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The sensitivity of molecular dynamics on changes in the potential energy function plays an important
role in understanding the dynamics and function of complex molecules. We present a method to
obtain path ensemble averages of a perturbed dynamics from a set of paths generated by a reference
dynamics. It is based on the concept of path probability measure and the Girsanov theorem, a result
from stochastic analysis to estimate a change of measure of a path ensemble. Since Markov state
models (MSMs) of the molecular dynamics can be formulated as a combined phase-space and path
ensemble average, the method can be extended to reweight MSMs by combining it with a reweighting
of the Boltzmann distribution. We demonstrate how to efficiently implement the Girsanov reweighting
in a molecular dynamics simulation program by calculating parts of the reweighting factor “on the fly”
during the simulation, and we benchmark the method on test systems ranging from a two-dimensional
diffusion process and an artificial many-body system to alanine dipeptide and valine dipeptide in
implicit and explicit water. The method can be used to study the sensitivity of molecular dynamics on
external perturbations as well as to reweight trajectories generated by enhanced sampling schemes to
the original dynamics. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4989474]

I. INTRODUCTION

Molecular dynamics (MD) simulations with explicit sol-
vent molecules are routinely used as efficient importance
sampling algorithms for the Boltzmann distribution of molec-
ular systems. From the conformational snapshots created by
MD simulations, one can estimate phase-space ensemble aver-
ages and thus interpret experimental data or thermodynamic
functions in terms of molecular conformations.

In recent years, the scope of MD simulations has consid-
erably widened, and the method has been increasingly used
to construct models of the conformational dynamics.1–5 Most
notably Markov state models (MSMs),6–14 in which the con-
formational space is discretized into disjoint states and the
dynamics is modeled as a Markov jump process between these
states, have become a valuable tool for the analysis of complex
molecular dynamics.15–19

For the construction of dynamic models, one has to esti-
mate path ensemble averages. For example, in MSMs, the
transition probabilities between a pair of states Bi and Bj are
estimated by considering a set of paths Sτ = {ω1,ω2, . . . ωn},
each of which has length τ, counting the number of paths
which start in Bi and end in Bj and comparing this number to
the total number of paths in the set (vertical line of blue boxes
in Fig. 1).

Suppose, one would like to compare the dynamics in
a reference potential energy function V (r) to the dynam-
ics in a series of perturbed potential energy functions V (r)
+ U(r, κ), where U(r, κ) represents the perturbation and κ is a

a)Electronic mail: bettina.keller@fu-berlin.de

tunable parameter, e.g., a force constant. While for phase-
space ensemble averages, numerous methods exist to reweight
the samples of the reference conformational ensemble to
yield ensemble averages for the perturbed systems,20–23 sim-
ilar reweighting schemes have not yet been developed for
path ensemble averages of explicit-solvent simulations. This
means that currently one would have to re-simulate the
dynamics at each parameter value (vertical lines of green
boxes in Fig. 1) and then construct a MSM for each
simulation separately. This is computationally extremely
costly.

An alternative would be to reweight the path ensemble
average at the reference potential energy function to obtain
path ensemble averages for the perturbed systems (reweight-
ing box in Fig. 1). From measure theory, it is well known that
a reweighting factor is given as the ratio between the proba-
bility measure associated with the reference potential energy
function and the probability measure associated with the per-
turbed potential energy function. This applies to reweighting
phase space ensemble averages as well as to reweighting path
ensemble averages. Figure 2 illustrates the idea of a path
ensemble reweighting method. The figure shows two sets of
paths: one generated by a Brownian dynamics simulation with-
out drift, Sτ [Fig. 2(a)], and the other generated by a Brownian
dynamics simulation with drift, S̃τ [Fig. 2(b)]. Both simula-
tions sample the same path spaceΩτ,x but the probability with
which a given path is realized differs in the two simulations.
In Figs. 2(a) and 2(b), the sets of paths, Sτ and S̃τ , are colored
according to their respective path probability density µP(ω)
and µP̃(ω). Figures 2(c) and 2(d) show again Sτ ; this time
however we colored the paths according to the probability den-
sity µP̃(ω) with which they would have been generated by a
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FIG. 1. Workflow of a reweighting scheme. V (r) is the reference potential
energy function, V (r) + U(r, κ) is the perturbed potential energy function,
where κ is a tunable parameter,ω is the trajectory generated by a MD simula-
tion at the potential V (r) or V (r) + U(r, κ) and at a fixed thermodynamic state
point. A MSM is an expected value with respect to a path probability measure
P and a stationary distribution π, which can be estimated from the trajectory
ω. A dynamical reweighting scheme, reweights the path probability measures
P and π of the reference dynamics, to the path probability measures of a per-
turbed potential energy functions P̃ and π̃. Thus, we can use the trajectory
generated at V (r) to estimate dynamical expected value (e.g., MSMs) at the
perturbed potential energy functions.

Brownian dynamics with drift. For Brownian dynamics, this
probability can be calculated directly [Fig. 2(c)]; for other
types of dynamics, a reweighting method has to be used [Fig.
2(d)]. To estimate a path ensemble average for the Brownian
dynamics with drift from Sτ , the contribution of each path

FIG. 2. Two sets of trajectories starting from x(t = 0) = 0 with time step
∆t = 0.001. (a) Set Sτ generated by a Brownian motion without drift, asso-
ciated with path probability measure P. Color intensity represents P̃. Color
intensity represents P̃. (b) Set S̃τ generated by a Brownian motion with drift
a = 20, associated with path probability measure P̃. (c) Set Sτ , color inten-
sity represents P̃ (direct calculation). (d) Set Sτ , color intensity represents P̃
(Girsanov formula).

ω to the estimated value is multiplied by the ratio Mτ,x(ω)
= µP̃(ω)/µP(ω) (Fig. 1).

Path ensemble reweighting schemes have initially been
developed in the field of importance sampling for stochastic
differential equations.24–26 For Langevin dynamics, the Gir-
sanov theorem27,28 provides us with an expression for the
probability ratio, and thus reweighting path ensemble averages
become possible for this type of dynamics (Sec. II C). It has
recently been demonstrated that the theorem can be applied to
reweight Markov state models of Brownian dynamics in one-
and two-dimensional potential energy functions.29

Here we demonstrate how the Girsanov reweighting
scheme can be applied to explicit-solvent all-atom MD simu-
lations. For this, we need to address to critical pillars on which
the Girsanov reweighting scheme rests:

• The equation of motion needs to contain a stochas-
tic term which generates random forces drawn from a
normal distribution (white noise).

• To calculate the reweighting factor, the random forces
need to be accessible for each MD simulation step.

In all-atom MD simulations, the system is propagated by the
Newton equations of motion which do not contain a stochastic
term. We will discuss how the Girsanov theorem can nonethe-
less be applied to this type of simulation (Sec. IV B). The
second point, in principle, requires that the forces are writ-
ten out at every MD simulation step, i.e., at a frequency
of femtoseconds rather than the usual output rate of several
picoseconds. This quickly fills up any hard disc and slows the
simulation by orders of magnitudes. We will present a com-
putational efficient implementation of the reweighting scheme
(Sec. IV A).

When applying the Girsanov theorem to reweight an
MSM, an additional difficulty arises:

• The degrees of freedom which are affected by the per-
turbation might not be part of the relevant subspace of
the MSM.

We found that the reweighting becomes problematic in this
case and propose to project the perturbed degrees of freedom
onto the relevant subspace during the estimation of the ratio
of probability measures (Sec. II E).

The Girsanov reweighting method is demonstrated
and benchmarked on several systems, ranging from two-
dimensional diffusion processes (Sec. IV C), over molecular
model systems which follow a Langevin dynamics (Sec. IV D),
to all-atom MD simulations of alanine and valine dipeptides
in explicit and implicit solvents (Sec. IV E).

II. THEORY
A. Molecular dynamics

Consider a molecular system with N particles, which
evolves in time t according to the Langevin equation

M
dv(t)

dt
= −∇V (r(t)) − γv(t) + ση(t),

v(t) =
dr(t)

dt
, (1)
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where M is the mass matrix and r(t) and v(t) ∈R3N are the
position vector and the velocity vector. V (r) is the poten-
tial energy function. The interaction with the thermal bath
is modelled by the friction coefficient γ, and an uncorre-
lated Gaussian white noise η(t) ∈R3N which is scaled by the
volatility σ,

σ =
√

2kBTγM, (2)

where kB is the Boltzmann constant and T is the temperature
of the system.

