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1 From Language and Speech to Biolinguistics

Language is a specialized human trait, tightly linked to
our intellectual capacity (Hauser, Chomsky, & Fitch,
2002). Scores of philosophers, linguists, and biologists
have commented on the astonishing complexity of lan-
guage and proposed different scenarios of how it might
have arisen (Christiansen & Kirby, 2003; Di Sciullo &
Boeckx, 2011; Nowak, 2000). We learn language as
infants and use it throughout our lives to express our
thoughts. One feature that makes this possible is that
spoken language combines a limited repertoire of
sounds into an essentially unlimited combination of
words and sentences. This fact already fascinated medi-
eval Arab and Jewish religious scholars (Eco, 1995) and
eventually, Wilhelm von Humboldt (1836, p. 106) put it
succinctly as “the infinite use of finite means.”

From a biolinguistic perspective (Boeckx & Grohm-
ann, 2013; Hauser et al., 2002), one can ask whether
language evolution required unique components,
including human-unique genes, or whether it was the
result of a unique combination or of a continuum of
traits that exist to varying degrees in other animals
(Fitch, 2010; Larson, Déprez, & Yamakido, 2010; Petkov
& Jarvis, 2012; Scharff & Petri, 2011). Which of these
traits are relevant to language evolution is a matter of
debate (Arbib, Liebal, & Pika, 2008; Bolhuis, Tattersall,
Chomsky, & Berwick, 2014; Tomasello, 2005). Speech is
one feature suitable for comparative studies because
many animals also communicate vocally and in a subset
of those the production of those vocalizations are
learned. How does the neural control of jaw, orofacial,
and laryngeal muscles necessary for speech relate to
sound production mechanisms in vocally communicat-
ing animals? These and other key components of spo-
ken language, such as vocal learning, syntax, and
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semantics, which concern the acquisition, structure,
and meaning of a signal, respectively, are increasingly
the focus of comparative biolinguistic studies (Chris-
tiansen & Kirby, 2003; Fitch 2010; Larson et al., 2010;
Petkov & Jarvis, 2012).

1.1. DEFINITIONS OF SOCIAL LEARNING IN VocAL CoMm-
MUNICATION To understand the relevance of animal
models to study genes relevant for language learning,
we briefly review some relevant terms (Janik & Slater,
1997, 2000; Jarvis, 2004; Petkov & Jarvis, 2012). Vocal
learning, or more precisely, vocal production learning
(VPL), is the ability to learn to produce new vocaliza-
tions based on auditory feedback (vocal imitation) or
reshape existing vocalizations based on social influ-
ences (vocal modification). Vocal usage learning (VUL)
is the ability of a sender to learn which sound signal
(whether it be an innate or learned sound) to produce
in a specific context. Auditory comprehension learning is
the ability of a receiver to learn which message a sound
signal carries in a particular context (table 46.1).

Of these types of learning, VPL is the rarest. It is
documented in only three orders of birds (songbirds,
parrots, and hummingbirds) and in five orders of
mammals (humans, cetaceans, bats, elephants, and
pinnipeds) (Janik & Slater, 1997, 2000; Petkov & Jarvis,
2012). Songbirds and parrots are particularly accom-
plished in a special form of VPL, vocal mimicry, where
even heterospecific sounds are copied, including
human words and sentences (Garamszegi, Eens, Pav-
lova, Avilés, & Mgller, 2007; Kelley, Coe, Madden, &
Healy, 2008; Pepperberg, 2010). In these instances,
mimicry of other species often occurs by socialization
with them and absence of their own species. Except for
parrots, imitation of human speech (Pepperberg, 1981)
has been reported in an Asian elephant (Stoeger et al.,
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TABLE 46.1

Definitions of terms used in the chapter with comparison to terms used in_Janik and Slater (2000) and Petkov and Jarvis (2012)

Present chapter

Janik and Slater (2000)

Petkov and Jarvis (2012)

Auditory comprehension learning: “the
ability of a receiver to learn which
message a sound signal carries in a
particular context.”

Vocal usage learning: “the ability of a
sender to learn which sound signal to
produce in a specific context.”

Vocal production learning (VPL): “the
ability to learn to produce new
vocalizations based on auditory
feedback (vocal imitation) or reshape
existing vocalizations based on social
influences (vocal modification).”

Comprehension learning: “a receiver
comes to extract a novel meaning
from a signal as a result of experi-
ence with the usage of signals by
other individuals” (table 1).

Usage learning: “an existing signal is
produced in a new context as a result
of experience with the usage of

signals by other individuals” (table 1).

Production learning: “signals are
modified in form as a result of
experience with those of other
individuals. This can lead to signals
that are either similar or dissimilar
to the model” (table 1).

Auditory learning: “an animal learns to
perceive something novel or behav-
iorally react to sounds differently as a
result of experience” (p. 4).

Usage vocal learning: “an animal learns
to use acoustically innate or already
learned vocalizations in a new
context” (p. 4).

Production vocal learning: the ability of
an animal to produce novel
vocalizations.

Limited VPL: the ability to learn to
produce new vocalizations is limited.
The adult vocal repertoire of species
with limited VPL may not need to be
imitatively learned from an external
source, but can be (see obligatory/
facultative VPL).

Extensive VPL: the ability to learn to
produce new vocalizations is exten-
sive and adult vocalizations of species
with extensive VPL are usually
imitatively learned from an external
source. Note that different vocaliza-
tions (song, calls) can differ in the
degree of VPL.

Oobligatory VPL: VPL is obligatory in
species that cannot acquire their
species-typical sound repertoire in
the absence of an external source.

Limited vocal learning

High vocal learning

2012), bottlenose dolphins (Lilly, 1965), a male harbor
seal (Ralls, Fiorelli, & Gish, 1985), and a male beluga
whale (Ridgway, Carder, Jeffries, & Todd, 2012). Het-
erospecific imitation was described in a young Risso’s
dolphin cross-fostered with bottlenose dolphins
(Favaro et al., 2016), a juvenile free-ranging orca sepa-
rated from its natal group that imitated the barks of sea
lions (Foote et al., 2006), and a single African elephant
housed with Asian elephants (Poole, Tyack, & Stoeger-
Horwath, 2005). Cross-species VPL has also been noted
in children deprived of human contact but fortunately,
examples are few (Bettelheim, 1959; Ogburn, 1959).
In contrast, auditory comprehension learning is wide-
spread among animals (Seyfarth & Cheney, 2010; Pet-
kov & Jarvis, 2012). For example, dogs can learn to
respond to the sound sit by sitting down (Jarvis, 2004;
Kaminski, Call, & Fisher, 2004), but they cannot learn

