitions gen-
erated from the estimation of the maximum likeli-
hood, we conducted the implied timescale test as de-
scribed in Materials and Methods. The results shown
in Fig. 4c demonstrate that the maximum likelihood
hidden paths, §(¢), are non-Markovian in all models at
short timescales, but then converge to approximately
constant timescale estimates at lag times of 10 — 30
ms. The timescales agree with the timescales esti-
mated from the HMM transition matrix, indicating
that the kinetics of all three HMMs are consistent with
the data.

Note that the HMMs for the three different Mg?™*
concentration were constructed independently of each
other. Therefore, when similar or consistent features
are found across all three Mg?* concentrations, this is
a twofold validation of an observation.

3.3 Conformational states

The scatter plots in Fig. 5a (upper row) show the main
characteristics of the (hidden) states of the HMMs:
Each state is represented by a disc whose position in-
dicates the mean FRET efficiency of the state and its
lifetime 7, = —At/InT};, where At is the time step of
the HMM transition matrix and T;; are the diagonal
elements of this matrix. The area of the disc is propor-
tional to the stationary probability m; of the state as
computed from the HMM. The states that consistently
appear in construct I at different Mg?* concentrations
are depicted in the same color (i.e., black, blue, red,
and green states). The purple state at 0.0 mM Mg?™*



could not be matched to any state at higher Mg?*
cation concentrations. Likewise, the yellow state only
appears at 40.0 mM Mg?2*.

A feature found for all Mg?* concentrations is the
black high-FRET efficiency state. It has a relatively
small stationary probability, but a long lifetime at all
Mg?* conditions. The region of intermediate FRET
efficiencies is populated mostly by short-lived states
(blue, red), and a few long-lived states with low FRET
efficiencies (green).

Remarkably, the states appearing at multiple
Mg?* concentrations show only rather subtle changes.
There are two cooperative effects upon Mg?* increase:
(¢) all states shift to slightly higher FRET efficiencies,
indicating that Mg?T causes these conformations to
become more compact, (ii) the intermediate-efficiency
purple state is depopulated with increasing Mg?*,
while some substates with higher FRET efficiencies
(light red state, which is split into an orange and a
dark red state at 40 mM Mg?*t, as well as the dark
blue state) become more populated at high Mg?* con-
centrations. The populations of the other red and blue
states, as well as the black state, show surprisingly lit-
tle dependence on the Mg?™ concentration, indicating
that the associated conformations do not experience
stabilization by Mg?* ions.

To better understand the nature of the confor-
mational states of the HMMSs, we have investigated
their kinetics. Detailed information is presented by
the networks plotted in Figs. S10-S13. Alternatively,
an eigenvector/eigenvalue analysis of the transition
matrix T allows conformational states interconvert-
ing faster than the timescale of interest to be grouped
(Figs. S10-S13).30:31 The second row of Fig. 5a shows
a striking feature found independently for the HMMs
at all Mg?*+ concentrations: At a few tens of millisec-
onds, the substates of the red subensemble as well
as the substates of the blue subensemble intercon-
vert. We note that these substates have very dif-
ferent FRET efficiencies. Consequently, kinetics and
FRET coupling are, in general, unrelated properties.
This finding is emphasized by the FRET efficiency
histograms of the corresponding subsembles in Fig.
5b, which were constructed by partitioning the pho-
ton traces according to the associated hidden states.
The blue and red subensembles are doubly-peaked be-
cause they are composed of multiple hidden states. In
addition, these subensembles overlap strongly, clearly
showing why the present single-molecule FRET data
were difficult to model kinetically, and emphasizing
the usefulness of a detailed HMM analysis for dissect-
ing them.

For all Mg?t concentrations, the high-efficiency
peak in the FRET histograms of the blue subensem-
ble overlaps with the high-efficiency black state, indi-
cating that the high-FRET-efficiency peak identified
in ref.? consists of two states, one of which rapidly
interconverts with a state of intermediate FRET effi-
ciency (blue) and is stabilized by Mg?*, and a long-

lived high-efficiency state (black), which is insensitive
to Mg?*. In Fig. 5a, the third row shows that, on
timescales of a few hundred ms, the long-lived state
(black) interconverts with the blue subsemble. The
mixing time for all subensembles is on the order of
seconds (see Fig. 6). These results indicate the pres-
ence of a hierarchical energy landscape, with different
processes occurring on very different timescales, rang-
ing from a few milliseconds to 1 s.