The phase-space vector x(t) = {r(t), v(t)} ∈ Γ fully repre-
sents the state of the system at time t, where Γ = R6N denotes
the phase space of the system. The dynamics in Eq. (1) is
associated with an equilibrium probability density

µπ(x) =
exp

[
−βH(x)

]
Z

, (3)

where β = 1
kBT , H(x)= 1

2 v>Mv + V (r) is the classical Hamil-
tonian of the system, and Z = ∫Γ exp

[
−βH(x)

]
dx is the par-

tition function. The function µπ(x) is associated with the
probability measure

π(A) = P(x ∈ A) =
∫

A
µπ(x)dx , ∀A ⊂ Γ, (4)

where π(A) represents the equilibrium probability of finding
the system in a subset A of the phase space Γ. The expected
value of a function a(x) : Γ → Rwith respect to the probability
density µπ(x) is given as

Eπ [a] =
∫
Γ

a(x)µπ(x) dx = lim
n→∞

1
n

∑
xk ∈Sn

a(xk) , (5)

where Sn = {x1, . . . xn} is a set of states distributed according
to Eq. (3). When the phase space vectors xi are generated by
numerically integrating Eq. (1), the second equality only holds
if the sampling is ergodic. Equation (5) defines a phase-space
ensemble average. The subscript π indicates the measure for
which the expected value is calculated.

B. Path ensembles and MSMs

A path ω = {x(t = 0)= x0, x1, x2, . . . , x(τ)= xn} is a time-
discretized realization of the dynamics x(t) on the time interval
[0, τ = n · ∆t] starting at a particular point x0 ∈ Γ, where
∆t is the time step and n ∈ N is the number of time steps.
The associated path space is denoted as Ωτ,x =R6N ·n. A sub-
set of the path space A is constructed as a product of subsets
Ai ⊂ Γ of the state space A = A1 ×A2 · · · ×An, where the sub-
set Ai represents the phase space volume in which xi may be
found. The probability that by integrating Eq. (1) one obtains
a path ω which belongs to the subset A ⊂ Ωτ,x is given
as

P(A) = P(ω ∈ A) = P(x1 ∈ A1, x2 ∈ A2, . . . , xτ ∈ An)

=

∫
A1

∫
A2

. . .

∫
An

p(x0, x1; ∆t) p(x1, x2; ∆t) . . . p

× (xn−1, xn; ∆t) dx1 dx2 . . . dxn . (6)

The function p(xi, xi+1; ∆t) is the transition probability den-
sity, i.e., the conditional probability to be in xi+1 after
a time ∆t given the initial state xi. The function P is
a path probability measure and is the analogon to π in

phase space ensemble averages [Eq. (4)]. The path proba-
bility measure is associated with the path probability density
function

µP(ω) = µP(x1, x2, . . . , xτ)= p(x0, x1; ∆t) p(x1, x2; ∆t) . . . p

× (xn−1, xn; ∆t) (7)

and hence the formal analogon to Eq. (4) in the path space is

P(A) = P(ω ∈ A) =
∫
A
µP(ω)dω , ∀A ⊂ Ωτ,x, (8)

where the integration over dω is defined by Eq. (6).
Let f : Ωτ,x → R be an integrable function, which assigns

a real number to each path. The expected value of this function
is

EP[f (ω)] =
∫
Ωτ ,x

f (ω) µP(ω) dω

=

∫
Γ

∫
Γ

. . .

∫
Γ

f (x1, x2, . . . , xn)µP(x1, x2, . . . , xn)

× dx1 dx2 . . . dxn

= lim
m→∞

1
m

∑
ωk ∈Sτ ,x,m

f (ωk) , (9)

where we again assumed that the paths have a common initial
state x(t = 0) = x0, and Sτ,x,m = {ω1,ω2, . . . ωm} corresponds
to a set of paths of length τ generated by numerically inte-
grating Eq. (1). When the paths are extracted from a single
long trajectory, the last equality only holds if the sampling is
ergodic. Equation (9) defines a path ensemble average. The
subscript P indicates that the expected value is calculated with
respect to a path probability measure.

For Markov processes, one can define a transition proba-
bility density p(x, y; τ), i.e., the conditional probability to be
in xn = y after a time τ given that the path started in x0 = x,
by integrating the path probability density over all interven-
ing states and applying recursively the Chapman-Kolmogorov
equation

p(x, y, τ) =
∫
Γ

∫
Γ

. . .

∫
Γ

µP(x1, x2, . . . , y) dx1 dx2 . . . dxn−1.

(10)

Markov processes can be approximated by Markov state
models.6–12,14 In these models, the phase space is discretized
into disjoint sets (or microstates) B1, B2, . . . Bs with ∪m

i=1Bi

= Γ, where the indicator function of the ith state is given as

1Bi (x) :=



1, if x ∈ Bi,

0, otherwise.
(11)

The associated cross correlation function is

Cij(τ) =
∫
Γ

µπ(x)1Bi (x)
∫
Γ

p(x, y; τ) 1Bj (y) dy dx , (12)

where µπ(x) is the equilibrium probability density [Eq. (3)].
The transition probability between set Bi and set Bj is

Tij(τ) =
Cij(τ)∑s

j=1 Cij(τ)
. (13)

Tij(τ) are the elements of the transition matrix whose domi-
nant eigenvectors and eigenvalues represent the slow dynamic
processes for the system.6–12,14
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Because of Eq. (10), one can regard the inner integral
of the cross correlation function Cij(τ) [Eq. (12)] as a path
ensemble average [Eq. (9)] which depends on the initial state
x0 = x of the path ensemble∫

Γ

p(x, y; τ) 1Bj (y) dy =
∫
Γ

∫
Γ

. . .

∫
Γ

µP(x1, x2, . . . , xn)

× 1Bj (xn) dx1 dx2 . . . dxn

= Ex0
P [1Bj (xn)] . (14)

This expected value is a linear operator and it is called the
backward transfer operator. The outer integral in Eq. (12) is a
phase space ensemble average, thus we have

Cij(τ) =
∫
Γ

µπ(x0) 1Bi (x0)Ex0
P [1Bj (xn)]dx0

= Eπ[1Bi (x0)Ex0
P [1Bj (xn)]]

= EP,π[1Bi (x0)1Bj (xn)], (15)

where the combined phase space and ensemble average is
defined as

EP,π[f (ω)] =
∫
Γ

µπ(x0)
∫
Ωτ ,x

f (ω) µP(ω) dω dx0. (16)

Equation (16) extends Eq. (9) to path ensembles with arbitrary
initial states. The elements Cij(τ) can be estimated from a set
of paths of length τ, Sτ,m = {ν1, ν2 . . . νm}, in which the initial
states are no longer fixed but are distributed according to µπ(x),

Cij(τ) = lim
m→∞

1
m

∑
νk ∈Sτ

1Bi ([νk]t=0) · 1Bj ([νk]t=n)

= lim
m→∞

1
m

m∑
k=1

1Bi ([x0]k) · 1Bj ([xn]k), (17)

where [νk]t=i = [xi]k denotes the ith time step of the kth
path.