to produce the sound sit. VUL is also not uncommon.
Some animals learn which vocalizations to use when
faced with particular types of predators (Blumstein,
1999; Seyfarth & Cheney, 2003; Scarantino & Clay,
2015). For example, vervet monkeys utter different types
of alarm calls for different predators, and conspecifics
respond with the appropriate avoidance behavior. Juve-
niles need not learn how to produce these alarm calls
but they must learn when to use them (Seyfarth, Cheney,
& Marler, 1980a, 1980b). Rhesus macaques can be
trained to produce specific calls in response to specific
visual stimuli (Hage, Gavrilov, & Nieder, 2013; Hage &
Nieder, 2013) and walruses in response to hand gestures
(Schusterman & Reichmuth, 2008). The fact that through
VUL such species can be taught to utter particular
vocalizations to request particular items (Pepperberg,
1981; Richards, 1986) suggests that at least some
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animals make the connection between arbitrary sounds
and objects (and in the case of Alex the parrot, among
sounds and the shape, color, or material of objects; Pep-
perberg, 2010). Given that mapping of arbitrary sound
to meaning is a prerequisite for the semanticity of lan-
guage, claims about the unsuitability of animal commu-
nication to inform domains of language besides speech
should be reconsidered (Berwick, Okanoya, Beckers, &
Bolhuis, 2011; Mozzi et al., 2016).

Traditionally, VPL has been discussed in a binary
way; some species are capable of VPL (e.g., humans and
songbirds) and others are not (e.g., monkeys and mice).
However, work showing modifications of vocalizations
in species previously considered incapable of VPL has
led to the continuum hypothesis of VPL (Arriaga & Jar-
vis, 2013; Petkov & Jarvis, 2012). In this framework, VPL
isnota dichotomous trait but a continuum (figure 46.1),
ranging from subtle modifications of vocalizations in
mice (Arriaga, Zhou, & Jarvis, 2012), goats (Briefer &
McElligott, 2012), and chimpanzees (Watson et al.,
2015); to social influences on repertoire maturation in
bats (Prat, Taub, & Yovel, 2015) and marmosets
(Gultekin & Hage, 2017; Takahashi et al., 2015; Taka-
hashi, Liao, & Ghazanfar, 2017); to full imitative acquisi-
tion of communication sounds in many songbirds and
speech in humans (Doupe & Kuhl, 1999). Species capa-
ble of VPL do not always use it, it can be facultative
(Hammerschmidt et al., 2012). For instance, laboratory
mice can acquire normal song without external input
(Hammerschmidt et al., 2012; Mahrt, Perkel, Tong,
Rubel, & Portfors, 2013), but when available, external
input can lead to modified song (Arriaga et al., 2012).

In the context of the continuum theory, it is notewor-
thy that among the thousands of species of songbirds
there is a range of how much of the song is learned from
an external auditory source (often an adult “tutor”) and
how much of the song is internally represented
(“innate”). Humans and many songbirds develop abnor-
mal vocal communication when deprived of external
input (Fromkin, Krashen, Curtiss, Rigler, & Rigler,
1974; Price, 1979; Williams, Kilander, & Sotanski, 1993),
making VPL obligatory for developing species-typical
communication sounds. However, some songbirds can
develop normal sounding song without exposure to
song models. As long as they can hear themselves they
use this to guide their own vocalizations toward an
internal model. Examples are European sedge warblers
(Leitner, Nicholson, Leisler, DeVoogd, & Catchpole,
2002), gray catbirds (Kroodsma, Houlihan, Fallon, &
Wells, 1997), and chipping sparrows (Liu & Nottebohm,
2007). The different strengths of internal predisposi-
tions toward species-typical vocalizations are often only
uncovered in the absence of the normally occurring
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external, thatis, auditory, input (Hammerschmidtetal.,
2012; Mets & Brainard, 2018). For instance, Fehér, Wang,
Saar, Mitra, and Tchernichovski (2009) found that
zebra finches, which typically copy their tutor’s song
with high fidelity, do not faithfully copy experimentally
induced “bad” zebra finch songs. Instead, they seem to
be internally biased toward species-typical song features
and improve the “bad” tutor model toward more
species-typical song features.

In summary, the ability to modify communicative
vocalizations in response to auditory feedback occurs on
a continuum; on one end are species that communicate
with sounds that mostly have been imitatively learned
from external models (hereafter extensive VPL). At the
other end are species that can develop their sound rep-
ertoire without reference to an external model, but those
sounds can still be modified in limited ways (hereafter
limited VPL). Importantly, both extensive and limited
VPL require auditory feedback, whereas changes to
vocalizations through arousal do not (Arriaga & Jarvis,
2013; Janik & Slater, 1997; Konishi, 1985; Petkov & Jarvis,
2012).

1.2. OCCURRENCE OF VOoCAL PRODUCTION LEARNING IN
BIrDs AND MAaMMALS Extensive VPL is widespread in
3 of the 42 avian orders (Kroodsma, 1982; figure 46.2A,
table 46.2) and 5 of the 28 mammalian orders men-
tioned earlier (figure 46.2B, table 46.3). Among the
three avian orders, oscine songbirds are the most
numerous, with more than 4,000 species, followed by
~300 species each of parrots and hummingbirds, of the
over 10,500 species of birds. VPL in songbirds has been
studied in more detail in songbirds (Catchpole & Slater,
1995; Kroodsma & Miller, 1996) than in parrots (Fara-
baugh, Linzenbold, & Dooling, 1994; Pepperberg,
2010) or hummingbirds (Baptista & Schuchmann,
1990; Ferreira, Smulders, Sameshima, Mello, & Jarvis,
2006; Gahr, 2000; Gaunt, Baptista, Sanchez, & Hernan-
dez, 1994). Songbirds’ close relatives, the suboscines,
are generally regarded as not capable of VPL
(Kroodsma, 1989; Kroodsma & Konishi, 1991), but bell-
birds are (Kroodsma et al., 2013; Saranathan, Hamil-
ton, Powell, Kroodsma, & Prum, 2007). Experimentally
demonstrated absence of extensive VPL has also been
reported for several nonpasserine birds such as domes-
tic chickens (Konishi, 1963), ring doves (Nottebohm &
Nottebohm, 1971), barn owls, and gulls (Gahr, 2000);
these species can develop normal vocalizations without
auditory feedback (Gahr, 2000; Jarvis; 2004; Petkov &
Jarvis, 2012), but it is possible that more detailed analy-
sis would reveal limited VPL. Although most avian
orders have not been analyzed for the absence or pres-
ence of extensive VPL in detail so far, there are no
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FiGure 46.1 Different forms of VPL are arranged on a continuum of ability. Basic forms of VPL, such as social influences
on repertoire maturation or subtle modifications of innate vocalizations over a long time period, constitute one end of the
continuum, while complex forms of VPL, such as the imitation of referential signals, constitute the other end. Three
domains of vocal production learning (respiratory, phonatory, and filter learning), their association with the sound produc-
ing apparatus, and the resulting signal characteristics are depicted as well. Sketches provide graphic references to avian and

mammalian vocal production learners (on the order level).

known obvious vocal mimics such as songbirds and
parrots.

