
Glob Change Biol. 2022;28:5667–5682.    | 5667wileyonlinelibrary.com/journal/gcb

Received: 15 December 2021  | Revised: 8 June 2022  | Accepted: 14 June 2022

DOI: 10.1111/gcb.16320  

R E S E A R C H  A R T I C L E

Urban affinity and its associated traits: A global analysis of bats

Janis M. Wolf1,2  |   Jonathan M. Jeschke1,3,4  |   Christian C. Voigt1,4,5  |   
Yuval Itescu1,3,4

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

1Institute of Biology, Freie Universität 
Berlin, Berlin, Germany
2Institute of Zoology, University of 
Greifswald, Greifswald, Germany
3Leibniz Institute of Freshwater Ecology 
and Inland Fisheries (IGB), Berlin, Germany
4Berlin- Brandenburg Institute of 
Advanced Biodiversity Research, Berlin, 
Germany
5Leibniz Institute for Zoo and Wildlife 
Research (IZW), Berlin, Germany

Correspondence
Janis M. Wolf, Institute of Zoology, 
University of Greifswald, Loitzer Str. 26, 
17489 Greifswald, Germany.
Email: janis.wolf@gmx.de; janis.wolf@
uni- greifswald.de

Funding information
Alexander von Humboldt- Stiftung; 
Deutsche Forschungsgemeinschaft, 
Grant/Award Number: GRK 2118/1- 2

Abstract
Urbanization is a major contributor to the loss of biodiversity. Its rapid progress is 
mostly at the expense of natural ecosystems and the species inhabiting them. While 
some species can adjust quickly and thrive in cities, many others cannot. To support 
biodiversity conservation and guide management decisions in urban areas, it is im-
portant to find robust methods to estimate the urban affinity of species (i.e. their 
tendency to live in urban areas) and understand how it is associated with their traits. 
Since previous studies mainly relied on discrete classifications of species' urban af-
finity, often involving inconsistent assessments or variable parameters, their results 
were difficult to compare. To address this issue, we developed and evaluated a set of 
continuous indices that quantify species' urban affinity based on publicly available oc-
currence data. We investigated the extent to which a species' position along the urban 
affinity gradient depends on the chosen index and how this choice affects inferences 
about the relationship between urban affinity and a set of morphological, sensory 
and functional traits. While these indices are applicable to a wide range of taxonomic 
groups, we examined their performance using a global set of 356 bat species. As bats 
vary in sensitivity to anthropogenic disturbances, they provide an interesting case 
study. We found that different types of indices resulted in different rankings of spe-
cies on the urban affinity spectrum, but this had little effect on the association of 
traits with urban affinity. Our results suggest that bat species predisposed to urban 
life are characterized by low echolocation call frequencies, relatively long call dura-
tions, small body size and flexibility in the selection of the roost type. We conclude 
that simple indices are appropriate and practical, and propose to apply them to more 
taxa to improve our understanding of how urbanization favours or filters species with 
particular traits.
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1  |  INTRODUC TION

Human- induced land- use change is regarded as the primary threat 
to biodiversity (Newbold et al., 2015), and urbanization is one of 
the main and most rapidly growing land- use change processes. 
Urban expansion comes mostly at the expense of natural ecosys-
tems (Seto et al., 2011; Vitousek et al., 1997) and is often associ-
ated with the destruction, fragmentation or isolation of natural or 
near- natural habitats (Liu et al., 2016). The conditions that charac-
terize urban areas are thought to drive changes of species richness 
(Aronson et al., 2014; Kühn et al., 2004; McKinney, 2002, 2008) and 
the homogenization of biotic assemblages (Lockwood et al., 2000; 
McKinney, 2006; but Kühn & Klotz, 2006). Apparently, some species 
struggle with urban conditions and consequently are repressed from 
urban areas, while others quickly adjust, benefit from and thrive in 
these novel environments (Aronson et al., 2014; McKinney, 2002).

There have been many approaches to assess the urban affin-
ity of species (i.e. their tendency to live in urban areas), especially 
in botany. While the term ‘plantea urbanae’ was already used two 
centuries ago to describe the urban association of certain plant 
species (Schouw, 1823), early 20th- century studies initially focused 
on the impact of humans on landscapes and ecosystems. The term 
‘hemeroby’ was introduced to describe the degree of anthropo-
genic impact based on the disturbance of soil (Jalas, 1955). Later, 
this system was refined by classifying vegetation types and habitats 
on a scale from ahemerobic (natural) to polyhemerobic (unnatural; 
Sukopp, 1972) and a scale based on the absence or presence of a 
species in cities was introduced to describe its behaviour towards 
human settlements (Wittig et al., 1985). Similarly, a five- level scale 
to determine the urbanity of plants by comparing urban floras to the 
surrounding rural floras was created by Klotz et al. (2002). While all 
these approaches are classification systems, one study attempted to 
introduce two continuous measures for urbanity to plant ecology in 
Britain (Hill et al., 2002). The first one was based on the proportion 
of urban land cover in the vicinity of sample squares and the sec-
ond one on the frequency of occurrences in highly urbanized grid 
squares. In a different approach, the occurrence probability of plant 
species in grid cells was modelled and correlated with the proportion 
of urban land use in the same grid cells (Knapp et al., 2009). The cor-
relation coefficient then indicated how the probability of occurrence 
changed with increasing urban proportion.

Although botanical studies appear to have pioneered such quan-
tification attempts, the number of studies focusing on other taxa 
has recently increased, especially in birds. Some of the used urban 
indices use occurrence frequency or abundance in cities compared 
to their surrounding more rural areas (Ferenc et al., 2018; Sayol 
et al., 2020; Sol et al., 2014), others are based on remote sensing 
measurements of artificial light at night (Callaghan et al., 2019). 
In a recent study on mammals, species were categorized into 
‘urban dwellers’, ‘urban visitors’ or ‘urban avoiders’ according to 
the extent to which they breed and forage in urban areas (Santini 
et al., 2019). Such discrete classification methods were predominant 
in previous studies (Kark et al., 2007; McDonnell & Hahs, 2015; 

McKinney, 2002; Møller, 2009), and most studies focused on plants 
(Hill et al., 2002; Knapp et al., 2009; Thompson & McCarthy, 2008) 
and birds (Callaghan, Benedetti, et al., 2020; Ferenc et al., 2018; 
Sayol et al., 2020; Sol et al., 2014). The application of novel methods 
also enables investigations on previously less well- studied taxa in the 
context of urban affinity, for example, amphibians (Liu et al., 2021) 
and insects (Callaghan, Bowler, et al., 2021).