C. Dynamical reweighting

We alter the reference dynamics [Eq. (1)] by adding a
perturbation U(r) : Γ → R to the potential energy function
V (r). Thus, Ṽ (r) = V (r) + U(r) is the perturbed potential
energy function, and the Langevin equations of motion are

M
dv(t)

dt
= −∇Ṽ (r(t)) − γv(t) + ση(t),

v(t) =
dr(t)

dt
. (18)

The perturbed dynamics is associated with a perturbed station-
ary probability density

µπ̃(x) =
exp

[
−βH̃(x)

]

Z̃
, (19)

where H̃(x) = 1
2 v>Mv + Ṽ (r) is the Hamiltonian of the per-

turbed system and Z̃ is its partition function. The perturbation
of the potential energy function also changes the transition
probability density p̃(xi, xi+1; ∆t), which gives rise to a per-
turbed path probability density µP̃(ω) [Eq. (7)] and a perturbed

path measure P̃ [Eq. (6)].
Reweighting methods compare the probability measure

of the perturbed systems to the probability measure of a ref-
erence system. We first review the derivation of a reweighting

scheme for phase space probability measures before discussing
path space probability measures. The perturbed phase-space
probability measure π̃ is said to be absolutely continuous
with respect to the reference phase space probability measure
π if

π̃(A) =
∫

A
µπ̃(x) dx = 0 ⇒ π(A) =

∫
A
µπ(x) dx = 0 . (20)

This condition is sufficient and necessary to define the likeli-
hood ratio between probability measures

g(x) =
dπ̃
dπ
=
µπ̃(x)
µπ(x)

=
Z

Z̃
exp (−βU(x)) . (21)

The function g(x) is also called the Radon-Nikodym derivative
(Radon-Nikodym theorem28) and can be used to construct the
phase-space probability measure of the perturbed system, from
the phase-space probability of the reference system,

π̃(A) =
∫

A
µπ̃(x)dx =

∫
A

g(x)µπ(x)dx . (22)

As a consequence, if g(x) can be calculated, one can estimate
a phase space ensemble average [Eq. (5)] for the perturbed
dynamics [Eq. (18)] from a set of states Sn = {x1, . . . xn}which
has been generated by the reference dynamics [Eq. (1)]

Eπ̃ [a] =
∫
Γ

a(x)µπ̃(x) dx =
∫
Γ

a(x)g(x)µπ(x) dx

= lim
n→∞

1
n

n∑
k=1

a(xk)g(xk) . (23)

The notion of absolute continuity is valid also for path
probability densities,

P̃(A) =
∫
A
µP̃(ω)dω = 0⇒ P(A) =

∫
A
µP(ω)dω = 0,

×∀A ⊂ Ωτ,x . (24)

Thus we can reweight a path ensemble average, by using the
likelihood ratio between the path probability density µP̃(ω)
and µP(ω). For diffusion processes like (1) and (18), the
likelihood ratio is given as

Mτ,x(ω) =
µP̃(ω)

µP(ω)
= exp




3N∑
i=1



n∑
k=0

∇iU(rk)
σ

ηi
k

√
∆t

−
1
2

n∑
k=0

(
∇iU(rk)

σ

)2

∆t





, (25)

where ηi
k are the random numbers, along the dimension i

at a time step k, generated to integrate Eq. (1) of the refer-
ence dynamics and ∇iU(rk) is the gradient of the perturbation
along the dimension i measured at the position rk . Note that
to evaluate Eq. (25) one needs the positions and the random
numbers for every time step of the time-discretized trajectory.
Equation (25) is derived in Appendix B. We remark that the
quantity Mτ,x(ω) exists also for continuous paths (∆t → 0).
In this case, the existence of the Radon-Nikodym derivative is
guaranteed by the Girsanov theorem27,28 that states the condi-
tions under which a perturbed path probability density P̃ can
be defined with respect to a reference path probability density
P. The differences between time-continuous and time-discrete
paths are discussed in Appendixes A and B.
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Analogous to the reweighting of phase-space ensemble
averages [Eq. (23)], we can use Mτ,x(ω) to reweight path
ensemble averages

EP̃[f (ω)] =
∫
Ωτ ,x

f (ω) Mτ,x(ω) µP(ω) dω

= lim
n→∞

1
n

n∑
i=1

Mτ,x(ωi) f (ωi) . (26)

The second equality shows how to estimate the path ensemble
average EP̃[f (ω)] at the perturbed dynamics [Eq. (18)] from a
set of paths Sτ,x,m = {ω1,ω2, . . . ωm}which has been generated
by the reference dynamics [Eq. (1)].

D. Reweighting MSMs

When reweighting a MSM, we estimate the cross corre-
lation function C̃ij(τ) for the perturbed dynamics [Eq. (18)],
from a set of paths of length τ, Sτ,m = {ν1, ν2 . . . νm}, which
has been generated by the reference dynamics [Eq. (1)]. The
cross correlation function C̃ij(τ) is a combined phase space and
path ensemble average [Eq. (16)]. Thus, both averages have to
be reweighted with the appropriated probability ratio,

EP̃,π̃[a(x0)f (ω)] =
∫
Γ

a(x0)µπ̃(x0)
∫
Ωτ ,x

f (ω) µP̃(ω) dω dx0

=

∫
Γ

a(x0)g(x0)µπ(x0)

×

∫
Ωτ ,x

f (ω) Mτ,x(ω) µP(ω) dω dx0 . (27)

With a(x0) = 1Bi (x0) and f (ω) = 1Bj (xn), we obtain

C̃ij(τ) = EP̃,π̃[1Bi (x0)1Bj (xn)]

=

∫
Γ

1Bi (x0)g(x0)µπ(x0)

×

∫
Ωτ ,x

1Bj (xn) Mτ,x(ω) µP(ω) dω dx0 , (28)

which can be estimated from a set of paths Sτ,m

= {ν1, ν2 . . . νm} as

C̃ij(τ) = lim
m→∞

1
m

∑
νk ∈Sτ ,m

g([x0]k)1Bi ([x0]k) ·Mx,τ(νk)1Bj ([xn]k) ,

(29)

where [xi]k is the ith time step of the kth path. As in Eq. (12),
the initial states of the paths are not fixed but are distributed
according to the equilibrium distribution µπ(x) of the unper-
turbed dynamics. Finally, the transition probability between
set Bi and set Bj for the perturbed dynamics is obtained as

T̃ij(τ) =
C̃ij(τ)∑
j C̃ij(τ)

. (30)

The Radon-Nikodym derivative for path ensembles g(x) con-
tains the ratio of the partition functions Z/̃Z as a multiplicative
factor. Since this factor appears both in the numerator and the
denominator of Eq. (30), it gets canceled, and the partition
functions do not have to be calculated.

Tij(τ) [and analogously T̃ij(τ)] is an element of the s × s
MSM transition matrix T(τ), where s is the number of dis-
joint sets (microstates). We characterize the MSM by plotting
and analyzing the dominant left and right eigenvectors of the
transition matrix

T(τ)ri = λi(τ)ri,

l>i T(τ) = λi(τ)l>i ,
(31)

where l>i denotes the transpose of vector li. We assess the
approximation quality of the MSM by checking whether the
implied time scales

ti = −
τ

ln(λi(τ))
= const, ∀ τ > 0 (32)

are constant.9,12

E. Projection

We now consider a perturbation U(·) that does not directly
affect the relevant coordinates used to construct the MSM. In
such a situation, the perturbation acts mainly on the coordi-
nates directly perturbed and has a minor effect on the other
degrees of freedom, in particular on the relevant coordinates
that do not capture the full effect of the perturbation. Thus the
reweighting may become problematic because the reweight-
ing formula (25) is dominated by large, fluctuating gradients.
To address this issue, we propose to project the gradient of the
perturbation onto the coordinates used to construct the MSM.
Let us assume that the MSM has been built on a combination
of d coordinates χ1, . . . χd , then Eq. (25) is rewritten as

M̂τ,x(ω) =
µ̂P̃(ω)

µP(ω)
= exp




3N∑
i=1



n∑
k=0

ci,k

σi
ηi

k

√
∆t

−
1
2

n∑
k=0

(
ci,k

σi

)2

∆t





(33)

with

ci,k =

d∑
j=1

〈∇iU(rk), χj,k〉

〈χj,k , χj,k〉
χj,k . (34)

To understand why the projection reduces the variance of
the estimator, note that M =Mτ,x admits the decomposition
M = M̂N , where M̂ = M̂τ,x denotes the part of the Radon-
Nikodym derivative associated with the projected perturbation
and N̂ = N̂τ,x denotes the part corresponding to its orthogo-
nal complement; for simplicity, we will drop the subscripts
in the following. We call the relevant coordinates that enter
M̂ the resolved coordinates and call all other coordinates
unresolved.