Among mammals, VPL of varying degrees has been
described in multiple species of cetaceans (Janik,
2014), pinnipeds (e.g., harbor seal: Ralls, Fiorelli, &
Gish, 1985; walrus: Schusterman & Reichmuth, 2008),
and bats (Knornschild, 2014; Prat, Azoulay, Dor, &
Yovel, 2017; Prat et al., 2015). Limited VPL exists in
three mammalian orders: even-toed ungulates (Briefer
& McElligott, 2012); nonhuman primates (chimpan-
zees: Watson et al., 2015; common marmosets: Gultekin
& Hage, 2017; Takahashi et al., 2015; Takahashi et al.,
2017; pygmy marmosets: Snowdon & Elowson, 1999,
but also see Fischer, Wheeler, & Higham, 2015; Mahrt
et al.,, 2013), and murids (Arriaga et al., 2012, but see
Hammerschmidt et al., 2012). Concerning the capacity
for VPL in mice, it is conceivable that VPL plays a big-
ger role in wild mice than in inbred laboratory mice
for lack of sexual selection pressure in the latter (Chal-
fin et al., 2014; von Merten, Hoier, Pfeifle, & Tautz,
2014).

1.3. DomaINs oF VocAL PropucTiON THAT CAN BE
SHAPED BY LEARNING Vocalizations are defined by
temporal and spectral parameters, among them dura-
tion, pitch, timbre, and the order in which sound ele-
ments are produced. Those parameters are shaped by
different components of the body’s sound production
apparatus (Fitch, 2006; Kriengwatana & Beckers, chap-
ter 48 of this volume) and their neural control by the
brain (Arriaga & Jarvis, 2013; Jurgens, 2009; Mackevi-
cius & Fee, 2017; Petkov & Jarvis 2012). Because the
development and function of this system involve the
concerted activity of many genes, we will point out the
parts of the sound production system associated with
different domains of VPL (Janik & Slater, 1997, 2000;
figure 46.1).

The respiratory domain of vocal production is associ-
ated with the lungs and shapes the duration, interval,
and amplitude of vocalizations. The phonatory domain
of vocal production is associated with the larynx in
mammals and the syrinx in birds, the sound source
that shapes the pitch and some other acoustic features
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of vocalizations. The filter domain of vocal production
(also called supralaryngeal/-syringeal articulatory sys-
tem) is associated with the vocal tract and shapes the
dispersion and transition of formants in vocalizations.
As vocal tract resonances, formants are concentrations
of energy at certain frequencies and thus shape the
spectrum of a vocalization. Formants constitute the
primary phonetic cue in speech (Lieberman & Blum-
stein, 1988) and animals can perceive them in con- and
heterospecific vocalizations (Fitch, 1997; Fitch & Kel-
ley, 2000; Ohms, Escudero, Lammers, & ten Cate, 2012;
Kriengwatana & Beckers, chapter 48 of this volume;
Townsend & Manser, 2011). Changing temporal char-
acteristics (duration, interval) is deemed to be easier
than changing spectral parameters (pitch, formants),
which is why the respiratory domain of VPL is consid-
ered to be less cognitively demanding than the phona-
tory or filter domain of VPL (Boughman & Moss, 2003;
Janik & Slater, 1997, 2000). However, these three
domains influence one another; rapid amplitude mod-
ulations by the respiratory domain, for instance, cause
additional harmonics in a vocalization and therefore
interact also with the phonatory domain (Fitch, 2006;
Fitch, Neubauer, & Herzel, 2002; Wilden, Herzel,
Peters, & Tembrock, 1998). The sequences in which the
individual vocalization syllables/calls are produced are
thought to be controlled by pattern generators in the
brain (Mackevicius & Fee, 2017). Complex vocaliza-
tions require sophisticated coordination between respi-
ratory, laryngeal/syringeal, and articulatory muscles,
and thus involve all domains of production (Beckers,
2011; Fitch, 2000, 2006; Janik & Slater, 2000).

1.4. DIVERSITY IN DEVELOPMENT OF VOCAL LEARNING
STRATEGIES The development of extensive VPL has
been studied in much greater depth in songbirds and
humans than in any other species capable of VPL
(Brainard & Doupe, 2002; Catchpole & Slater, 1995;
Konishi, 1985; Kroodsma & Miller, 1996). Like human
infants, the young of many songbirds listen to conspe-
cific vocalizations and memorize them (sensory or per-
ception phase) before they start imitating them during
a babbling phase (sensorimotor or production phase
(Brainard & Doupe, 2002; Doupe & Kuhl, 1999; Wil-
brecht & Nottebohm, 2003). In songbirds, the initial
rehearsal periods (subsong and plastic song) can com-
mence weeks or months after the sensory phase, depend-
ing on the species. To fully master adult song, different
species need different amounts of time, from a few
months to more than a year. In some species, for exam-
ple, zebra finches, the sensory phase, and the sensory-
motor phase overlap completely (Roper & Zann, 2006;

76884_10841_ch03_1P.indd 669

Slater, Eales, & Clayton, 1988). Like humans, some avian
species are capable of extensive VPL throughout their
lives, for example, canaries (Nottebohm, Nottebohm, &
Crane, 1986), starlings (Mountjoy & Lemon, 1995), and
many parrots (Bradbury & Balsby, 2016; Wright & Dah-
lin, 2017), whereas VPL only occurs in a sensitive/criti-
cal period during development in other species, for
example, the white-crowned sparrow (Marler, 1970),
zebra finch (Slater et al., 1988), and song sparrow
(Beecher, 2017). Diversity also exists in song repertoire
size (small vs. large), the accuracy of learning (precise
imitation vs. improvisation), the importance of early
exposure (development of species-typical song only
after early exposure vs. even when raised in isolation),
and learning flexibility (imitation within vs. outside
species-specific constraints). This diversity of song-
learning strategies, both within the same species (e.g.,
zebra finches: Liu, Gardner, & Nottebohm, 2004) and
between different species (Beecher & Brenowitz, 2005;
Brenowitz & Beecher, 2005) is an opportunity to under-
stand the evolution and mechanisms of VPL and spo-
ken language. For different aspects of language
learning, there is likely to be a suitable songbird species
to study.

1.5. SELECTION FOR VoOcCAL LEARNING Avian and
mammalian vocalizations are under strong sexual and
natural selection, depending on the vocalization types
and the sex involved (Catchpole & Slater, 1995; Garland
et al., 2011; Gaunt et al., 1994; Knornschild, 2014; Price,
2015; Sanvito, Galimberti, & Miller, 2007; Sjare, Stirling,
& Spencer, 2003). Sexually selected songs and calls facil-
itate mate attraction and rival deterrence, functioning
as advertisement and territorial signals, respectively.
VPL can serve to increase song/call complexity, song/
call type sharing with neighbors, and local dialects
(Janik & Slater, 1997, 2000).