The terminology used to describe urban wildlife is not always 
consistent in the literature (e.g. Callaghan, Bowler, et al., 2021; 
Ferenc et al., 2018), with terms such as ‘urban tolerance’ and 
‘urban affinity’ sometimes used synonymously. Clearly defining 
the terminology is therefore important (e.g. Callaghan, Bowler, 
et al., 2021). Thus, we define and hereafter use the term ‘urban 
affinity’ in the sense of a continuous spectrum from a weak to a 
strong tendency to live in urban areas, and regard other terms, 
such as ‘urban avoiders’, ‘urban tolerators’ or ‘urban exploiters’ as 
groupings of species representing different positions along this 
urban affinity spectrum.

Many studies also investigated which traits characterize species 
that thrive in, tolerate or avoid urban areas (e.g. Callaghan et al., 2019; 
Jung & Threlfall, 2018; Knapp et al., 2010; Santini et al., 2019; Sayol 
et al., 2020; Wolf et al., 2020). Identifying these traits is crucial to 
understand how biodiversity responds to urbanization and thus 
guide the conservation of endangered species and urban planning. 
According to the ‘ideal urban dweller hypothesis’ (Croci et al., 2008; 
Sol et al., 2020), species that tolerate or even benefit from urban 
conditions tend to have a small body size (Magura et al., 2006; 
Santini et al., 2019), a broad dietary breadth (Slatyer et al., 2013), 
a higher reproductive output (Santini et al., 2019), are more likely 
pre- adapted to urban conditions (McDonnell & Hahs, 2015), show 
behavioural flexibility (Santini et al., 2019) and tend to be less spe-
cialized in general (Concepción et al., 2015; Sorace & Gustin, 2009). 
Species capable of powered flight are additionally characterized by 
enhanced mobility (Santini et al., 2019). However, studies of ‘urban 
traits’ have mostly been conducted at small spatial scales.

Large- scale studies allow to generalize patterns and provide in-
sights that go beyond the impact of local conditions. For such stud-
ies, the ever- growing amount of data in biodiversity networks, such 
as the Global Biodiversity Information Facility (GBIF), provides a 
promising source for comparative studies. In comparison to the data 
used in meta- analyses, geo- referenced occurrence data provide a 
consistent and reproducible basis to uncover biogeographical pat-
terns. In addition, a further increase in observations will most prob-
ably also strengthen the informative value of future studies (Wisz 
et al., 2008). However, biodiversity data from GBIF or similar sources 
are known to be biased due to several reasons (Zizka et al., 2021): 
heterogeneity of data entry sources, underrepresentation of certain 
taxa (‘taxonomic bias’), over- sampling in specific time periods (‘tem-
poral bias’) and overrepresentation of certain regions (‘geographic 
bias’). Since urban areas represent centres of human activity, they 
are particularly prone to over- sampling (Zizka et al., 2021) Therefore, 
such data need to be thoroughly evaluated and results must be dis-
cussed accordingly.
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Meta- analyses are another way of determining the relative urban 
affinity of several species by jointly evaluating the results of a large 
number of studies on individual species (e.g. Jung & Threlfall, 2018). 
Although meta- analyses are powerful to reveal ecological patterns 
that cannot be typically captured by single studies, they depend on 
the availability of studies on their focal taxa and often suffer from 
the heterogeneity of the input data.

The main objective of our study was to collate and modify tra-
ditional approaches (see above) to establish relatively simple and 
reproducible indices to determine the urban affinity of species on a 
continuous scale. Using a case study with bat data, we tested if each 
of these indices, as well as the scores from a recent meta- analysis 
on the same topic (Jung & Threlfall, 2018), resulted in convergent 
urban affinity rankings of species and in similar trait associations 
with urban areas. Ideally, this should be the case. However, due to 
the different complexities and information that is compiled in each 
index, we expected subtle deviations.

Bats (Chiroptera) are relatively sensitive to environmental 
changes (Jones et al., 2009) and some species may occur in human 
settlements (Russo & Ancillotto, 2015). Factors that influence the 
presence of bat species in urban environments include the preva-
lence of adequate roosting sites (Kunz, 1982; Kunz & Lumsden, 2003; 
Russo & Ancillotto, 2015), availability of foraging habitats (Fukui 
et al., 2006; Nakamoto et al., 2007; Rowse et al., 2016; Threlfall 
et al., 2011), morphology (Norberg & Rayner, 1987) and echoloca-
tion characteristics (Denzinger & Schnitzler, 2013; Neuweiler, 1984; 
Norberg & Rayner, 1987; Schnitzler & Kalko, 2001). While many 
studies investigated the differences in species- specific responses 
towards urban environments, based on the abundance, occurrence 
or activity of bats in more urbanized compared to more natural 
areas at a regional scale (e.g. Avila- Flores & Fenton, 2005; Gehrt 
& Chelsvig, 2003; Mehr et al., 2011; Shapiro & Bordignon, 2014), 
the meta- analysis by Jung and Threlfall (2018) is the only study we 
are aware of that attempted to investigate these patterns at a large 
scale— taxonomically and geographically.