Now let Z be any random variable that is independent of
the unresolved variables. Then, for a fixed initial condition,
the variance of the reweighted estimator is given by

Var[ZM] = EP[Z2M2] − (EP[ZM])2, (35)

where EP[Z2M2] = EP̃[Z2M] and EP[·] denotes the expec-
tation with respect to the reference measure P. Since the
estimators with reweighting factor M or M̂ are both unbiased,
it follows that the projection decreases the variance if

EP̃[Z2M] ≥ EP̃[Z2M̂] . (36)



244112-6 Donati, Hartmann, and Keller J. Chem. Phys. 146, 244112 (2017)

TABLE I. Overview of the notation.

State: x Path: ω

Space Γ ⊂ R6N Ωτ ,x = Γ
n ⊂ R6N ·n

Subsets Ai ⊂ Γ A =
(∏n

i=1 Ai

)
⊂ Ωτ ,x

Probability density µπ (x) |t→∞ µP(ω)
Probability of a state/path π(A) = ∫A µπ (x)dx P(A) = ∫A µP(ω)dω
Expected value Eπ [f (x)] = ∫A f (x)µπ (x)dx EP[f (ω)] = ∫A f (ω)µP(ω)dω
Absolute continuity π̃(A) = 0⇒ π(A) = 0 P̃(A) = 0⇒ P(A) = 0

Radon-Nikodym derivative dπ̃
dπ , see Eq. (21) dP̃

dP , see Eq. (25)

In addition to Z being independent of the unresolved variables,
we further assume that M̂ and N are independent under P̃, an
assumption that is at least approximately satisfied in our case
as is justified by the numerical experiments. As a consequence,

EP̃[Z2M] = EP̃[Z2M̂]EP̃[N] , (37)

and it follows by Jensen’s inequality and N ≥ 0 that

1 = EP̃[1/N] ≥ 1/EP̃[N] , (38)

which implies that EP̃[N] ≥ 1. Note that 1 = EP̃[1/N] follows
from the fact that 1/N is a probability density with respect
to P̃. Further note that by the strict convexity of the function
f (x) = 1/x for x ≥ 0, the inequality is strict unless N is P̃-a.s.
constant. Hence, assuming that N is not constant, we conclude
that (36) holds even strictly, which implies that elimination of
the unresolved variables strictly decreases the variance of the
estimator.

In Table I we summarize the main notation used in the
theory section (Sec. II).

III. METHODS
A. Two-dimensional system

The Brownian dynamics on a two-dimensional potential
energy function V (x, y),




dxt = −∇xV (xt , yt) + σdBx
t ,

dyt = −∇yV (xt , yt) + σdBy
t ,

(39)

has been solved using the Euler-Maruyama scheme30 with an
integration time step of ∆t = 0.001. The term Bi

t denotes a
standard Brownian motion in the direction i = x, y, σ = 1 is
the volatility, and the random variables ηi were drawn from a
standard Gaussian distribution. The reference potential energy
function was

V (x, y) = (x2 − 1)2 + (y2 − 1)2 + |x − y| , (40)

and the perturbed potential energy function was Ṽ (x, y, )
= V (x, y) + U(y) with

U(y) = −y. (41)

For both potential energy functions, trajectories of 8× 107 time
steps were produced. In both simulations, the path probability
ratio Mτ,x was calculated using Eq. (25). The MSMs have
been constructed by discretizing each dimension x and y into
40 bins, yielding 1600 microstates. The chosen lag time was
τ = 400 time steps.

B. Many-body system in three-dimensional space

We designed a six-particle system, in which five particles
form a chain while the sixth particle branches the chain at
the central atom [Fig. 6(a)]. The position of the ith particle is
ri ∈ R3. The potential energy between two directly bonded
atoms [blue lines in Fig. 6(a)] was

V
(
rij

)
=

(
r2

ij − 1
)2

+ 0.6rij (42)

with rij = rj � ri. The bond potential energy function is a
tilted double well potential. This ensures that the potential
energy function of the complete system has multiple minima
with varying depths. No non-bonded interactions were applied.
Thus, the reference potential energy function of the complete
system was

V (r) =
∑

ij=12,13,14,24,36

V
(
rij

)
. (43)

The Langevin dynamics [Eq. (1)] of this system have been
solved using the Brünger-Brooks-Karplus (BBK) integrator31

with an integration time step of ∆t = 0.001. The masses M
of the particles, the temperature T, the friction coefficient γ,
and the Boltzmann constant kB were all set to one. The per-
turbed potential energy function was Ṽ (r) = V (r) + U(r)
with

U (r) =
1
2

r2
24 +

1
2

r2
34. (44)

The perturbation is a harmonic potential energy along the
through-space distance between atoms (2, 4) and (3, 4), respec-
tively [green dashed line in Fig. 6(a)]. For both potential energy
functions, trajectories of 3.2 × 108 time steps were produced.
The MSMs were constructed on the two-dimensional space
spanned by the bond-vectors r12 and r13, i.e., on two coor-
dinates which were not directly perturbed. Each dimension,
x and y, has been discretized into 40 bins, yielding 1600
microstates. The chosen lag time was τ = 400 time steps.
In both simulations, the path probability ratio Mτ,x was calcu-
lated by projecting the gradient vectors ∇U (r24) and ∇U (r34)
on the vectors r12 and r13 and subsequently evaluating
Eq. (33).

C. Alanine and valine dipeptides

We performed all-atom MD simulations of acetyl-alanine-
methylamide (Ac-A-NHMe, alanine dipeptide) in implicit
and explicit water and of acetyl-valine-methylamide (Ac-V-
NHMe, valine dipeptide) in implicit water. All simulations
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were carried out with the OPENMM 7.01 simulation pack-
age,32 in an NVT ensemble at 300 K. Each system was
simulated with the force field AMBER ff-14sb.33 The water
model was chosen according to the simulation, i.e., the Gen-
eralized Born Surface Area (GBSA) model34 for implicit
solvent simulation and the TIP3P model39 for explicit sol-
vent simulation. For each of these setups, the aggregated
simulation time was 1 µs and we printed out the posi-
tions every nstxout = 100 time steps, corresponding to 0.2
ps. A Langevin thermostat has been applied to control the
temperature, and a Langevin leapfrog integrator35 has been
used to integrate Eq. (1). For implicit solvent simulations,
interactions beyond 1 nm are truncated. For explicit solvent
simulations, periodic boundary conditions are used with the
Particle-Mesh Ewald (PME) algorithm36 to estimate Coulomb
interactions.

In the alanine dipeptide simulations, we have per-
turbed the potential energy function of the backbone dihedral
angles φ and ψ. The reference potential energy functions

were

V (φ) = 0.27 cos(2φ) + 0.42 cos(3φ), (45)

V (ψ)= 0.45 cos(ψ − π) + 1.58 cos(2ψ − π) + 0.44 cos(3ψ − π),

(46)

where the parameters have been extracted from force field
files and π denotes the mathematical constant. The perturbed
potential energy function was a harmonic potential along each
dihedral angle degree of freedom,

U(φ,ψ) =
1
2
κφφ

2 +
1
2
κψψ

2, (47)

where κφ and κψ are the force constants, which could be
adjusted after the simulation [Figs. 7(a) and 7(b)]. The gradi-
ent ∇ri U(·) in Eq. (25) is defined with respect to the Cartesian
coordinates. Thus, applying the chain rule, the path probabil-
ity ratio for the perturbation of the backbone dihedral angles
is given as

Mτ = exp



N∑
i

[
κφ

∫ τ

0

φ(s)
σi

∂φ(s)
∂ri

dBi
s + κψ

∫ τ

0

ψ(s)
σi

∂ψ(s)
∂ri

dBi
s −

1
2
κ2
φ

∫ τ

0

(
φ(s)
σi

∂φ(s)
∂ri

)2

ds

−
1
2
κ2
ψ

∫ τ

0

(
ψ(s)
σi

∂ψ(s)
∂ri

)2

ds + κφκψ

∫ τ

0

φ(s)ψ(s)

σ2
i

∂φ(s)
∂ri

∂ψ(s)
∂ri

ds





. (48)

In the valine dipeptide simulation, we have perturbed the
χ1 side-chain dihedral angle. The reference potential energy
function was

V (χ) = 0.337 cos(χ) + 0.216 cos(2χ − π) + 0.001 cos(4χ − π)

+ 0.148 cos(3χ) , (49)

where the parameters have been extracted from force field
files and π denotes the mathematical constant. The perturbed
potential energy function was a harmonic potential,

U(χ) =
1
2
κχ χ

2, (50)

where κχ is the force constant, which could be adjusted after
the simulation [Fig. 9(a)]. Thus, the path probability ratio is
given as

Mτ = exp



N∑
i

[
κχ

∫ τ

0

χ(s)
σi

∂ χ(s)
∂ri

dBi
s

−
1
2
κ2
χ

∫ τ

0

(
χ(s)
σi

∂ χ(s)
∂ri

)2

ds





. (51)

The MSM, for both alanine dipeptide and valine dipeptide
simulations, has been constructed by discretizing the dihedral
angles φ and ψ into 36 bins each, yielding 1296 microstates.
The chosen lag time was 20 ps for both the implicit and explicit
solvent simulations.