The function of learned vocalizations under natural
selection pressures often concerns recognition pro-
cesses on the individual, group, or population level and
facilitates pair/group cohesion, alliance maintenance,
cooperation, and mother-offspring reunion (Bradbury
& Balsby, 2016; Boughman, 1998; Farabaugh etal., 1994;
Janik & Slater, 1997, 2000; King, Sayigh, Wells, Fellner,
& Janik, 2013; Nowicki, 1989). Whether VPL in humans
is still relevant to sexual and natural selection is a fasci-
nating question from a behavioral ecologist perspective
(Lange, Henninghausen, Bril, & Schwab, 2016; Miller,
2013). Behavioral selection for the VPL trait is expected
to be associated with molecular selection of genetic
changes required for the trait and is the subject of
section 2.
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2. Comparative Neurogenelics

Many misconceptions exist about the relationship
among genes, brains, and language. One of those con-
cerns the assumption that because human language is
unique, the genes coding for the proteins required to
build a “language-ready” brain should also exist solely in
humans, and that such brain regions are also unique in
humans. The evidence to date has not supported this
view. Novel traits can evolve even when the coding
sequence of genes remains the same but their regulation
changes during the course of evolution (Carroll, 2005;
Romero, Ruvinsky, & Gilad, 2012). As a result, the pro-
tein may be the same, but where and when itis expressed,
and how much there is of it, can vary between species
and result in different phenotypes. In addition, many
genes that already existed in the primate lineage before
humans emerged are extantin humans. Slightly changed
versions of genes can lead to altered cellular functions
(Castellano et al., 2014). Some of these alterations might
also have contributed toward new, human-specific traits.
Finally, a small number of genes are truly human unique,
for instance as a result of incomplete duplication and
fusion with another gene (Dougherty et al., 2017).
Together, these changes probably synergized in develop-
ing speech and language in the hominin lineage.

Many of the aspects of language mentioned have to
come together for it to function. Speech requires the
concerted action of respiration, mouth and tongue
muscles, and the language regions of the brain, all of
which are affected by the activity of genes. However,
many of those genes are also involved in processes and
behaviors unrelated to language. The same genes that
are necessary for development of the brain circuits
involved in language perception or production can also
contribute to the development of brain regions that pro-
cess sounds other than language or that control move-
ments of the mouth required for eating. As a result,
there are likely many genes required for language, and
none thus far have been found to be exclusively associ-
ated with it (see section 2.3.2). Of particular interest are
genes required for the specialized neural mechanisms
that subserve our elaborate form of vocal communica-
tion, allowing us to externalize our thoughts through
sound. To understand the neurogenetics behind lan-
guage, we must also understand brain mechanisms of
language.

2.1. BRAIN PATHWAYS FOR VOCAL LEARNING AND SPO-
KEN LANGUAGE Consistent with the widespread audi-
tory comprehension learning, all vertebrate species
examined to date have an auditory pathway that reaches
the forebrain and is thought to be involved in auditory

comprehension learning. This pathway begins at the
sensory hair cells inside the ear and connects through
the brain stem to the forebrain where it forms a network
with the auditory cortex and other connected regions
(figure 46.3).

Species with extensive VPL possess a specialized fore-
brain pathway that controls the learning and produc-
tion of vocalizations (Jarvis, 2004; Petkov & Jarvis,
2012). This VPL pathway has been studied in songbirds
and humans. It consists of an anterior component
through the frontal cortex, basal ganglia, and thalamus
that is required for vocal imitation, and a posterior
motor cortex component that is required to produce
learned vocalizations (Jurgens, 2002, 2009; Mackevicius
& Fee, 2017; Scharff & Nottebohm, 1991; figure 46.3).
The VPL pathway is embedded within a motor pathway
that controls nonvocal behaviors, and both VPL and
motor pathways receive auditory and other sensory input
(Belyk & Brown, 2017; Chakraborty & Jarvis, 2015;
Feenders et al., 2008). One specialized feature of the
posterior component of the VPL pathway is that cortical
neurons in layer 5 and their equivalent neurons in the
robust nucleus of the arcopallium (RA) in songbirds
project directly onto brain stem vocal motor neurons
(figure 46.3). Direct projections from the cortex to brain
stem motor neurons correlate with greater fine motor
control of the associated muscles that might be neces-
sary for human speech and learned birdsong.

In most species with limited or no VPL, a VPL path-
way has not been found, with the possible exception of
nonhuman primates, which have been proposed to
have a laryngeal motor cortex (LMC) and rudimentary
Broca’s area (Jurgens, 2009; Simonyan, 2014). Jirgens
(2002, 2009) proposed that the main difference
between humans and nonhuman primates is the direct
human projection from LMC to the vocal motor neu-
rons, as opposed to the indirect connection in non-
human primates. In contrast, Rilling and colleagues
considered the main difference to be the direct projec-
tion from the higher auditory cortex (Wernicke’s area)
to speech-language cortex (Broca’s area), which is either
indirect or absent in monkeys or weak in great apes
(Rilling, 2014; Rilling et al., 2008). Since mice also have
a putative LMC region that directly projects, although
very sparsely, to brain stem vocal motor neurons, and it
receives a direct robust projection from secondary audi-
tory cortex (Arriaga et al., 2012), it seems that this type
of connectivity is not a hallmark exclusively associated
with extensive VPL. Like in humans and song-learning
birds, the putative LMC in mice consists of motor and
premotor parts and forms a loop through the basal gan-
glia and thalamus. However, unlike humans and song-
learning birds, in the mouse, the direct projection from
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A SONGBIRD B HUMAN
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FIGURE 46.3 Brain pathways for vocal learning and spoken language in songbirds and humans. (A) Drawing of a songbird
brain section showing connectivity of posterior (a vocal nucleus [HVC], RA, avalanche [Av], interfacial nucleus of the
nidopallium [NIf]) and anterior (MAN, Area X, oval nucleus of the anterior mesopallium [MO]) song pathways. (B) Drawing
of a human brain section showing proposed vocal pathway connectivity including LMC and part of anterior striatum (ASt)
that shows convergence with songbird RA and Area X (Pfenning et al., 2014). Solid black arrows indicate the connections
and regions of the posterior vocal motor pathway; white arrows indicate the connections and regions of the anterior vocal
pathway. Dashed black arrows indicate the connections between the two pathways. Red arrows indicate the dense direct
projection found only in vocal learners, from vocal motor cortex regions to brain stem vocal motor neurons. Am = nucleus
ambiguous; aT = anterior thalamus speech area; DLM = dorsolateral nucleus of the thalamus; DM = dorsal medial nucleus of
the midbrain; ; PAG = peri-aqueductal gray; v=ventricle space; XII = 12th vocal motor neurons in birds. Figure from Wang

etal. (2015), modified from Arriaga et al. (2012); Petkov and Jarvis (2012); Pfenning et al. (2014).