More urban affine bat species are generally expected to be 
characterized by traits that better adapted them to open and edge 
habitats (sites at transition from open landscape to landscapes with 
pronounced vertical and dense structure, e.g. forest edges), as such 
are prevalent in cities. Hence, we tested whether eight different 
urban affinity indices reflect the following hypotheses on bat adap-
tation to urban environments, in accordance with previous findings 
(Avila- Flores & Fenton, 2005; Duchamp & Swihart, 2008; Jung & 
Kalko, 2011; Jung & Threlfall, 2018; Threlfall et al., 2011): (1) Bats 
with lower peak echolocation call frequency, longer call duration and 
species of the edge- aerial and open- aerial guilds tend to be more 
urban- affine than bats with short calls of high frequency and bats 
belonging to one of the narrow- space foraging guilds. (2) Bats with 
adaptations to rapid and directed flight should exhibit higher urban 
affinity. Thus, we expected positive correlations of both aspect 
ratio and wing loading with urban affinity. (3) Consistent with the 
ideal urban dweller hypothesis (Croci et al., 2008), which states that 
generalists and small species do better in urban environments, we 

hypothesized that small body size (here represented by body mass 
and forearm length) and a less specialized roosting strategy relate to 
higher urban affinity.

2  |  MATERIAL S AND METHODS

2.1  |  Urban affinity indices

Partially based on concepts of previous studies (Callaghan 
et al., 2019; Ferenc et al., 2018; Hill et al., 2002; Knapp et al., 2009; 
Sol et al., 2014), we developed a set of eight indices to quantify the 
urban affinity of species using georeferenced occurrence records 
and a proxy for the level of urbanization. As we intended the indices 
to be applicable to any species, independently of its global distribu-
tion, it was mandatory to use a proxy for the level of urbanization 
that is available on a global scale. Nevertheless, depending on the 
focal species and research question, the indices can also be calcu-
lated with data for a smaller spatial extent. Here, we took a grid- 
based approach to define spatial units but are aware that other types 
of spatial units also exist for which the introduced indices might still 
be applicable. For example, instead of using a grid- based land cover 
map, one could use a polygon- based map that might reflect urban 
areas in more detail. In that case, the concepts behind the indices 
would remain the same, but the exact ways of calculating them 
might differ from those presented here. Furthermore, it is assumed 
that occurrence data have been cleaned, are reliable and available 
in sufficient quantity for the species in question. The number of oc-
currence points that can be considered sufficient to detect a spe-
cies habitat affinities depends strongly on the characteristics of the 
species itself, the size of the study area and the species' prevalence 
(van Proosdij et al., 2016). For comparison and evaluation purposes, 
we extracted the scores obtained by the global meta- analysis (Jung 
& Threlfall, 2018) from their supplementary material and included 
them as an additional urban affinity index here. In Table 1, we in-
troduce the main conceptual and technical characteristics of each 
index. We provide more detailed descriptions and illustrative figures 
for all the indices in the Supplementary Material (S1), and the R code 
for calculating each of them in the electronic supplement (ES1; Wolf 
et al., 2022).

2.2  |  Occurrence data

We obtained species occurrences from the GBIF, the largest net-
work for open- access distribution records (Beck et al., 2014). We 
downloaded all available occurrence records with coordinates for 
all accepted species listed in the order Chiroptera (GBIF.org, 2020). 
This resulted in a dataset with more than 2 million records from a 
total of 1221 species. After we corrected for erroneous entries, 
extinct species, bat parasite species and synonyms by compar-
ing the data to a species list provided by the Integrated Taxonomic 
Information System (ITIS, 2021) and the taxonomy following Wilson 
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and Mittermeier (2019), the number of species was narrowed down 
to 1185. If possible, we assigned the affected records to the ac-
cepted names of the respective species. A complete overview on 
our approach can be found in in the electronic Supplementary 
Material (ES2).

Although data publication in GBIF requires compliance with cer-
tain data standards, many entries are still erroneous or incomplete. 
The use of this data therefore requires careful cleaning beforehand. 
In accordance with current standards (Zizka et al., 2019), we carried 
out a thorough data cleaning. Detailed information on the steps we 
have taken can be found in the Supplementary Material (S2).

After the cleaning, the data consisted of 817,846 observations 
from 889 species. To ensure that all further steps were based on 
robust data, we retained only data from species for which at least 
50 observations were available after cleaning. This was the case 
for 356 species. We should note, however, that the choice of this 
threshold was arbitrary and that it possibly excluded rare species. 
Therefore, the applied analyses might be biased in this respect. To 
keep the computational requirements manageable, we randomly se-
lected 10,000 observations for estimation of the indices for species 
that had more than 10,000 remaining occurrences after cleaning 
(N = 31). To determine the distribution range of each species, we 
used distribution polygons obtained from the International Union 
for Conservation of Nature and Natural Resources (IUCN, 2019).

2.3  |  Assessing the influence of range size, 
availability of urban area and sampling bias

We performed three types of sensitivity tests. First, we assessed 
the impact of the species' distribution range size on their urban af-
finity, as the former may be related to the availability of urban areas 
(Callaghan, Benedetti, et al., 2020). To test whether this is an issue 
in our dataset, we divided the species into deciles according to the 
size of their distribution range and assessed for each index whether 
urban affinity correlates with range size (Figure S4.1).

Second, we tested whether the proportion of urban area within 
the range of a species is related to the urban affinity scores calcu-
lated by the different indices. We correlated for each index the cal-
culated urban affinity scores with the proportion of urban area that 
is present within the concave hull around the occurrence points of 
each species, respectively. A high correlation coefficient (either neg-
ative or positive) would indicate that our scores are biased by this 
factor (Table S4.2).

In the third test, we assessed the degree of sampling bias to-
wards urban areas. Here, we applied the ‘sampbias’ algorithm (Zizka 
et al., 2021) for each species. This Bayesian framework provides a 
posterior weight for a biased factor, which can be interpreted as 
the strength of the bias. However, it was primarily designed for the 
analysis of multi- species datasets rather than single species, since 
results for single species might reflect species- specific habitat pref-
erences (appendix 2 in Zizka et al., 2021). We addressed this discrep-
ancy by comparing and assessing the deviation of the urban bias of 

a focal species (Figure S4.3.1) from the general urban bias (of all bat 
species in our study) within the concave hull polygon (created with 
R package concaveman; Gombin et al., 2020) of the focal species' 
occurrence records. A more positive deviation indicates a stronger 
species preference for urban areas, while a more negative deviation 
indicates a stronger sampling bias (Figure 4.3.1). For details, see the 
Supplementary Material (S4.3).