To study the distribution of the force of the solvent on
the solute, we have also performed one all-atom MD simu-
lation of acetyl-alanine-methylamide in explicit water at 300
K, with the GROMACS 5.0.2 simulation package,37 the force

field AMBER ff-99SB-ildn,38 the TIP3P water model,39 and
the velocity-rescaling scheme.40 The simulation time was
250 ns. We have printed out the trajectory and the total
forces every 1 ps, and afterwards we have rerun the sim-
ulation, loading the saved trajectory but excluding the sol-
vent. To obtain the value of the force of the solvent on the
solute, we have subtracted the new forces to those initially
saved.

IV. RESULTS AND DISCUSSION
A. Efficient implementation

To estimate a MSM at a perturbed potential energy func-
tion V (x) + U(x, κ) with the dynamical reweighting method,
one simulates a long trajectory x(t) at a reference potential
energy function V (x) using an integration time step ∆t. From
this trajectory m, short paths of length τ = n∆t are extracted,
yielding a set of paths Sτ,m = {ν1, ν2, . . . νm}, which can sub-
sequently be used to evaluate Eq. (29), where g([x0]k) is given
by Eq. (21) and Mx,τ(νk) is given by Eq. (25) or Eq. (33). As
discussed in Sec. II C, the factor Z/̃Z cancels for the estimate
of T̃ij(τ) [Eq. (30)] and the partition functions do not need to
be calculated.

Let us assume that the simulation integrates the Langevin
equations of motion for the reference potential energy func-
tion V (x) [Eq. (1)]. To estimate a MSM with transition
probabilities T̃ij(τ) for the dynamics in the perturbed poten-
tial energy function from a set of paths Sτ,m = {ν1, ν2, . . . νm},
we need to know the value of the perturbation U([xt]k , κ),
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the gradient of the perturbation ∇U([xt]k , κ) and the random
numbers ηk generated at every time step of the simulation
of each path νk , and the volatility σ. The volatility is deter-
mined by the temperature and the friction coefficient [Eq. (2)],
both of which are input parameters for the simulation algo-
rithm.

In a naive implementation of the reweighting method,
one would hence write out the positions and random num-
bers at every time step and calculate g([x0]k) and Mx,τ(νk)
in a post-analysis step. The advantage of this approach
is that the set of paths can be reweighted to the path
probability measure of any perturbation U(x, κ), as long
as the absolute continuity is respected [Eq. (20)]. On the
other hand, this approach is hardly practical because writ-
ing out a trajectory at every integration time step quickly
fills up any hard disc and slows down the simulation
considerably.

We therefore decided to compute the probability ratios
g([x0]k) and Mx,τ(νk) “on the fly” during the simulation. In
practice, the lag time τ of a MSM can only assume values’
integer multiples of the frequency nstxout at which the posi-
tions are written to file, i.e., of τ = n∆t =A · nstxout · ∆t
with A ∈ N. The discretized Itô integral and the discretized
Riemann integral in Eq. (25) are sums from time step k
= 0 to k = n, which can be broken down into A sums of size
nstxout,

n∑
k=0

· · · =

nstxout−1∑
k=0

· · · +
2·nstxout−1∑
k=nstxout

· · · +
A·nstxout−1∑

k=(A−1)·nstxout
. (52)

Thus, we calculate the terms

I(a) =
3N∑
i=1

a ·nstxout−1∑
k=(a−1)·nstxout

∇iU(rk)
σ

ηi
k

√
∆t (53)

and

R(a) = −
3N∑
i=1

1
2

a ·nstxout−1∑
k=(a−1)·nstxout

(
∇iU(rk)

σ

)2

∆t (54)

“on the fly” and write out the results at the same fre-
quency nstxout as the positions. The path probability ratio
is reconstructed after the simulation as

Mτ,x(ω) = exp



A∑
a=1

I(a) + R(a)



. (55)

The potential energy of the perturbation U(xt) is written out
at the frequency nstxout, and the complete weight g([x0]k) ·
Mx,τ(νk) is calculated during the construction of the MSM. The
lag time τ can be chosen and varied after the simulation. The
modification of the MD integrator can be readily implemented
within the MD software package OpenMM.32 An example
script is provided in the supplementary material.

The approach requires that the perturbation potential
energy function U(r, κ) is chosen prior to the simulation.
Note however that if the perturbation potential energy func-
tion depends linearly on the parameter κ, i.e., if κ is a force
constant U(r, κ) = κ ·U(r), then the two integrals are written as
I(a, U(r, κ)) = κ · I(a, U(r)) and R(a, U(r, κ)) = κ ·R(a, U(r)).

Thus, it is sufficient to calculate I(a, U(r)) and R(a, U(r))
“on the fly” and to scale the integrals after the simulation to
any desired value of κ. A single simulation is sufficient to
allow for reweighting a whole series of perturbation potential
energy functions. Also, the integrator can be modified such
that the Itô integrals I1(a), I2(2) . . . and the Riemann integral
R1(a), R2(2) . . . of several functionally different perturbation
energy functions U1(r), U2(r) . . . are calculated. Thus, using a
single reference simulation, one can reweight to several func-
tionally different perturbations and scale these perturbations
by an arbitrary force constant.

If the perturbation U(r) affects only a small subset of
all interactions in the system, the computational cost of cal-
culating of I i(a) and Ri(a) is modest. The blue line in Fig. 3
shows the computational costs for simulating alanine dipeptide
in implicit water with n = 0, 1, 2, 3, 4, 5 different perturba-
tions as the number of days required to obtain a trajectory of
1 µs for each perturbation on a small workstation. The red
line in Fig. 3 shows the computational cost of implementing
the same n perturbations into a single reference simulation.
For a single perturbation, 30% of the computational cost is
saved by dynamical reweighting, whereas for 5 perturbations
more than half of the computational cost is saved. Note that
the curve has been obtained by measuring the computational
cost and not by extrapolating from the cost of a single per-
turbation. The gain is even greater, if the dependence on
a force constant is to be studied. Moreover, in simulation
boxes of larger systems with explicit solvent, the number
of interactions affected by a typical perturbation is orders
of magnitudes smaller than the total number of all interac-
tions. Thus, the computational cost of calculating the integrals
I i(a) and Ri(a) “on the fly” becomes negligible. We remark
that, if I i(a) and Ri(a) are too large, the Girsanov reweighting
method might become numerically intractable. This might be
the case if the perturbation is too strong and hence ∇iU(r) is
large or if τ = n∆t is too large. Thus, a good discretization,
which allows for the use of small lag times τ, is crucial in
applying the Girsanov reweighting method to MSMs of larger
molecules.

FIG. 3. Number of days needed to product a trajectory of alanine dipeptide in
implicit solvent of 1 µs. The system has been perturbed by adding a harmonic
potential to different dihedral angles. The blue line denotes the time needed
to perform, respectively, 1,. . . ,5 simulations with different potential energy
functions (i.e., different perturbations). The red line is the time necessary to
perform one single simulation and to compute the Girsanov formula on fly for
1,. . . ,5 different perturbations at the same time. The benchmark test has been
realized on a CPU Intel(R) Core(TM) i5-4590 CPU @ 3.30 GHz with 15
GB of RAM.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-043724


244112-9 Donati, Hartmann, and Keller J. Chem. Phys. 146, 244112 (2017)

B. Stochastic forces

The dynamical reweighting method has been derived by
using the Langevin equation of motion as the starting point. It
relies on the assumption that the random forces are generated
by a Wiener process (Appendix B), and it can hence be used
directly for MD simulations thermostatted by a Brownian or a
Langevin thermostat.