Based on the processes depicted in Fig. 5, we find
fast interconversion between the "open” (E ~ 0.5)
and ”closed” (E > 0.7) states within the blue and red
subensembles, while the exchange dynamics between
these subensembles happens much slower. We pro-
pose that the states within each subensemble (with a
given color in Fig. 5) have similar secondary struc-
tures, yet different tertiary structures, interconvert-
ing rapidly without breaking large strands of Watson-
Crick base pairs. This proposition is supported by the
fact that, at high Mg?t concentrations, the compact
parts of the red and blue sub-ensemble are stabilized.
Different subensembles are proposed to correspond to
different secondary structures because they are long-
lived, suggesting that the stable Watson-Crick base
pairs need to be broken in order to transit to another
subensemble.

3.4 Kinetic analysis

Fig. 6 shows a detailed kinetic analysis and proposes
the folding mechanism. The connectivity between dif-
ferent subensembles (and, thus, presumably different
secondary structures) is similar at all Mg+ concentra-
tions. The high-efficiency (black) state is connected to
the blue subensemble — in the presence of Mg?* (5 and
40 mM) directly and, at 0 mM Mg?", via the purple
intermediate. The blue subensemble is connected to
the red subensemble. Finally, the green states are con-
nected to the red subensemble. Fig. 6a illustrates this
connectivity, and the free energies of these conforma-
tions as well as the transition states (see Materials and
Methods).

This connectivity suggests an ordering of
subensembles from the least compact (lowest FRET
efficiencies), to the most compact (highest FRET ef-
ficiencies) can be found at all Mg?™ concentrations:
(1) green, (2) red, (3) blue, and (4) black. The green
states are long-lived but low-efficiency states. The fact
that they have high lifetimes and FRET efficiencies
that are much greater than zero suggests that they
still have some secondary structure, although prob-
ably not the native one. They are therefore called
“misfolded”.

This ordering suggests to study the transition
pathways from the misfolded states (green) to the
most compact state (black). Transition path the-
ory3%49 provides the basis for calculating the path-
ways between two subensembles. We use the proto-
col and equations described in ref.3® employing the
implementation in the EMMA software.*! A transi-



tion pathway is defined as a series of transitions that
lead from the misfolded to the native state without
returning to the misfolded state. Fig. 6b locates the
states by their FRET efficiency, and by the committor
value (vertical axis), i.e., the probability of the system,
when being in this state, to move “forward” and fold
towards the black state, rather than misfold back to
the green state. The committor value g7 = 0.5 desig-
nates states in which the molecule is equally likely to
go either way. These states effectively act as transition
states in the folding pathway. Note that there is a con-
tinuous shift of these transition states with increasing
Mg?* concentration. At 0 mM Mg?*, the transition
state lies between the green and the red subensem-
ble. Once a molecule has reached the red subensem-
ble, it is likely to continue folding to the black state.
With increasing Mg?* concentration, the red and blue
subensembles become more and more kinetic interme-
diates, and lie at committor values around 0.5 for 40
mM Mg2t.

Figure 6b shows the probability fluxes of transition
pathways from misfolded states to the folded state.
The size of the arrows indicates the probability flux,
which is related to the folding rate. Without Mg?*,
the folding rate kap is about 0.09 s~!, and increases
to 0.28 s71 for 5 mM and 0.17 s~ for 40 mM Mg?+.
The strong increase in folding rate from 0 to 5 mM
Mg?* is mainly due to a lowering of the transition
state energy, while the decrease in folding rate from
5 to 40 mM Mg?" is mainly due to an increased sta-
bility of the dark blue intermediate state (compare
Fig. 6a and b). Moreover, it is apparent that addi-
tion of Mg?t increases the number of accessible path-
ways, making the folding process more parallel. Two
main mechanisms are observed at all Mg?* concen-
trations: a compact folding mechanism, in which the
green misfolded state refolds via the higher FRET ef-
ficiency substates of red and blue towards the black
state; and an “close-open-close” mechanism, in which
the green state folds via the open substates, or via
successive closing, opening, and closing, i.e., involv-
ing tertiary unfolded states. Both types of pathways
have similar weights, with some preference for close-
open-close pathways at low Mg?t concentrations and
a slight preference for compact pathways at high Mg?*
concentrations.