2.4  |  Proxies for the level of urbanization

As the first proxy for the level of urbanization, we used the 2015 
land cover map (v2.0.7) provided by the Climate Change Initiative 
(CCI) of the European Space Agency (ESA) for all indices except iVI-
IRS. It has a spatial resolution of c. 300 × 300 m and comprises 37 dif-
ferent land cover classes, including one for urban areas (ESA, 2017). 
As the second proxy, for both variations of iVIIRS, we used the an-
nual night- light radiance map of the year 2016 obtained from data 
collected by the Visible Infrared Imaging Radiometer Suite (VIIRS) 
Day/Night Band on a satellite jointly operated by NASA and NOAA 
(https://www.ngdc.noaa.gov/eog/downl oad.html). Most of these 
artificial lights are associated with human settlements and hence, 
their emitted radiance provides a suitable continuous measure for 
the degree of urbanization. The product we used had already filtered 
out background noise, unrelated light sources such as fires and vol-
canoes and other data degradation (Elvidge et al., 2017).

2.5  |  Foraging distance data

As home range data were not available for most species, we used the 
foraging distance (FD) as the radius of the circular buffers as an ap-
proximation to account for the species- specific spatial use in the cal-
culation for iBufferFD. The foraging distance is the average maximum 
distance a species commutes from its roost to the foraging grounds. 
We obtained data on the foraging distance from the literature for 
106 species (Table ES3 in electronic supplement).

2.6  |  Species distribution models

The calculation of iSDMCOR and iSDMCON is preceded by fitting spe-
cies distribution models (SDMs) to obtain grids with the occurrence 
probability for each species for at least the extent of the respective 
distribution range. To ensure reasonably robust outcomes, we fitted 
SDMs only for species for which the cleaned records were located 
in at least 20 discrete grid cells (Wisz et al., 2008). As model predic-
tors, we applied a set of bioclimatic (Fick & Hijmans, 2017) and land 
cover (ESA, 2017) variables. We used five different modelling algo-
rithms that are commonly used in studies that employ SDMs (Merow 
et al., 2014) and conducted 10 runs per algorithm per species. To 
gain a final occurrence probability map for each species, we com-
bined the models produced by the five algorithms into one ensemble 

https://www.ngdc.noaa.gov/eog/download.html
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model (Marmion et al., 2009). More details on the parameterization 
of the SDMs are provided in the Supplementary Material (S3).

2.7  |  Comparing urban affinity indices

To compare the urban affinity indices, we determined the Spearman 
correlation coefficient (ρ) between each of them (Figure 1). This al-
lowed us to assess how similarly the indices rank the species in our 
dataset in terms of their association with urban areas. We distinguish 
between weak (ρ < .4), moderate (.4 ≤ ρ < .7) and strong (ρ > .7) cor-
relations. The correlation diagram was created with the R package 
corrgram (Wright, 2021). To assess the average rank and variation of 
each species across all eight indices, we present a boxplot chart with 
the distribution of ranks per species. This allows to evaluate which 
species are constantly ranked high or low, which are ranked incon-
sistently across indices and if species within a focal genus are ranked 
closely to each other (Figure 2).

2.8  |  Trait data

We selected eight traits that are associated with habitat and forag-
ing ecology of bats in general and with factors we considered crucial 
for an urban bat life in particular: forearm length, body mass, as-
pect ratio, wing loading, echolocation frequency, echolocation call 
duration, roosting specialization and the functional guild (Table 2). 

Most of the trait data were compiled and published by Jung and 
Threlfall (2018; for more details on the original sources, see there). 
Supplementary trait values were retrieved from several differ-
ent sources, often from specific studies on single species. In total, 
complete trait data were available for 130 species and we were able 
to calculate at least one of our indices for 109 species. Details on 
the exact source per trait and species are shown in the electronic 
Supplementary Material (ES4). To ensure comparable effect sizes 
and better interpretation of the models, we standardized the con-
tinuous trait variables (centred to mean = 0 and scaled to standard 
deviation = 1) using the scale function in R.

2.9  |  Phylogenetic data

The phylogenetic tree was obtained from Amador et al. (2016). It 
included a total of 812 bat species and covered 731 of the total 
889 species for which any clean occurrence data were available 
and 296 out of 356 species that had at least 50 remaining occur-
rences after cleaning. For the 109 species that we included in the 
analysis, only 16 were missing in the phylogeny. We incorporated 
these missing species by adding them next to species of the same 
genus and treating them as polytomies, or if no species of the 
same genus was already in the tree, by adding them next to the 
closest related genus according to Wilson and Mittermeier (2019). 
To assess the phylogenetic signal (Revell et al., 2008) among the 
continuous predictor traits and all the urban affinity indices, we 

F I G U R E  1  Comparison of the indices based on how they rank the species in terms of their urban affinity. The upper half of the 
correlation diagram shows the scatter plots from the correlation of the urban affinity scores between two indices or variations, respectively. 
The lower half shows the resulting spearman correlation coefficient � for each of these correlations. A very similar ranking of the indices is 
indicated when ρ approaches 1, whereas a low value indicates a rather different ranking when comparing two indices. Included are those 
bat species for which all indices could be calculated and complete trait data were available (n = 50). For details on the individual indices, see 
Supplementary Material (S1).

iPoints

0.95 iBuffer01

0.93 0.95 iBuffer05

0.87 0.89 0.97 iBuffer10

0.77 0.83 0.79 0.76 iBufferFD

0.38 0.37 0.41 0.45 0.35 iSDMcor

0.48 0.54 0.51 0.43 0.55 0.12 iSDMcon

0.59 0.56 0.49 0.50 0.39 0.21 0.02 iConUrbRur

0.65 0.59 0.62 0.64 0.51 0.44 −0.00 0.39 iVIIRSmedian

0.92 0.92 0.89 0.83 0.74 0.44 0.41 0.54 0.74 iVIIRSmean

0.62 0.60 0.60 0.62 0.45 0.43 −0.00 0.44 0.89 0.64 iDist

0.20 0.25 0.29 0.26 0.33 0.23 0.26 −0.09 0.02 0.21 0.03 iMeta
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estimated Pagel's Lambda (λ) with the phylosignal R package 
(Keck et al., 2016). More details are shown in the Supplementary 
Material (S6).