LMC to vocal motor neurons is very sparse and lacks the
specialized gene regulation found in language-relevant
human brain regions and their counterparts in song-
learning birds (discussed further in section 2.4). More-
over, the mouse LMC modulates vocalizations (Arriaga
et al,, 2012), but it is not required for their production
(Arriaga etal., 2012; Hammerschmidt, Whelan, Eichele,
& Fischer, 2015). These findings in primates, mice, and
similar findings in a suboscine bird species (Liu, Wada,
Jarvis, & Nottebohm, 2013) are consistent with the con-
tinuum hypothesis of VPL.

A synthesis of the anatomical and behavioral findings
along a continuum of no VPL to extensive VPL is pro-
vided by the motor theory of vocal learning origin
(Feenders et al., 2008). This theory proposes that in the
common ancestor of all vertebrates, a forebrain pathway
mediating general motor learning was present but that
VPL was absent. The general motor learning pathway
was duplicated and the new pathway, still embedded in
the evolutionary older one, formed connections with the
brain stem vocal motor system, facilitating limited VPL.
In extensive VPLers, the new circuit segregated anatomi-
cally and functionally from the general motor learning
pathway became more specialized and developed robust
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direct projections controlling the brain stem vocal motor
and respiratory systems. In parrots and humans, a sec-
ond duplication event of the VPL circuit generated two
parallel VPL circuits allowing for greater VPL complex-
ity (Chakraborty & Jarvis, 2015). Direct input from the
auditory system is proposed to have been already present
in the general motor learning pathway before extensive
VPL evolved, and the VPL pathway inherited that input,
allowing for auditory-vocal motor integration. The trait
of VPL and its anatomical underpinnings might be evo-
lutionarily quite plastic, leading to the development and
the disappearance of VPL multiple times. For instance,
in the majority of songbirds VPL exists in both sexes.
However, in songbird species where only males sing, like
zebra finches, females apparently lost extensive VPL
(Odom, Hall, Riebel, Omland, & Langmore, 2014). In
line with this notion, female zebra finches retain a vesti-
gial VPL circuit that can be activated by hormone treat-
ments during development, leading to the development
of a VPL pathway and extensive VPL ability (Gurney,
1982). It is within this context of a continuum of neural
circuitry and behavior predating speech and the anat-
omy underlying it, that we discuss how we look for the
associated genes.
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2.2. GENE HUNTING STRATEGIES There are two main
ways to identify genes associated with vocal learning
and language (see also chapter 41 by Vernes in this vol-
ume). First, by searching for the mutation within an
individual gene associated with a particular disorder
affecting language. Such monogenic disorders are rare.
Usually, gene networks, not a single gene, underlie com-
plex traits including language. However, in some cases,
a mutation in a single gene can have serious conse-
quences for the production and comprehension of
speech, as is the case for the FOXP2 gene,' which we will
discuss in section 2.3. In the second approach, one cor-
relates variation in the language faculty with the varia-
tion that occurs in genes. Individuals’ genomes differ at
millions of sites by single nucleotides (SNPs). The total-
ity of those SNP variations is an individual’s genetic
fingerprint. One can search for associations between
specific SNPs and a particular language phenotype, be
it an impairment or a talent (see Deriziotis & Fisher,
2017, and chapter 39 by Luciano & Bates in this volume,
for more details on methods and findings). This
approach can be extended by probing for genes required
for specific components of language, such as VPL. The
diversity of VPL types among species is a great resource
to identify genes involved in different aspects of VPL.
Next we discuss some of the most informative discover-
ies thus far, a single gene approach and multigenic
approaches comparing species that exhibit obligate
VPL with those that do not.

2.3. Tue FOXP GeENE FAMILY IN HUMANS AND NONHU-
MAN ANIMALS

2.3.1. Core phenotype of patients with FOXP2 mutations The
first gene associated specifically (but not exclusively)
with speech was FOXP2 (Lai, Fisher, Hurst, Vargha-
Khadem, & Monaco, 2001). FOXP2 codes for a “tran-
scription factor,” that is, a protein that regulates the
transcription of many other genes, called (arget genes
(Spiteri et al., 2007). Mutations in FOXP2 cause Devel-
opmental Verbal Dyspraxia (also referred to as Child-
hood Apraxia of Speech), a severe speech disorder
(Vargha-Khadem, Gadian, Copp, & Mishkin, 2005).
Patients perform poorly in tests of productive aspects of
language. Perceptive aspects of language and learning
of other motor tasks are less affected (Morgan, Fisher,
Scheffer, & Hildebrand, 2017). FOXP2 mutations lead to
altered structure and function of corticostriatal and cor-
ticocerebellar circuits (Liégeois et al., 2016).

2.3.2. FOXP is evolutionary conserved The association of
FOXP2 with speech led to speculations that it might be
“the language gene,” unique to humans and the magic
bullet to understand language evolution. However,

spectfically associated with some aspects of language does not
need to translate to unique to humans. In fact, the coding
sequence is highly conserved among most vertebrates
(Li, Wang, Rossiter, Jones, & Zhang, 2007; Scharff &
Haesler, 2005; Zhang, Webb, & Podlaha, 2002). In bats
(Li et al.,, 2007) and teleost fish (Song, Wang, & Tang,
2013), the FoxP2 sequences are also conserved but
diverged substantially more during the course of evolu-
tion. Importantly, FoxP2 is expressed in many brain
regions that are relevant for speech in humans and for
VPL in songbirds. Yet, FoxP2 expression is not limited to
those neuron populations but it is also expressed in neu-
rons relevant for other behaviors (Geerling et al., 2016;
Haesler et al., 2004; Teramitsu, Kudo, London, Geshwind,
& White, 2004; Verstegen, Vanderhorst, Gray, Zeidel, &
Geerling, 2017). Its expression has been mapped in
human embryos (Lai, Gerrelli, Monaco, Fisher, & Copp,
2003; Teramitsu et al.,, 2004), mice (Ferland, Cherry,
Preware, Morrisey, & Walsh, 2003), songbirds (Haesler
et al.,, 2004; Vicario, Mendoza, Abellan, Scharff, &
Medina, 2017), fish (Bonkowsky & Chien, 2005), bats
(Rodenas-Cuadrado et al., 2018), and even in drosophila
and honeybees (DasGupta, Ferreira, & Miesenbock,
2014; Lawton, Wassmer & Deitcher, 2014; Schatton &
Scharff, 2017). The fact that FoxP2 is expressed in simi-
lar brain circuits in many vertebrates suggests that this
transcription factor fulfills important and potentially
similar functions across a large variety of animals (Wohl-
gemuth, Adam, & Scharff, 2014). FoxP2 expression in
invertebrates and vertebrates commences during
embryogenesis and marks specific neuron populations,
consistent with its demonstrated role in neuronal differ-
entiation (Chiu et al., 2014).