3.5 Validation by a second construct

To further confirm our findings, we performed a fourth
independent measurement on a DAse (construct II)
with a different set of label positions. The changed
label positions should mainly affect the FRET efficien-
cies of states. If they do not introduce major energetic
conflicts, the state probabilities, timescales and the ki-
netic connectivity should remain comparable.
Single-molecule FRET data were recorded, and
an HMM was computed using the same approach as
above. A T-state model was found to pass the valida-
tion test (see Fig. Sl4a and S14b). Like construct I,

construct IT exhibits low-FRET, “open” states at effi-
ciencies of 0.4 to 0.6, and high-FRET, “closed” states
at efficiencies above 0.8. As for construct I, two pairs
of rapidly interconverting states, each with a low and
a high-FRET state, were found. Additionally, a sin-
gle stable state with high efficiency was also identified.
Consequently, the red, blue and black subensembles of
construct II match the corresponding subensembles in
construct I and, thus, can be identified in all experi-
mental data with high confidence (see Fig. 5a).

Moreover, the timescales found in constructs I and
IT are in qualitative agreement (see Fig. S14c in Sup-
porting Information). Open and closed states of the
red and blue subensemble interconvert at timescales of
a few milliseconds (<10 ms in construct I, 3 ms in con-
struct II. At timescales of 100 ms to seconds, (z) the
blue ensemble merges with the black state, and (i%) the
red and the blue ensembles kinetically merge. At low
Mg?*t concentrations, the blue-black interconversion
is several 100 ms faster than the blue-red interconver-
sion, while at 40 mM Mg?™, the two processes happen
at about the same timescales (Fig. S14c).

The grey states in construct II and the
green/yellow states in construct I do not have clear
corresponding states in the other construct. These
states may be affected by the labeling. For example,
the presence of a label in a particular position may
prevent certain structures from forming. In the fol-
lowing discussion, we will thus concentrate on those
states that can be safely matched across all data sets
(red, blue and black).

Note that due to the reduced state lifetimes in con-
struct I, the partitioning of the photon traces resulted
in subtraces which were to short for an histogram anal-
ysis. Hence the subensemble FRET histograms could
not be generated (see Fig. 5b).

4 Discussion

A Kkinetic pattern is found consistently for different
Mg?* ion concentrations and for different attachment
points of the chromophores: (i) a long-lived, high-
FRET-efficiency state (black), (ii) two ensembles of
states (red, blue) comprising rapidly-interconverting
open and closed states, the ratio of which depends on
Mg?*, and (iii) three subsembles (red, blue, black)
that are linearly connected. Their long interconver-
sion times suggest that these transitions involve break-
ing and reforming of Watson-Crick base pairs.

To investigate whether there are secondary struc-
tures consistent with this pattern of conformations,
minimum energy secondary structures of the DAse
were calculated using the Vienna RNA WebServer® 42
(see Supporting Information). The algorithm cor-
rectly identified the secondary structure of the known
folded state (excluding the pseudoknot connectivity)
as the lowest free-energy structure. Two alternative
secondary structures with low free energies (AG < 1.4
kJ/mol above native, i.e. accessible at room tempera-



ture) were also identified. These structures (labeled 2
and 3) are shown along with the secondary structure
of the folded state (labeled 1) in Fig. 7. Although they
are very close in energy and structurally very similar
to each other, structures 2 and 3 differ from structure
1 in that helix IT is broken and helix I is prolonged by
two base pairs. All other secondary structures identi-
fied by the algorithm had estimated free energy differ-
ences of AG > 9.5 kJ/mol with respect to structure
1.