2.10  |  Modelling

Before fitting the models, we assessed the collinearity between the 
continuous traits via variance inflation factors (VIF), using the func-
tion vifstep from the R package usdm (Naimi et al., 2014). We ex-
cluded predictors with a VIF > 2 from further analysis. This was the 
case for body mass and wing loading.

To implement them as response variables in the respective mod-
els, we normalized the scores of the urban affinity indices to min = 0 
and max = 1 and in some cases log- transformed them to stabilize the 
variance and to improve the normality of the residuals.

We applied Phylogenetic Generalized Least Square Models 
(PGLS), which account for the potential influence of the shared evo-
lutionary history on the association between the selected traits and 
the urban affinity (Felsenstein, 1985). Phylogenetically informed 
models were fitted with the function pgls from the R package caper 
(Freckleton et al., 2002), which considers evolutionary processes 
under a Brownian motion model, identically to OLS regression of phy-
logenetically independent contrasts (PICs; Blomberg et al., 2012). We 

F I G U R E  2  Average urban affinity 
ranking of bat species included in the 
case study. For each species (n = 50), 
the distribution of ranks for urban 
affinity across all indices is shown. A 
higher average rank indicates species 
with consistently higher urban affinity 
across all indices. The size of the boxplots 
indicates the variation in the ranking 
across all indices. Boxplots depict medians 
(black bar), interquartile ranges (boxes), 
full ranges (whiskers), outliers (black 
points) and means (red diamonds).
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fixed transformation parameters δ and κ to 1 and set λ to ‘ML’, allowing 
a maximum likelihood estimation for this parameter. The estimation 
for λ can be interpreted as the phylogenetic signal in the residuals of 
the model, where λ = 0 indicates no signal and λ = 1 indicates phylo-
genetic covariance expected under a Brownian model.

Models included those species for which we could obtain scores 
of all urban affinity indices, scores from the meta- analysis (Jung & 
Threlfall, 2018) and the trait data (n = 50; see Table 3). The global 
models included all predictors that remained after the collinearity 
check. To obtain the candidate set of models, we ‘dredged’ all pos-
sible submodels with the R package MuMIn (Barton, 2020) and in-
cluded those models with a ΔAICc < 2 plus the model with the next 
lowest AICc (Akaike's Information Criterion corrected for small sam-
ple sizes; Sugiura, 1978).

Models with ΔAICc < 2 are assumed to be equally supported. To 
interpret these models and to compare the frequency in which each 
model occurred in the candidate set of the different indices, we 
present a comprehensive summary table (Table 4). This table shows 
the sign of the effect sizes of the respective predictors. The actual 
effect sizes may vary between the same models of the individual 
indices. The exact effect sizes and other details of the individual 
models are found in the Supplementary Material (Table S5 and as 
spread sheet in the electronic Supplementary Material ES5).

3  |  RESULTS

3.1  |  Comparing the urban affinity indices

The number of species for which a score could be calculated or was 
available from the meta- analysis by Jung and Threlfall (2018) varied 
across indices (Table 3). Ultimately, we were able to obtain scores of 

all urban affinity indices (ours and the meta- analysis) for 51 species. 
For 50 of them, we also had the complete trait dataset.

With the exceptions of iSDMCOR and iSDMCON, both of which in-
cluded an SDM component, all indices showed at least a moderate 
conformity in the ranking of the bat species' urban affinity (Figure 1). 
The strongest correlations were observed between iPoints, all varia-
tions of iBuffer, iBufferFD and iVIIRSMEAN. While iVIIRSMEDIAN and iDist 
showed a moderate to strong similarity to these indices as well, they 
were much more similar to each other. The other indices, iSDMCOR, 
iSDMCON and iConUrbRur, showed at best a weak to moderate similar-
ity to some of the other indices. The scores provided by the meta- 
analysis were at best only very weakly correlated with any of the 
scores from our indices.

Only some species were ranked consistently on the urban 
affinity spectrum across all indices (Figure 2). Consistent 
with the weak phylogenetic signal of the individual indices 
(Table S6.2), the ranking of species compared to their conge-
ners (e.g. Myotis, Nyctalus) also appeared to be highly variable, 
further indicating a weak ancestral effect (Figure 2). The size 
of species distribution was only weakly correlated with the 
urban affinity indices and has not had a major impact on the re-
sults (see Supplementary Material S4.1). In addition, we found 
that for none of the indices was the proportion of urban area 
within a species' range related to the values of urban affinity 
(Table S4.2). The analysis of sampling bias towards urban areas 
revealed that only few species whose urban affinity ranking was 
high showed a stronger bias of their sampling towards urban 
areas than that of the sampling of all bats in their distribution 
range (e.g. Myotis lucifugus), which indicated that the ranking 
of most highly urban species likely stems from true preference 
rather than sampling bias for urban areas (see Supplementary 
Material S4.3).

TA B L E  2  Overview of the traits included in the analysis

Trait Abbreviation Unit/levels Description

Forearm length FL mm Species' average forearm length

Body mass BM g Species' average body mass

Aspect ratio AR cm2/cm2 Squared wingspan divided by wing area

Wing loading WL g/cm2 Body mass divided by wing area

Echolocation frequency EF kHz Peak or characteristic call frequency

Echolocation call duration ED ms Average echolocation call duration

Roosting specialization RS f— flexible Species using more than one roost type

s— specialized Species exclusively using one roost type

Functional guild FG NG— narrow gleaning Gleaning off prey from surfaces

NF— narrow flutter detection Detecting fluttering prey

ET— edge trawling Catching prey by trawling water 
surfaces

EA— edge aerial Catching prey close to vegetation

OA— open aerial Catching prey in open airspace

Note: Shown are the abbreviations used for the respective traits, the unit for continuous traits and the levels of the categorical variables as well as a 
short description.
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3.2  |  Association of bat traits to urban 
environments

None of the urban affinity indices, except iSDMCON, showed a signifi-
cant phylogenetic signal based on the scores for the 50 species with 
complete trait data and scores for all indices. Each of the predictor 
variables (i.e. traits) showed a moderate to strong phylogenetic sig-
nal. It usually was weaker than Brownian motion (λ < 1), but statisti-
cally significant (Table S6.2, Supplementary Material).