2.3.3. FoxP2 manipulations in animal models affect brain
development and vocalizations In the developing mouse
brain, experimental manipulations of Foxp2 cause
abnormal cortical neurogenesis (Tsui, Vessey, Tomita,
Kaplan, & Miller, 2013), cerebellar foliation (Groszer
et al., 2008), and spinal cord motor neuron delamina-
tion (Rousso et al., 2012). FoxP2 continues to function
in the adult nervous system, shown by gene function
studies of FoxP2 in songbirds and mice (Adam, Men-
doza, Kobalz, Wohlgemuth, & Scharff, 2016; Castellucci,
McGinley, & McCormick, 2016; Chabout et al., 2016;
Fisher & Scharff, 2009; Gaub, Fisher, & Ehret, 2016;
Haesler et al., 2007; Heston & White, 2015; Murugan,
Harward, Schartf, & Mooney, 2013; Schreiweis et al.,
2014). In zebra finches, during the song-learning phase,
both too little and too much FoxP2 in the striatal song
nucleus Area X, an anterior forebrain component of the
VPL pathway required for song learning (figure 46.3),
prevents birds from developing normal song (Haesler
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etal., 2007; Murugan et al., 2013; Heston & White, 2015).
After virus-mediated downregulation in Area X, juve-
niles developed abnormal song bearing phenotypic par-
allels to speech features of patients with FOXP2
mutations (Haesler et al., 2007), namely a smaller num-
ber of elements, shorter phrases, and inaccurate, vari-
able delivery (Watkins, Dronkers, & Vargha-Khadem,
2002). In mice, a heterozygous Foxp2 missense mutation
(Foxp2-R552H *7) that is equivalent to a mutation that
causes speech impairments in humans affects their abil-
ity to produce complex sequences of sound units when
courting a female, but does not affect simple sequences
or their acoustic structure (Castellucci et al., 2016;
Chabout et al., 2016; Gaub et al., 2016). Furthermore, the
layer 5 LMC neurons in these mice are not properly
coalesced in the LMC location (Chabout et al., 2016).

Comparing the findings in zebra finches and lab
mice with those of human patients are intriguing. In
humans carrying a heterozygous FOXP2-R553H point
mutation, the speech deficit affects both the acoustic
features of individual speech sounds and the sequenc-
ing of sound units that make up multisyllable words
(Watkins et al., 2002). In zebra finches with reduced
levels of FoxP2 in Area X, the acoustic structure of indi-
vidual song elements was more impaired than their
sequential delivery (Haesler et al., 2007). In Foxp2-
R552H */~ mice, the acoustic features of the individual
sound units are not affected but complex sequencing
is. Thus, in species with extensive VPL, humans, and
songbirds, it appears that FoxP2 influences circuit con-
trol of the acoustic structure of vocalizations, whereas
in species with no or limited VPL, it does not play a role
in acoustic structure.

2.3.4. FoxP2 affects striatal function in humans and animal
models 'When comparing these results one should bear
in mind that in mice and humans, the FoxP2 mutation
was in the genome, impacting all cells in the body that
express the gene. In contrast, in songbirds, the experi-
mental manipulations were limited to Area X, the brain
region important for imitative song learning, thus
directly linking the relevance of FoxP for VPL to striatal
activity. Follow-up studies showed that the FoxP2 down-
regulation in Area X alters the spine density of the stria-
tal spiny neurons and glutamatergic transmission,
impacting Dopamine 1 Receptor (D1R)-mediated mod-
ulation of signal propagation through Area X (Adam
et al, 2016; Murugan et al, 2013; Schulz, Haesler,
Scharff, & Rochefort, 2010). Concomitantly, DIR and
DARPP-32 protein levels in Area X were reduced. In
addition, social context-dependent song variability and
the associated context-dependent neural variability in
the cortical nucleus (lateral magnocellular nucleus of
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the anterior nidopallium or LMAN) that projects to
Area X (figure 46.3) were abolished. Further support for
the relevance of FoxP2 in striatal function is provided by
in vivo electrophysiological recordings in the striatum of
awake-behaving mice that were genetically modified to
carry the same mutation occurring in human FOXP2
patients (French et al., 2012). Likewise, the striatum in
FOXP2 patients is structurally and functionally affected
(Liégeois et al., 2003).

2.3.5. FoxP2 levels can be dynamically regulated by behav-
ior FoxP2 is transiently upregulated in Area X of
young zebra finches during the developmental song-
learning period and of adult canaries during seasonal
song plasticity (Haesler et al., 2004; Teramitsu, Poopata-
napong, Torrisi, & White, 2010; Teramitsu & White,
2006). In addition, singing behavior in young and adult
zebra finches can acutely downregulate FoxP2 expres-
sion in Area X (Miller et al., 2008; Teramitsu et al., 2010;
Thompson et al., 2013); intriguingly, in budgerigars (a
parrot), FoxP2 is constitutively low in the region equiva-
lent to Area X and does not decrease further with pro-
duction of learned calls (learned song was not tested)
(Hara etal., 2015), possibly related to the life-long vocal
plasticity in budgerigars (Farabaugh et al., 1994; Hile,
Plummer, & Striedter, 2000). In mice, changes in Foxp2
expression after vocalizing were not addressed, but
FoxP2 is upregulated by sound exposure in the auditory
thalamic (medial geniculate) nucleus (Horng et al.,
2009).

2.3.6. FoxP2 modulates target genes relevant for synaptic
Junction Hundreds of FoxP2 target genes were discov-
ered in experiments with human fetal brain, human
neuron-like cells, and developing mouse brain (Vernes
etal., 2007; Vernes etal., 2008; Vernes et al., 2011; Vernes,
chapter 41 of this volume). The expression of two of
those target genes is positively correlated with FoxP2
expression levels in zebra finch Area X: the very low-
density lipoprotein receptor (VLDLR), encoding one of
the reelin receptors, and Contactin-associated protein-
like 2 (CNTNAP2), encoding a neurexin, both are impor-
tant for synaptic function (Rodenas-Cuadrado, Ho, &
Vernes, 2014). Zebra finch FoxP2 binds to the promoters
of VLDLR and CNTNAP2 (Adam et al., 2016, 2017) and
experimental downregulation of FoxP2 in Area X results
in reduced expression of VLDLR and CNTNAP2. Fur-
ther findings raise the possibility that the regulatory
relationship between FoxP2 and VLDLR guides struc-
tural plasticity toward the subset of FoxP2-positive
medium spiny neurons of Area X in a singing-dependent
manner via the reelin pathway (Adam et al., 2016, 2017).
This highlights the need to think about the regulation
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of FoxP2 (Shi et al., 2018) and its targets in an activity-
dependent and cell-specific manner associated with
moment-to-moment changes in behavior (Adam et al,,
2016, 2017; Becker, Devanna, Fisher, & Vernes, 2018;
Panaitof, Abrahams, Dong, Geschwind, & White, 2010).