However from a physical perspective, the Langevin
dynamics only approximates the Hamiltonian dynamics of the
complete system, by splitting the system in a subsystem S
and a heat bath B and replacing the interaction of the sub-
system with the heat bath by a friction term and a stochastic
process. To develop a dynamical reweighting method for a
Hamiltonian dynamics simulation, one could split the system
into two subsystems S and B, measure the forces which sub-
system B exerts on subsystem S, and use these forces as a
substitute for the random forces in the path probability ratio.
We have tested this on alanine dipeptide by performing a sim-
ulation in explicit solvent. We measured the force distribution
of the bath degrees of freedom on the heavy atoms of alanine
dipeptide and found that they considerably differ from a Gaus-
sian distribution (Fig. 4). Moreover, we would expect that the
random forces do not fulfill the usual goodness-criteria of a
random number generator. Thus, overall we are skeptical that
estimating a substitute for the random forces from a Hamilto-
nian dynamics simulation, including simulations thermostat-
ted by the Nosé-Hoover or the Berendsen thermostat, will be
successful.

Other thermostats, such as the velocity-rescaling or the
Andersen thermostat, use random numbers which are however
not converted into a Wiener process. For the time-discrete tra-
jectories generated by MD simulations with these thermostats,
it is possible to derive reweighting schemes based on the
probability of the sequence of random numbers. However, as
explained in Appendixes A and B, the path probability ratio
would diverge in the limit of continuous paths.

We therefore decided to use the Langevin leapfrog inte-
grator35 to integrate the Langevin equation of motion for both
the implicit and explicit solvent simulations and used the
random forces generated by the integrator to reweight the path
ensemble.

FIG. 4. Distribution of the force of the solvent on the 5th and 6th atoms of
the alanine dipeptide. (Blue) Force on the x direction, (green) force on the y
direction, and (red) force on the z direction.

C. Two-dimensional system

As a first application, we consider the Brownian dynam-
ics of a particle moving on a two-dimensional potential energy
function [Eq. (39)]. The reference potential energy function
V (x, y) [Eq. (40), Fig. 5(A)] has two minima at (�1, �1) and
(1, 1) which are connected by a transition state at (0, 0). We
added a perturbation [Eq. (41)] which tilts the energy func-
tion Ṽ (x, y) along the direction y, such that the minimum at
(1, 1) becomes much deeper than the minimum at (�1, �1).
Figures 5(B) and 5(E) show the dominant left MSM eigenvec-
tors of the two systems (direct MSMs). The first eigenvector
corresponds to the equilibrium distribution. In both cases, the
second eigenvector represents the transition between the two
wells, while the third eigenvector corresponds to an exchange
of probability density between the transition state region and
the two wells.

Figure 5(C) shows the MSM eigenvectors obtained by
reweighting the simulation in V (x, y) to the perturbed poten-
tial energy function V (x, y) + U(y) (reweighted MSM). Both
eigenvectors [Eq. (31)] and implied time scales [Eq. (32)]
are in perfect agreement with Fig. 5(E). This confirms that
reweighting MSMs using the Girsanov formula works well for
a low-dimensional Brownian dynamics.29 Note that the simu-
lation in the reference potential energy function V (x, y) exhibits
frequent transitions between the two minima, and thus Eq. (24)
is certainly fulfilled. By contrast, in the perturbed system
Ṽ (x, y), the simulation sampled considerably fewer transitions

FIG. 5. Two-dimensional system. (A) Reference potential. (B) Dominant left eigenvectors of the reference potential. (C) Dominant left eigenvectors reweighted
from the reference dynamics. (D) Perturbed potential. (E) Dominant left eigenvectors of the perturbed potential. (F) Dominant left eigenvectors reweighted from
the perturbed dynamics.
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between the minima and only a small fraction of the sim-
ulation time was spent in the minimum in the lower left
corner. Figure 5(F) shows the dominant eigenvectors of a
MSM of the reference dynamics constructed by reweight-
ing the perturbed path ensemble. The fact that Fig. 5(C)
is in excellent agreement with Fig. 5(B) demonstrates that
the reweighting method yields accurate results even for path
ensembles with low numbers of transitions across the largest
barriers of the system and thus suggests that it can be applied
to high-dimensional dynamics on rugged potential energy
surfaces.

D. Many-body system in three-dimensional space

As a second example, we studied a six-particle system,
in which five particles form a chain while the sixth particle
branches the chain at the central atom Fig. 6(a). We constructed
the MSM on the central bonds r12 and r13 but applied the

FIG. 6. Many-body system. (a) The perturbation acts on r24 and r34, while the
MSM is constructed on the distances r12 and r13. (b) Dominant eigenvectors
obtained by direct simulations of the reference and perturbed system and
by reweighting the reference simulation. (c) Eigenvectors projected on the
coordinates r12 and r13: blue: reference, green: perturbed, and red: reweighted.

perturbation potential energy function along the through-space
distances r24 and r34. Thus, the perturbation was projected
onto the reaction coordinates r12 and r13 during the reweight-
ing. The reference potential energy function for each bond is
a tilted double well potential, such that the reference system
exhibits four metastable states [first row of Fig. 6(b)]. The six-
particle system and the reference potential energy function are
symmetric. Thus the MSM of the reference system has two
degenerate dominant eigenvectors with implied time scales of
1.1 · 104∆t.

The perturbation contracts the bonds, thereby stabilizing
the metastable state at the lower left corner in the 1st eigenvec-
tor [second row of Fig. 6(b)]. Its effect is to break the symmetry
and to accelerate the dynamics, yielding implied time scales of
6.7 ·104∆t and 5.9 ·104∆t. The third row of Fig. 6(b) shows the
eigenvectors and the implied time scales obtained by reweight-
ing the simulation at the reference potential energy function to
the perturbed potential energy function. The projection of the
eigenvectors [Fig. 6(b)] demonstrates that the direction simu-
lations of the perturbed system and the reweighted model are
in almost perfect agreement. The relative error of the implied
time scale of the second and third eigenvectors is 5.2% and
0.7%, respectively.

E. Alanine dipeptide and valine dipeptide

Figure 7 shows the results for alanine dipeptide (Ac-A-
NHMe) in implicit water. The MSM has been constructed on
the φ and ψ backbone dihedral angles, and the slow eigen-
vectors of the unperturbed system are shown in Fig. 7(c).
The first eigenvector shows the typical equilibrium distribu-
tion in the Ramachandran plane.41 The second eigenvector
represents torsion around the φ angle and corresponds to a
kinetic exchange between the Lα-minimum (φ > 0) and the α-
helix and β-sheet minima (φ < 0). The associated time scale
is 2.8 ns. The green arrows in Fig. 7(c) represent the fre-
quency of the transitions, with the transition Lα↔ β-sheet
conformation occurring more frequently than the transition
Lα ↔ α-helical conformation. The third eigenvector repre-
sents a transition β-sheet ←→ α-helical conformation, i.e.,
torsion around ψ, and is associated with a time scale of
27 ps.

We perturbed the dynamics by adding a harmonic poten-
tial to the dihedral angle potentials of the φ- and ψ-angle
[Figs. 7(a) and 7(b), Eq. (47) with κφ = 0.5 and κψ = 0.5].
The α-helical region is somewhat stabilized by the perturba-
tion but otherwise the dominant eigenvectors are very similar
to the unperturbed system [second row in Fig. 7(c)]. How-
ever, the perturbation changes the relative frequency of the
two possible transitions (green arrows) in the second eigen-
vector, resulting in an increased implied time scale of 4.5 ns.
The third row of Fig. 7(c) shows the dominant eigenvectors
of the perturbed system obtained by reweighting the reference
simulations, and Fig. 7(d) shows the projection of the eigen-
vectors of all three models onto the φ− and ψ-torsion angle.
The reweighted model is in excellent agreement with the direct
simulation of the perturbed systems. The relative error of the
implied time scale associated with the second eigenvector is
4.1%.
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FIG. 7. Alanine dipeptide. (a) Potential energy function along φ: blue:
reference potential energy function V (φ) [Eq. (45)], green: perturbed potential
energy function V (φ) + U(κφ = 0.5, κψ = 0,φ,ψ) [Eq. (47)]. (b) Potential
energy function along ψ: blue: V (ψ) [Eq. (46)], green: V (ψ) + U(κφ = 0, κψ
= 0.5,φ,ψ) [Eq. (47)]. (c) Dominant MSM eigenvectors of alanine dipeptide.
(d) Eigenvectors projected onto the φ and ψ backbone torsion angles: blue:
reference, green: perturbed, and red: reweighted.