Excluding the one model per index with ΔAICc > 2, the candi-
date model set for all 12 indices consisted of 22 different models 
(Table 4). The single most frequently emerging model (in 8 out 
of the 12 indices) indicated that species with shorter forearms, 
lower echolocation frequencies, a longer call duration and a less 
specialized roosting strategy tend to have a stronger urban af-
finity. The trend signs (i.e. positive or negative association be-
tween traits and urban affinity) were consistent across most 
candidate models, regardless of the urban affinity index. Two 
other models were each supported by four of the indices. One 
of them is the only other model that is supported by iPoints, iBuf-
fer01 and iBuffer05 and additionally suggests a positive effect of 
aspect ratio. The second one (supported by iBufferFD, iSDMCOR, 
iDist and iMeta) suggests a negative correlation with roosting 

specialization. Two models were supported by three of the indi-
ces, respectively. The first one, supported by iBufferFD, iSDMCOR 
and iDist, indicates a positive correlation with echolocation call 
duration and a negative correlation with roosting specialization. 
The second one (supported by iVIIRSMEDIAN, iVIIRSMEAN and iDist) 
additionally suggests a negative correlation with echolocation 
frequency. All other models only appeared in the selected model 
set of one or two of the indices. Here, a few things in particu-
lar stood out: (1) two out of three models that were supported 
by iVIIRSMEDIAN were at the same time supported by iVIIRSMEAN; 
(2) two out of four models supported by the index from the 
meta- analysis were not among the candidate models of any of 
the other indices; (3) iDist was the only index including foraging 
guild in one of its candidate models; (4) iSDMCOR was the only 
index that revealed opposite sign of the effects of aspect ratio. 
Apart from that, the direction of the effect sizes was uniform for 
all models of all indices.

3.3  |  Model results in relation to index similarity

Although in some cases similar patterns can be observed, the 
models of indices that revealed a similar urban affinity ranking of 

TA B L E  3  Overview of the number of species in the analysis

Step Number of species Note
Number of species with 
available trait data

Download 1221 Listed in the order Chiroptera on GBIF in August 
2020

Taxonomic cleaning 1185 Remaining after taxonomic cleaning

Cleaning 889 Remaining after general cleaning 130

Final 356 Remaining species with ≥50 clean records 109

Index Number of species Reason for reduced number
Number of species with 
available trait data

iPoints 356 109

iBuffer01 356 109

iBuffer05 356 109

iBuffer10 356 109

iBufferFD 106 Limited data available for foraging distance 61

iSDMCOR 289 Preconditions for the SDMs (≥20 occupied grid cells) 105

iSDMCON 284 Preconditions for the SDMs (≥20 occupied grid cells) 
and no rural– urban pair enclosed in distribution 
range

105

iConUrbRur 356 109

iVIIRSMEDIAN 356 109

iVIIRSMEAN 356 109

iDist 356 109

iMeta 115 Number of matched species for which a score was 
provided

84

Overlap 51 50

Note: Given are the number of species after downloading, each cleaning step, the number of species for which a score was available per index and the 
number of species with available trait data per index.
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species (Figure 1) did not necessarily yield similar trait responses 
(Table 4). For example, iPoints, all variations of iBuffer and iVI-
IRSMEAN showed great similarities in the ranking and largely the 
same candidate models. However, although iBufferFD was also simi-
lar to these indices in the ranking, it did not share the same set of 
selected models. In addition, the high similarity of iVIIRSMEDIAN with 
iDist was not as clearly reflected in the set of selected trait models. 
In contrast, while the urban affinity ranking of species by iSDMCOR, 
iSDMCON and iConUrbRur was each unique, their set of selected mod-
els of these three indices still contained at least partially matching 
predictors, in some cases even the same models. As for the index 
from the meta- analysis, the different ranking of species' urban af-
finity compared to all other indices was also reflected in the se-
lected set of trait models which was mostly distinct from those of 
all other indices.

4  |  DISCUSSION

To our knowledge, this is the first study that collates and compares 
a variety of approaches to quantify species- specific urban affinity 
based on publicly available occurrence data for bats. The eight in-
dices that we used can be divided into two groups (Table 5): one 
set of indices determining urban affinity is based on the share of 
urban area present in proximity to the species' occurrence (iPoints, 
iBuffer, iVIIRS, iDist) and the other set is based on the assumption 
that species with different urban affinities also vary in their number 
of occurrences or occurrence probability in urban compared to sur-
rounding rural areas (iSDMCOR, iSDMCON, iConUrbRur). Interestingly, in-
dices of the same group did not necessarily rank the urban affinity of 
bat species consistently. The three variations of iBuffer, differing in 
the radius used to create buffers around observations, were largely 

TA B L E  4  Summary table of the trait analysis

Forearm length
Aspect 
ratio

Echolocation 
frequency

Echolocation 
call duration

Roosting 
specialization

Functional 
guild Indices

− − + − iPoints, iBuffer01, iBuffer05, iBuffer10, 
iSDMCOR, iConUrbRur, iVIIRSMEDIAN, 
iVIIRSMEAN

− + − + − iPoints, iBuffer01, iBuffer05, iVIIRSMEAN

− iBufferFD, iSDMCOR, iDist, iMeta

− + − iVIIRSMEDIAN, iVIIRSMEAN, iDist

+ − iBufferFD, iSDMCOR, iDist

− − iSDMCON, iConUrbRur

− − + iSDMCON, iConUrbRur

+ iDist, iMeta

− − iBufferFD

− − iSDMCOR

− iSDMCOR

− + − iSDMCOR

− − iSDMCOR

− + − iSDMCOR

− + − iSDMCON

+ − + − iVIIRSMEDIAN

− + ET + iDist

NG −

NF +

OA +

+ iDist

− + iDist

− iDist

+ − iMeta

+ + − iMeta

Note: Included are models with ΔAICc < 2 for each index. Given are the signs (+/−) of the effect size of the trait responses to urban affinity: Four 
standardized continuous predictors (forearm length, aspect ratio, echolocation frequency and echolocation call duration) and two nominal scaled 
predictors (roosting specialization, comparing specialized relatively to flexible roost type selection); functional guild, comparing the edge trawling 
(ET), narrow flutter (NF), narrow gleaning (NG) and open aerial (OA) relatively to the edge aerial (EA) guild. The last column indicates for which indices 
the model was among the candidate models.
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similar to each other, revealing that considering larger areas around 
the observation points has little influence on the relative ranking and 
is redundant in this context. Thus, it seems that a small buffer suf-
fices to account for movements of individuals and potential georef-
erencing inaccuracies.