2.3.7. FoxP2 interacts with FoxPl and FoxP4 FoxP2 and
its paralogs, FoxP1 and FoxP4, are co-expressed in Area
X, with most medium spiny neurons expressing all three
FoxPs, but all other combinations also exist, with differ-
ent frequencies (Mendoza & Scharff, 2017). In human
cell culture experiments, the combinatorial protein-
protein interaction among FoxPl, FoxP2, and FoxP4
regulates the transcription of target genes differentially
(Sin, Li, & Crawford, 2015). Likewise, in zebra finches,
the three FoxPs regulate the CNTNAP2 promoter dif-
ferentially: FoxP1 activates it, FoxP2 represses it, and
FoxP4 neither binds to nor regulates it (Mendoza &
Scharff, 2017). Together, these results emphasize the
functional importance of the protein-protein interac-
tions among the FoxP family members in regulating
their target genes and predict an involvement of FoxP1
and FoxP4 in speech and language. Indeed, FOXP1
mutations also affect speech and language, in addition
to a variety of other clinical symptoms (Meerschaut
et al., 2017; Siper et al., 2017). A FOXP4 mutation has
only been reported in one patient that was developmen-
tally delayed and had larynx problems (Charng et al.,
2016).

2.3.8. FoxPl and FoxP2 expression levels can be sex-
specific  FOXP2 protein levels in the left-hemispheric
Brodmann’s area 44 (part of Broca’s area) of four-year-
old girls (detected by Western blot from postmortem
tissue) are higher than those of age-matched boys (Bow-
ers, Perez-Pouchoulen, Edwards, & McCarthy, 2013).
This leads to the question of whether the FOXP2 haplo-
insufficiency (e.g., loss of 50% of functioning protein) in
humans with FOXP2 mutations might affect males more
than females. However, a phenotypic difference between
the sexes in patients with FOXP2 mutations has not
been reported so far (Watkins et al., 2002). Sex differ-
ences in FoxP1 or FoxP2 expression in Area X were not
noted in budgerigars or strawberry finch songbirds
(Amandava amandava) (Haesler et al. 2004; Hara et al.,
2015), whereas the absolute density of FoxP2 expression
in Area X neurons was higher in male than in female
Black-Capped Chickadees (Poecile atricapillus), which is
consistent with males being the more vocal sex in this
species (Phillmore, MacGillivray, Wilson, & Martin,
2015). Yet, a sex difference in expression levels also exists
in multiple brain regions of rat pups, albeit in the oppo-
site direction from the one reported in humans, with

higher levels in males than females. Moreover, male
pups produce more ultrasound vocalizations when sepa-
rated from their mother than female pups do, and
experimental downregulation of Foxp2 levels in the
males leads to more female-like calling (Bowers et al.,
2013). Very similar findings were found for Foxpl in
mice, linking sexual dimorphic pup separation calls to
cortical and subcortical Foxpl expression levels (Frohlich,
Rafiullah, Schmitt, Abele, & Rappold, 2017). This sug-
gests a mechanistic link between the sex specificity of call
activity and sexually dimorphic Foxp2 expression levels
in rodents (Bowers et al., 2013), with androgens as a
mediator (Bowers, Perez-Pouchoulen, Roby, Ryan, &
McCarthy, 2014; Hamson, Csupity, Gaspar, & Watson,
2009).

2.3.9. FoxP affects behavioral function in fruit flies  During
the transition from invertebrates to vertebrates, a sin-
gle FoxP gene gave rise to the four vertebrate FoxP gene
paralogs, as a result of two postulated genome duplica-
tion events (Santos, Athanasiadis, Leitao, DuPasquier,
& Sucena, 2011; Song, Tang, & Wang, 2016). Given the
similarity of the DNA-binding domain of the single
FoxP gene in Drosophila and the four vertebrate para-
logs prompted studies into the behavioral conse-
quences of FoxP loss of function in fruit flies. Drosophila
mutants (dFoxPS-SZ-3955) have altered levels of the
corresponding messenger RNA compared to wild-type
flies and are incapable of learning to fly away from a
noxious stimulus if only somatosensory cues are avail-
able to them (Mendoza et al., 2014). In a different
study, dFoxPS-SZ-3955 mutants were slower to trans-
late decisions based on different odor concentrations
into a turning-away movement (DasGupta et al., 2014).
A third study using a different mutant found problems
with courtship behavior (Lawton et al., 2014). These
different behavioral phenotypes in FoxP fly mutants
are consistent with the hypothesis that tightly regulated
FoxP protein levels in particular neurons are needed to
translate stored information (e.g., where the body is in
space) into motor programs (Schatton & Scharff 2017).
Whether these are superficial similarities to the behav-
ioral effects of FoxP1 and FoxP2 manipulations in ver-
tebrates or whether they are based on true “deep
homology” of FoxP and its associated molecular mod-
ules requires further scrutiny.

2.3.10. The human version of FOXP2 affects brain develop-
ment and behavior It seems clear from the preceding
summary that FoxP2 was relevant for motor behaviors
including vocal communication well before spoken lan-
guage evolved. But human spoken language only evolved
once. Does the fact that the human FOXP2 sequence
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differs from all other FoxP2 sequences provide a clue to
the particular specialization of human speech and lan-
guage? The human FOXP2 gene differs from other pri-
mates in only two amino acids (Enard et al., 2002) and
one of those also differs from all mammals investigated
(Zhang et al., 2002). The two human amino acid substi-
tutions (T303N, N325S) were apparently subject to posi-
tive selection and became fixed in the human population
after the human split from the chimpanzee lineage. This
led to the notion that T303N and N325S contributed to
the evolution of human language. To address this, the
human-specific amino acids were introduced to the
mouse Foxp2 gene, Foxp2M™ (Enard et al., 2002). Fox-
p2i™ pups produce qualitatively different ultrasonic
calls when separated from their mothers. As adults,
these mice were less exploratory but better at learning
specific labyrinth tasks than their “nonhumanized
Foxp2” siblings. In the brain, the Foxp2'™ had lower
dopamine concentrations and longer dendrites in the
cerebral cortex, thalamus, and striatum and increased
synaptic plasticity (Long Term Depression; LTD) in the
striatal medium spiny neurons (Enard et al., 2009;
Reimers-Kipping, Hevers, Paidbo, & Enard, 2011; Sch-
reiweis et al., 2014). These findings underscore the fact
that even though the human and the mouse FoxP2 pro-
tein differ in only 3 of over 700 amino acids, small
changes have the potential to alter neural development
and brain function for vocalizations and could have pro-
moted human cognitive development during evolution,
for example, enhanced synaptic plasticity and behav-
ioral flexibility.