In the absence of stablizing tertiary interactions,
secondary structures 1, 2, and 3 facilitate transi-
tions between open and compact states, associated
with large fluctuations in the donor-acceptor distance
in both constructs. Therefore, they have proper-
ties matching those found for the blue and the red
subensembles in the HMM analysis. The black state
displays exclusively high FRET efficiencies in all con-
structs under all conditions and is thus likely a com-
pact state with a well-defined tertiary structure. Its
long lifetime and the fact that its population does not
vary strongly with the Mg?* concentration suggest
that it is stabilized by base-pairing rather than Mg2*
ions. Therefore, we propose that the black state repre-
sents the tertiary folded structure including the pseu-
doknot topology. The pseudoknot base pairs (G1-C26,
G2-C25, A3-U45, G4-C44 - see Fig. 1) are consistent
with stable interactions that do not depend on Mg2™*.
Their formation stabilizes an already compact struc-
ture with the correct secondary fold so as to acquire a
well-defined tertiary structure. This proposal is sup-
ported by computer simulations which show that the
active site of DAse is distorted if Mg?* is removed (ex-
plaining the loss in catalytic activity) but the overall
lambda-shaped tertiary structure stays intact.'®

Since the blue subensemble acts as precursor to
the black tertiary folded structure (linearly connected
folding path, Fig. 6), it is only logical to match the
blue state with the secondary structure of the folded
state (structure 1). The native secondary structure
still facilitates extended and compact states. Like the
fully native black state, the high-efficiency blue states
are compact and possess the correct native secondary
structure, but in contrast to the black state they lack
the pseudoknot base pairs, which stabilize the native
tertiary fold. Consistently, the probability of extended
versus compact blue states depends on the concentra-
tion of Mg?t ions that are required to stabilize the
compact state in absence of tertiary base-pairs.

Consequently, the red ensemble contains struc-
tures 2 and/or 3, i.e. extended and compact states
with non-native secondary structure. This assignment
leads to a putative folding mechanism summarized in
Fig. 7.

The proposed assignment is not only consistent
with the kinetic connectivity and the Mg?*-dependent
equilibrium populations, but also with the observed
timescales. The fluctuation between open and com-
pact conformations within the blue and the red ensem-

ble involves no or little secondary structure change,
consistent with relatively short transition timescales
(Figs. 5 and 6). In contrast, a transition from the red
to the blue subensemble involves rupture of Watson-
Crick pairs, which is consistent with slower transition
timescales of hundreds of milliseconds (Figs. 5 and 6).
Likewise, the change of tertiary base-pairing is consis-
tent with long transition timescales between the blue
and the black states, and the long lifetime of the black
native state.

The kinetic model found here and our proposed
folding mechanism exhibits a number of features con-
sistent with previous findings or hypotheses for other
RNA systems. In particular, secondary and tertiary
structure formation has been proposed to be kinet-
ically decoupled, such that secondary structure ele-
ments can exist without further stabilization by spe-
cific tertiary interactions.®® For the Tetrahymena
thermophila ribosome metastable structures with a
partially misfolded secondary structure have been de-
scribed, lending credibility to the present assignment
of the red subensemble to structures 2 and/or 3.49751
In addition, other RNAs have been proposed to fold
via multiple parallel pathways.4>50;52

To the best of our knowledge, we have presented
the most detailed experimentally-derived model of an
RNA folding mechanism, providing a kinetic model
connecting different secondary and tertiary stabi-
lized structures, and showing how they are orches-
trated during the folding pathways. The multitude of
timescales found in the data provide direct evidence
that the RNA folding landscape is hierarchical and
that secondary and tertiary structure formation occur
on different timescales. The techniques described here
also facilitate detailed kinetic models to be derived for
other macromolecular systems.