Our attempt to account for species- specific differences in the 
use of space by employing the foraging distance as the buffer radius 
(iBufferFD) proved futile. Likely, using foraging distances as radius al-
locates far more area than species actually use, as doubling the radius 
increases the buffer area by a factor of four. This overcompensa-
tion is especially true for species that travel long distances between 
roost and hunting grounds. While choosing a fixed buffer size for all 
species seems arbitrary and neglects biological differences between 
species, it overcomes problems such as the heterogeneous nature of 
reported data on aspects such as foraging distances and home range 
which can impact biological inference (Slavenko et al., 2016) and the 
lack of available space- use information for many species. Therefore, 
iBufferFD can only be used to a limited extent in large- scale analyses.

Since they are based on different urban proxies, we did not 
necessarily expect the great similarity in species ranking between 
iPoints, iBuffer, iBufferFD and iVIIRSMEAN. However, this probably re-
flects the correlation between the radiance of artificial light sources 
and the proportion of urban area (not shown). Why using the median 
(as in iVIIRSMEDIAN) instead of mean (as in iVIIRSMEAN) to average ra-
diance across species observation localities produces a less similar 
ranking to that of iPoints and iBuffer remains more difficult to explain. 
By applying the median, many species received a score of 0, which 
affected the ranking, but for taxa that are better- sampled or more 
urban- affine, this effect would be reduced (Callaghan et al., 2019). 
Interestingly, iDist to iVIIRSMEDIAN, which use a median score, show 
both high similarity of species ranking and an almost identical sim-
ilarity pattern with the other indices. Most likely, this reflects that 
both urban land cover and the distance to the closest urban area are 
strongly correlated with radiance of artificial light sources (Callaghan 
et al., 2019).

The consistently observed sharp deviation of all indices 
from the urban affinity scores provided by the study of Jung and 

Threlfall (2018) can be explained by the input data of the meta- 
analysis (Senior et al., 2016). As mentioned by the authors them-
selves, the environments representing the urban and non- urban 
components in the data collated from multiple studies were highly 
heterogeneous due to various sampling designs. In contrast, within 
each of our indices, the definition of what is urban and rural is consis-
tent. Admittedly, applying iMeta as response variable for the model 
types we use is questionable. The analysis of data from different in-
dividual studies usually requires dedicated methods (Harrison, 2011) 
that, for example, account for heterogeneity in these data (as done in 
Jung & Threlfall, 2018). Nevertheless, this was the only study we are 
aware of that provided continuous effect sizes for the urban affinity 
of a large number of bat species and also applied them to investi-
gate trait responses to urbanization. Therefore, it called for testing 
to what extent the results of our models correspond to these results.

Overall, it remains difficult to judge which indices provide the 
most useful scores. As all of them provide largely the same patterns 
in the trait analysis, which are also largely consistent with previous 
findings (see case study), all indices seem to reflect urban affinity 
to some extent. The simpler indices (iPoints, iBuffer, iBufferFD and 
iVIIRSMEAN) are easier and faster to work with and clearer to fol-
low. In addition, employing them revealed fewer different model 
variants and stronger predictions overall. Since more complex 
methods, for example those using SDMs, are time- consuming and 
require special expertise, we advise against using them in stud-
ies with a large number of species, especially if occurrence data 
are scarce (Wisz et al., 2008). An absolute limit for the minimum 
number of occurrence data is difficult to define and often arbi-
trarily chosen. However, some studies attempted to estimate this 
threshold (Callaghan et al., 2019; Callaghan, Bowler, et al., 2021; 
Liu et al., 2021; van Proosdij et al., 2016). Although scientists in 
this field should be aware of this limitation and assess it for specific 
cases, given the significant increase in occurrence data availability 
(Heberling et al., 2021), this point could become a less limiting factor 
for some taxa in the future. For species with a sufficient number 
of reliable records, it may be possible to optimize the results of the 
SDMs by tailoring the model for a particular focal species even more 

TA B L E  5  Overview on indices groups and respective data properties

Type of urban affinity index Index Urban proxy Resolution
Source of 
occurrence data

Share of urban area in 
proximity to species 
occurrence

iPoints Land cover map ca. 300 × 300 m GBIF

iBuffer

iBufferFD

iDist

iVIIRSMEDIAN VIIRS artificial night lights data ca. 460 × 460 m

iVIIRSMEAN

Differences in abundance/
occurrence probability 
between urban and rural 
areas

iSDMCOR Land cover map ca. 10′ × 10′

iSDMCON

iConUrbRur ca. 300 × 300 m

Meta- analysis iMeta Inconsistent, as dependent on 
primary studies
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precisely to its specific ecology. However, this would require both 
in- depth ecological expertise on each of the species under study and 
advanced methodological skills in niche modelling. Furthermore, the 
extent to which the results are then comparable across species re-
mains unclear. Other approaches to determine urban affinity based 
on SDMs are also conceivable. For example, unlike the two SDM- 
based indices we show here, urban land cover could be included as a 
variable in the SDMs and the corresponding coefficient then used as 
a value for urban affinity. However, this is only readily possible with 
certain model algorithms (e.g. GLM).