Figure 8(a) shows the implied time scale test [Eq. (32)]
for alanine dipeptide in implicit water. All three systems
(reference, perturbed, and reweighted) show constant implied
time scales, indicating that the MSMs are well converged.
Moreover, the graph shows that the reweighting method can
recover the implied time scales of the perturbed system over
a large range of lag times τ. We have repeated the alanine
dipeptide simulations in explicit water. The eigenvectors are
very similar to those of alanine dipeptide in implicit water

FIG. 8. Alanine dipeptide. (a) Implied time scales in implicit solvent. (b)
Implied time scales in explicit solvent. Reference potential (blue line),
perturbed potential (green line), and reweighting method (red dashed line).

(data not shown), but the associated implied time scales dif-
fer from the implicit solvent simulations [Fig. 8(b)]. In the
unperturbed system, the implied time scale of the second
eigenvector was 3.1 ns and the implied time scale of the third
eigenvector was 75 ps. Perturbing the dihedral angle potentials
slightly increased the implied time scale of the second eigen-
vector to 3.5 ns and left the implied time scale of the third
eigenvector unaffected. The implied time scales of the ref-
erence simulation and the direct simulation of the perturbed
system were constant, whereas we noticed a slight drift in the
implied time scale of the second eigenvector for the reweighted
MSM. At τ = 45 ps, the measured implied time scale is 3.4 ns
which corresponds to a relative error of 2.8%.

We also tested the dynamical reweighting method on
valine dipeptide (Fig. 9). Here, however, we perturbed the
potential energy function of the χ-side chain dihedral angle
[Fig. 9(a)] by adding a harmonic potential, while constructing
the MSM on the φ and ψ backbone dihedral angles. Thus, the
perturbation did not directly act on the variables of the MSM.
The perturbation of the χ angle had no effect on the eigen-
vectors of the MSM [Fig. 9(b)], but it did change the implied
time scales. It caused a decrease of the implied time scale of
the second eigenvector from 1.3 ns in the reference simulation
to 1.0 ns in the perturbed simulation and a slight increase of
the implied time scale of the third eigenvector from 159 ps
in the reference simulation to 170 ps in the perturbed simu-
lation. Reweighting the reference simulation to the perturbed
potential energy function recovered the results of the direct
simulation of the perturbed system. The implied time scales
obtained by the reweighting calculation were 1.0 ns (relative
error: 4.9% before rounding to ns) for the second eigenvec-
tor and 179 ps (relative error: 5.3%) for the third eigenvector.
This shows that the dynamical reweighting method also works,
when the perturbation acts on degrees of freedom which are
not part of the relevant coordinates on which the MSM is
constructed.



244112-12 Donati, Hartmann, and Keller J. Chem. Phys. 146, 244112 (2017)

FIG. 9. Valine dipeptide. (a) Reference potential energy function of the side-
chain dihedral angle χ, V (χ) (blue line), and perturbed potential energy
function, V (χ) + U(κχ = 0.5, χ) (green line). (b) First three MSM eigen-
vectors of the valine dipeptide, where the MSM is constructed in the space
spanned by the φ- and ψ-backbone dihedral angle. (c) Associated implied
time scales as a function of the lag time τ. Reference potential (blue line),
perturbed potential (green line), and reweighting method (red dashed line).

Figure 10 illustrates how to use the dynamical reweight-
ing method to study the influence of a force constant on the
molecular dynamics. It shows the implied time scale of the
second and third MSM eigenvectors of alanine dipeptide in
explicit water as a function of the force constant κφ , where
the perturbation potential energy is given by Eqs. (45) and
(47). The scan has been repeated with different values of the
force constant κψ for the potential energy function of the ψ-
backbone dihedral angle [Eqs. (46) and (47)]. The dynamics is
more sensitive to a change in the value of κφ than to a change
of κψ , but the overall effect of the perturbation is moderate. It
is important to point out that MSMs which are summarized in
Fig. 10 have been constructed from a single simulation at the
reference potential energy function. During this simulation,
the Itô integral I(a) and the Riemann integral R(a) have been
calculated for κφ = 1 and κψ = 1, and the force constants have
been scaled after the simulation during the construction of the
MSM, as described in Sec. IV A.

FIG. 10. First and second implied time scales of alanine dipeptide in explicit
solvent as a function of the parameters kφ , kψ , estimated with the Girsanov
reweighting methods.

V. CONCLUSION

We have presented the Girsanov reweighting scheme,
which is a method to study the dynamics of a molecular
system subject to an (external) perturbation U(κ, x) of the
(reference) potential energy function V (x). It allows for the
estimation of a dynamical model, e.g., a MSM, of the per-
turbed system from a simulation at the reference potential
energy function. The underlying assumption is that the equa-
tion of motion generates a path ensemble and that we can
define a probability measure on this ensemble. A perturbation
of the potential energy function causes modification of the
probability measure. The Girsanov theorem guarantees that
the probability ratio between these two measures exists (under
certain conditions) and leads to an analytical expression for
this ratio [Eq. (25)]. By reformulating the MSM transition
probabilities as path ensemble averages, we can apply the
Girsanov reweighting scheme to obtain the transition prob-
abilities of the perturbed system from a set of paths generated
at the reference potential energy function. The method can
be extended to the variational approaches,42,43 milestoning
approaches,44,45 or tensor approaches46 to molecular dynam-
ics, since in each of these methods the molecular transfer
operator is discretized and the resulting matrix elements are
estimated as path ensemble averages.

Calculating the path probability ratio requires knowledge
of the random forces at each integration time step. For the
explicit solvent simulations, we have introduced stochastic
forces by using a Langevin thermostat. In an efficient imple-
mentation of the method, two terms which are needed to
calculate the probability ratio should be calculated “on the
fly” during the simulation. We have demonstrated this using
the MD simulation toolkit OPENMM.32

Two other dynamical reweighting schemes for MSMs
have been published in recent years. In the reweighting scheme
for parallel tempering simulations,47,48 the path probability
density is defined for time discretized paths at a reference
temperature and then reweighted to different temperatures
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using statistically optimal estimators.49,50 Like the Girsanov
reweighting scheme, this method relies on the random forces
at each integration time step and reweights the contribution of
each path to the estimate of the transition probability indi-
vidually. We remark that the reweighting to different ther-
modynamic states cannot be extended to the limiting case
of continuous paths because for different volatilities the path
probability ratio relative to the Wiener process cannot be
defined (see Appendix A). This however seems to be of lit-
tle practical importance. In the Transition-Based Reweight-
ing Analysis Method (TRAM),51–53 rather than reweighting
the probabilities of each individual path, the MSM transition
probabilities Tij(τ) are directly reweighted to a different poten-
tial energy function or a different thermodynamic state using
a maximum likelihood estimator for the transition counts.
This becomes possible, if one additionally assumes that the
dynamics is in local equilibrium within each microstate of
the MSM, which possibly renders the method more sensi-
tive to the MSM discretization than path-based reweighting
methods.

We have tested the Girsanov reweighting method on sev-
eral systems, ranging from diffusion in a two-dimensional
potential energy surface to alanine dipeptide and valine dipep-
tide in implicit and explicit water. Importantly, the direct sim-
ulations of the perturbed potential energy function (Figs. 6,
7, and 9) are only included as a validation for the method.
In an actual application, one would only simulate the system
at the reference potential energy function and then reweight
to the perturbed potential energy function, thus saving the
computational time of the direct simulation of the perturbed
system.