As yet, the field is still lacking an experiment that
could simultaneously resolve kinetics and the struc-
tures of the individual states in detail. Unfortunately,
computational approaches cannot step in here. With
folding times on the order of seconds, the dynamics
are as yet out of reach for direct MD simulation. Over
time, however, enhanced sampling strategies may help
access these processes.*®> However, molecular model-
ing and MD simulation may be useful for exploring
the local dynamics within individual states, and by
using new biophysical techniques, the distribution of
measurable FRET values can be computed and com-
pared to the subensemble distributions shown in Fig.
5b.4445 On the experimental side, using multicolor-
FRET“® or the systematic reconciliation of multiple
dual-color-FRET experiments*” may provide distance
constraints to resolve the structures in more detail.
Finally, the combination of FRET and site-specific flu-
orescence quenching may also be employed to disen-
tangle the tertiary dynamics from secondary structure
formation.
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Supplementary information. Theoretical back-
ground on the likelihood function and the HMM. Es-
timation algorithms for the HMM. Theoretical back-
ground and algorithms for the HMM validation and
refinement. Diels-Alderase measurement and analysis
protocol. Statistics of the data set (Fig. S2, Tab. S1
and S2). Effects of the surface immobilization (Fig.
S3). Statistics of the photon arrival time (Fig. S4).
Validation of the HMMs (Fig. S6-S8 and S14). Ad-
ditional kinetic analyses (Fig. S9-S13). This ma-
terial is available free of charge via the Internet at
http://pubs.acs.org.
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Figure 1: Diels-Alderase ribozyme. (a) Secondary and tertiary structure interactions in the folded state. Solid
lines: secondary structure base pairs, dotted lines: tertiary structure base pairs. Attachment sites of the FRET
labels are marked by green (donor dye Cy3 at U6 in construct I and at 5’ end in construct II) and orange
(acceptor dye Cy5 at U42 in construct I and at U30 in construct IT) arrows. (b) Three-dimensional structure
of the folded state. Color-coding of the secondary structure elements as in panel (a). Attachment sites of the
FRET labels are indicated by green (Cy3, donor) and red (Cy5, acceptor) spheres. (The figure has been adapted
from Fig. 1 in ref.?)
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HMM Analysis
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Figure 2: Conceptual illustration of a HMM-based FRET analysis. (a) Hierarchical free energy landscape with
various minima (conformations) interconverting on different timescales. (b) A FRET efficiency versus distance
curve, with the five conformations in panel a assigned to certain FRET efficiencies (distances). Conformations
with suitably long lifetimes can be distinguished by HMM analysis of FRET traces, but may have overlapping
FRET efficiencies even when they are distinct. (c¢) Probability density function of finding the system at a certain
value of the distance parameter. (d) The states found in the HMM analysis are depicted as disks located in a
two-dimensional space of efficiency (x-axis) and lifetime (y-axis). (e,f) Some states kinetically merge on longer
observation timescales is indicated by the blue and red areas in panels e (7 = 10 ms) and f (7 = 100 ms).
For example, state pairs (i, ii) and (iv, v) each merge into a single apparent state for times longer than 10

milliseconds.
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Figure 3: Workflow diagram used for our HMM analysis of single-molecule FRET data.
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FRET efficiency histograms
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Figure 4: Validation of the hidden Markov models. (a) Dependence of the FRET efficiency histograms on the
lengths of the time windows (10 ms, 50 ms, and 100 ms). Dashed colored lines: prediction from the hidden
Markov model, grey areas / dotted black lines: estimation from smFRET data set (bootstrapping mean / 95%
confidence interval). (b) Lifetime distributions of the individual states calculated from the maximum-likelihood
paths. Line coloring corresponds to the coloring of the states in Fig. 5. (c) Implied timescales, indicating
that the long-time kinetics of the hidden paths is Markovian and converges to timescales similar to those found
in the HMM. The divergence of the shortest timescales at larger lag times is expected and due to numerical

problems.*®
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Figure 5: Conformational states and sub-ensembles found by the HMM analysis of construct I and construct II
(a) First row: State parameters of the hidden Markov models which are for each state i: the FRET efficiency
E; (abcissa), the state life time 7;(ordinate), and the equilibrium population 7; (dot size). Second and third
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Figure 6: Free energy landscape and folding pathways. States are indicated by bars or discs with the same
colors used in Fig. 5. (a) Free energy landscape and hierarchy of the kinetic processes. Bars indicate the
free energy of states. Grey bullets indicate transition states facilitating that states or sets of states kinetically
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folding pathways from the least compact states (green/yellow) to the most compact state (black). The states
are positioned depending on their mean FRET efficiency (x-axis) and the probability of folding (committor, ¢*,
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Figure 7: Proposed folding mechanism. Secondary structures were predicted by the Vienna RNA server.® 42
The red set of states has a non-native secondary structure, but includes both open (low-FRET) tertiary struc-
tures and compact (high-FRET) tertiary structures. The blue set of states has the native secondary structure,
but also includes both open and compact tertiary structures. Compact structure in the red and blue sets are
stabilized by Mg?*. The black state has the native secondary and tertiary fold. In contrast to the compact
blue state it is additionally stabilized by the tertiary Watson-Crick pairs that form the pseudoknot.
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Figure 8: Table of content figure
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