Another potential shortcoming when using occurrence records 
from global databases like GBIF is their susceptibility to several 
types of biases (Zizka et al., 2021). If the aim of a study is to identify 
species- specific preferences towards certain habitat types, sam-
pling biases due to different accessibility should always be consid-
ered. For our purposes, especially a sampling bias towards urban 
areas was a main concern. Using a sensitivity test, we found that 
this bias was not affecting our indices significantly. The comparison 
of species with different range sizes, and thus potentially differ-
ent compositions of available habitats, is subject to the assumption 
that they all have the same probability of colonizing one of these 
habitat types, regardless of interspecific competition. However, 
we could not detect a clear impact of the size of the distribution 
range or of the proportion of available urban area on our indices, 
potentially because for bats interspecific competition is often weak 
(Bell, 1980; Fenton, 1990; Roeleke et al., 2018). However, we would 
like to stress that this should be considered on a case- by- case basis. 
Recently, an adjustment of urban affinity indices that aims to ac-
count for the potential effects of range size, sampling biases and 
interspecific competition has been published and provides a po-
tential solution for biased data (Callaghan, Cornwell, et al., 2021; 
Callaghan, Major, et al., 2020). In any case, the scores of the indices 
we present should not be interpreted as absolute but as relative 
values of urban affinity that allow comparing different indices and 
species with each other but do not necessarily reflect the actual 
urban affinity.

To conserve species in urban environments, it is essential to 
understand the characteristics that determine their ability to per-
sist under prevailing novel conditions (Sol et al., 2014). Studying 
trait responses to urbanization can elucidate general patterns in 
this respect (Webb et al., 2010). Apart from the study by Jung and 
Threlfall (2018), our study is the only one we are aware of investigat-
ing the responses exclusively of bat species to urban environments 
globally. Regardless of the urban affinity index used as response 
variable, our results support the hypothesis that urban areas act as 
filters favouring species with certain traits (Table 4).

Echolocation is considered as one of the most prominent fea-
tures of bats, largely determining how they interact with their en-
vironment (Denzinger & Schnitzler, 2013; Neuweiler, 1984) and 
showing highly habitat- related variation across species (Simmons 
et al., 1975). Indeed, we found that echolocation characteristics 
were important for predicting urban affinity: bats calling with lower 
peak frequency and longer duration were more urban- affine. These 

results are consistent with previous findings on the echolocation 
characteristics best adapted to urban environments (Avila- Flores & 
Fenton, 2005; Jung & Kalko, 2011; Jung & Threlfall, 2018; Threlfall 
et al., 2011, 2012).

Body size, indicated here by forearm length, showed an inverse 
correlation with affinity to cities, which is in line with earlier studies 
(Croci et al., 2008; Jung & Threlfall, 2018; Santini et al., 2019; Sol 
et al., 2014). This is likely because small species can hide or roost 
better than large species in small urban green spaces, underground 
cavities, crevices or small patches of vegetation (Santini et al., 2019). 
In contrast to earlier findings (Jung & Threlfall, 2018), aspect ratio 
was rarely a significant predictor of urban affinity, in the models in-
cluding the indices we developed as response variables. However, 
when using the meta- analysis affinity scores as a response variable, 
aspect ratio appeared to be positively correlated with urban affinity 
and the most common predictor in the selected models. Higher as-
pect ratios are associated with a fast and less manoeuvrable flight 
(Norberg & Rayner, 1987), which again is associated with both for-
aging in open areas (Neuweiler, 1984) and the ability to commute 
over larger distances (Dietz et al., 2016:30; Jung & Kalko, 2011). 
While the former is partially already reflected by echolocation char-
acteristics, the aspect of higher mobility seemingly had no further 
sufficient impact in most models. We suspect that species foraging 
in urban habitats may also find suitable roosting sites within cities, 
making long- distance commutes unnecessary.

We also found that roost- type flexibility was associated with 
stronger urban affinity. This is consistent with the general percep-
tion that generalists are better at dealing with unknown or novel 
environments (e.g. Callaghan et al., 2019; Concepción et al., 2015; 
Sorace & Gustin, 2009). This is usually attributed to the ability to op-
portunistically adapt to the available resources. It has been argued 
that cities offer conditions that are preferably exploited by species 
with a wide habitat breadth that are also common in other artificial 
habitats like rural gardens or agricultural land (Ducatez et al., 2018). 
Nevertheless, the heterogeneous structure of cities seems to pro-
vide bats with a variety of suitable roosting sites that resemble the 
conditions of natural roosts (Kunz, 1982; Russo & Ancillotto, 2015).

5  |  CONCLUSIONS

We compared a variety of approaches to quantify species' urban 
affinity. In contrast to the majority of previous studies that were 
restricted to a limited spatial extent or used a discrete classifica-
tion of species in terms of their urban affinity (Evans et al., 2011), 
all indices introduced here reveal continuous scores, are generaliz-
able to all kinds of taxa and applicable on a global scale, depending 
only on the availability of occurrence data. We conclude that sim-
ple indices give at least as useful indications as the more complex 
ones and are easier to apply and follow. Comparable scores of a 
previously published meta- analysis (Jung & Threlfall, 2018), which 
were based on inconsistent definitions of urbanity level, showed 
clear differences from our indices in the relative urban affinity of 
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bat species. We conclude that some of the introduced indices have 
potential to outperform meta- analyses in terms of the taxonomic 
and geographic scope, are easy to reproduce and reveal more ac-
curate results. However, apart from this one study to our knowl-
edge there are no comparable data available for bats, making a 
precise evaluation of the indices difficult. To more comprehen-
sively examine their general value, it would be useful to apply the 
indices to more extensively studied taxa such as birds and plants 
(e.g. Callaghan et al., 2019; Hill et al., 2002). Another interesting 
possibility to extend the application of the indices would be to add 
a temporal component, that is, to track changes in the urban af-
finity in the course of a year (Callaghan, Cornwell, et al., 2021) or 
over longer time periods. The latter could help to detect long- term 
effects of urbanization. Identifying the traits that characterize 
successful urban dwellers is useful for recognizing and prioritizing 
species that suffer greater threats by the rapidly intensifying pro-
cess of urbanization worldwide and adapt conservation measures 
for their needs.
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