Girsanov reweighting could be useful in several areas of
research. First, one can very efficiently test the influence of
a change in the potential energy function on the dynamics of
the molecule. The influence of a change in the force constant
on the dynamics is particularly easy to study. The Girsanov
reweighting method can therefore be applied to improve the
dynamical properties of force fields,41 by, for example, tuning
the force constants to match an experimentally measured cor-
relation time. Similarly, one can use Girsanov reweighting to
understand the influence of restraining potentials54,55 on the
dynamics of the system. Second, the method can be used to
understand which degrees of freedom have the largest influ-
ence on the slow modes of the molecule.56,57 For example, for
alanine dipeptide, we showed that the slow dynamic modes are
more sensitive to a force field variation in the φ-backbone dihe-
dral angle than they are to a variation in the ψ-backbone dihe-
dral angle. Last but not least, Girsanov reweighting can be used
to account for the effect of any external potential which has
been added to the simulation in order to enhance the sampling.
Thus, one can, for example, estimate MSMs from metadynam-
ics simulations,58,59 Hamilton replica exchange simulations,60

or umbrella sampling simulations.61

SUPPLEMENTARY MATERIAL

See supplementary material for the example script for the
implementation of the dynamical reweighting method with
OpenMM.32
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APPENDIX A: TIME-DISCRETE AND CONTINUOUS
PATH SPACE MEASURES

Path probability densities of time-discrete paths are
derivatives with respect to the Lebesgue measure dω
= dx1dx2 . . . dxn, i.e., µP(ω) = dP/dω. Here, we discuss why
it is difficult to extend the concept of path probability den-
sities to time-continuous paths. Consider a diffusion process
xt ∈ Γ ⊂ R which is a solution of the stochastic differential
equation

dxt = a(xt)dt + σdBt , 0 ≤ t ≤ τ , (A1)

where a(·) is a drift, Bt is a Brownian motion, σ is a volatility,
and τ is the total time. Discretizing Eq. (A1) using the Euler-
Maruyama method yields62

xk+1 = xk + ak∆t + ηkσ
√
∆t, 0 ≤ k ≤ n , (A2)

where ak = a(xt), ∆t is a time step, and ηk is a random num-
ber drawn from a standard Gaussian distribution. Iterating
Eq. (A2) n times generates a time-discrete path as defined in
Sec. II B. Likewise, the path space isΩτ,x = Γ

n. The path prob-
ability measure P and the associated path probability density
µP(ω) are given by Eqs. (6) and (7), respectively.

For a Brownian motion with drift, there is an analytical
expression for the transition probability density p(xk , xk+1;∆t)
of time-discrete paths,

p(xk , xk+1;∆t) =
1

√
2π∆tσ2

exp

(
−

(xk+1 − xk − ak∆t)2

2∆tσ2

)
.

(A3)
The probability density of a path (x0, x1, . . . , xn) conditional
on starting at x0 is then simply given by the product of the
corresponding transition probabilities,

µP(x1, . . . , xn; x0) =

(
1

√
2π∆tσ2

)n

× exp *
,
−
∆t

2σ2

n∑
k=1

( xk+1 − xk

∆t
− ak

)2+
-

.

(A4)

Ideally, one would like to see the continuous path density
on the space of, say, continuous curves, to emerge in the limit
∆t → 0, n → ∞ with n∆t → τ. However, a short moment of
reflection convinces us that this cannot be the case: First, the
normalization constant, the denominator in (A4), diverges as
∆t → 0 and n→ ∞. Second, the paths of the Brownian motion
are nowhere differentiable and, as a consequence, the term
(xk+1 − xk)/∆t in the path density becomes ill-defined. Third,
the reference measure in µP = dP/dω is the n-dimensional
Lebesgue measure dω that has no meaning for n→ ∞.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-043724
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APPENDIX B: DERIVATION OF THE GIRSANOV
FORMULA

We now show how the problems described in Appendix A
can be solved by considering path densities with respect to ref-
erence measure other than the Lebesgue measure, which then
gives rise to the Girsanov formula. We note that our short
derivation stays purely formal and is given for the reader’s
convenience. The interested reader may consult standard text-
books on Stochastic Differential Equations (SDEs).28,63 Anal-
ogously to Eqs. (A1) and (A2), we define a second diffusion
process with initial conditions x0 = x ∈ R by

dxt = b(xt) dt + σdBt (B1)

and

xk+1 = xk + bk∆t + ηkσ
√
∆t . (B2)

Given a particular path ω starting at x0, the likelihood ratio
of the corresponding transition probability densities is given
by

Mτ,x(ω) =
µPb (ω)

µPa (ω)
=

∏n
k=1 exp

(
−

(xk+1−xk−bk∆t)2

2∆tσ2

)
∏n

k=1 exp
(
−

(xk+1−xk−ak∆t)2

2∆tσ2

) . (B3)

In Eq. (B3), the normalization constants get canceled which
solves the first problem mentioned in Appendix A. Rearrang-
ing the fraction, moving the product into the exponent, and
expanding the quadratic terms yield

Mτ,x(ω) = exp *
,

n∑
k=0

−(xk+1 − xk − bk∆t)2 + (xk+1 − xk − ak∆t)2

2∆tσ2
+
-

= exp *.
,

n∑
k=0

−

(
b2

k − a2
k

)
∆t2 − 2xk+1 (bk − ak)∆t + 2xk (bk − ak)∆t

2∆tσ2
+/
-

= exp *
,

n∑
k=0

(xk+1 − xk) (bk − ak)

σ2
+
-

exp *.
,
−

n∑
k=0

(
b2

k − a2
k

)
∆t

2σ2
+/
-

. (B4)

In the second line, terms which do not contain either ak∆t or bk∆t cancel. Hence, ∆t cancels in the overall expression and hence
the time derivative of xt does not appear. This solves the second problem from Appendix A.

The remaining terms have straightforward interpretations: Taking the limit ∆t → 0 and n → ∞ such that n∆t → τ, the
exponent in the second term of (B4) converges to a Riemann integral,

lim
∆t→0

n∑
k=0

(
b2

k − a2
k

)
∆t

2σ2
=

1
2

∫ τ

0

b(xs)2 − a(xs)2

σ2
ds . (B5)

The first term converges to an Itô integral, at least formally. More specifically, using (A1),

lim
∆t→0

n∑
k=0

(bk − ak)(xk+1 − xk) =
∫ τ

0
(b(xs) − a(xs))dxs =

∫ τ

0
(b(xs) − a(xs)) (a(xs)ds + σdBs

)
. (B6)

Inserting (B5) and (B6) into Eq. (B4) yields the Girsanov formula

lim
∆t→0

Mτ,x(ω) = exp

(∫ τ

0

a(xs)b(xs)ds + b(xs)σdBs − a(xs)2ds − a(xs)σdBs

σ2

)
exp

(
−

1
2

∫ τ

0

b(xs)2 − a(xs)2

σ2
ds

)
= exp

(∫ τ

0

b(xs)σdBs − a(xs)σdBs

σ2

)
exp

(∫ τ

0

a(xs)b(xs) − a(xs)2

σ2
ds −

1
2

∫ τ

0

b(xs)2 − a(xs)2

σ2
ds

)
= exp

(∫ τ

0

b(xs) − a(xs)
σ

dBs

)
exp

(
−

1
2

∫ τ

0

(b(xs) − a(xs))
2

σ2
ds

)
. (B7)

Equation (B7) is an analytical expression for the likelihood
ratio of time-continuous paths. In other words, even though
the probability densities of the discrete paths have no straight-
forward extension to the continuous case, their likelihood ratio
is always well defined, provided that the two processes are
driven by the same Gaussian noise process to yield cancellation
of the problematic terms (and further technical integrability
conditions).

In this paper, we use the Euler-Maruyama discretization

Mτ,x(ω) = exp *
,

n∑
k=0

(bk − ak) ηk
√
∆t

σ
+
-

× exp *
,
−

1
2

n∑
k=0

(bk − ak)2
∆t

σ2
+
-

(B8)

of the Girsanov formula (B7) which is consistent with
the Euler-Maruyama discretization of the corresponding
SDEs.
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