2.4. GENOME- AND TRANSCRIPTOME-WIDE CHANGES IN
VPLERs If VPL and its contribution to speech is a mul-
tigenic trait, more genes than FOXP2should be discover-
able. This is supported by recent informative findings of
RNA expression of thousands of genes, the transcrip-
tome. Using oligo-microarrays representing the brain
transcriptome revealed that the song nucleus RA in
songbirds and its analog in parrots and hummingbirds
have convergent gene expression specializations with
each other and with the human LMC (Pfenning et al.,
2014; figure 46.3). These gene expression specializations
are not found in birds or nonhuman primates that have
little or no VPL. A gene expression specialization is
where a gene’s RNA or protein product is increased or
decreased relative to the surrounding brain region, in
this case, the adjacent nonvocal avian motor arcopal-
lium or mammalian primary motor cortex. Of a total of
7,000 genes examined, there are ~55 such specialized
genes in RA and the LMC; many of which are related to
neural connectivity and neural development. One of the
candidate genes is SLITI, a ligand for the ROBOI
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receptor, which is important for axon guidance (Pfen-
ning et al., 2014; Wang et al., 2015). Mutations in SLIT1
and ROBOI are associated with language deficits and
autism (Wang et al., 2015). Interestingly, SLITI and
other genes relevant for neural connectivity were down-
regulated in avian RA and human LMC. One idea why
this might be so is that since SLIT1 is a repulsive mole-
cule, high expression in species without VPL may pre-
vent the direct projection from RA/LMC to brain stem
vocal motor neurons typical for VPL from forming
(Wang et al, 2015). This can be tested by experimentally
downregulating SLIT1 in the motor cortex of limited
VPL or upregulating it the cortical RA/LMC of exten-
sive vocal learners. There is precedent for such a possibil-
ity. In the study of another repulsive axon guidance
ligand, PlexinAl, recapitulating its downregulation in
human motor cortex in the mouse brain allowed direct
projections to spinal cord motor neurons to remain after
infant development (Gu et al., 2017).

Brain regions with convergent specialized transcrip-
tome expression are also songbird Area X and a portion
of the anterior human striatum (across the boundary of
the caudate-putamen) that is activated during speech
production (Pfenning etal., 2014; figure 46.3). The over
70 genes identified with specialized expression are over-
represented in neurotransmission and movement disor-
der functions, consistent with the known function of
Area X. These genes include the D2 dopamine receptor
that is important for neurotransmission and synaptic
plasticity in the striatum and ROBOI. The identified
human striatal region overlaps a part of the striatum
that is affected in people with a FOXP2 point mutation
(Belton, Salmond, Watkins, Vargha-Khadem, & Gadian,
2003). Other avian song learning brain regions showed
only weak trends of convergent expression with other
human speech regions (e.g., songbird LMAN and
human Broca’s area), but these also did not have the
immediate surrounding brain regions in birds profiled
(Pfenning et al., 2014). Preliminary experiments profil-
ing all the surrounding brain regions indicate that most
if not all song learning nuclei of song-learning birds
have convergent gene expression specializations with
human spoken-language brain regions (Gedman, Pfen-
ning, Wirthlin, Audet, & Jarvis, 2017).

One explanation, postulated in the motor theory of
vocal learning, for the convergent molecular similari-
ties is that the brain regions surrounding the special-
ized song-learning and spoken-language areas are
homologous and served as a pre-existing substrate out
of which similar brain pathways could evolve(Feenders
et al,, 2008). In this regard, the songbird RA shows an
apparent homologous gene expression profile with
mammalian motor cortex layer 5 neurons; a vocal
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nucleus called HVC, which projects to RA, shows
molecular similarity to layers 2 and 3 (Pfenning et al.,
2014). This finding supports Karten’s 1969 hypothesis,
originally proposed for the auditory and visual corti-
ces, that different pallial populations of the avian brain
are homologous to different cortical layers of the mam-
malian brain (Jarvis et al., 2005; Wang, Brzozowska-
Precht, & Karten, 2010). Interestingly, the auditory
regions of both song-learning birds and humans do not
show as high a level of gene expression specialization
relative to the surrounding sensory cortices, nor do
they show convergent expression. Taken together, these
findings are consistent with known species differences
in the different vocal production learning types. They
indicate that the most anatomically and molecularly
specialized components of the avian song and human
language systems are those involved in song and
spoken-language acquisition and production.

In humans, additional molecular changes have
occurred that affect the brain. This is the case in the
SlittRobo GTPase 2 gene (SRGAP2), which interacts
with the speech relevant ROBOI receptor and modu-
lates its function. In humans, SRGAP2 is partially dupli-
cated, and the duplicated copies act as competitive
inhibitors of the parent gene (Charrier etal., 2012; Den-
nis et al., 2012). Partial inhibition of SRGAP2 and thus
of ROBOI receptor function causes dendrites of corti-
cal neurons in humans to remain in a more immature
state throughout life, similar to the finding of Foxp2hm
mice. The immature state allows for continued higher
levels of learning into adulthood compared to learning
in other species without such duplication. Putting stud-
ies together, one can imagine how the consequences of
specialized expression of SLIT1 and ROBOI, regulated
by FoxP2, in some spoken-language VPL brain regions,
is in turn enhanced by the SRGAP2 duplication in
humans.

The specialized gene regulation in speech brain
regions is presumably controlled by changes in regula-
tory regions of those genes or in the coding sequences
of genes that regulate them. Studies have looked for
genome-wide sequence changes in VPL (Zhang et al.,
2014) as well as in humans with speech disorders (Chen
et al., 2017). Such investigations are subject to high
rates of false positive sequence changes not associated
with the trait, but that are either neutral or associated
with another shared trait. To mitigate these false posi-
tives, multiple pieces of evidence are necessary. In this
regard, noncoding sequences (nucleotide changes)
near some of the genes with specialized expression in
songbirds evolved faster than in non-VPL species
(Zhang et al., 2014). Searching for convergent protein
coding sequences among extensive VPL birds, one

study identified genes previously found to be associ-
ated with speech deficits, including ROBOI, and some
overlap with those specialized in speech brain regions
(Lei et al., 2017).

In a recent sequencing study of 43 families with indi-
viduals that have specific language impairment or dys-
lexia, rare mutations were identified in dozens of genes
(Chen et al., 2017) as well as a common variant (SNP)
(Devanna et al., 2018). Of these, 14 genes had previ-
ously been associated with language/dyslexia deficits
when mutated, including a receptor involved in neuro-
transmission and plasticity (GRIN2B), neurotransmit-
ter release (ERCI), and a urokinase receptor ligand
(SPRX2) involved in promoting synapse formation.
Novel candidates included some present in multiple
affected families or multiple mutations in the same
gene, including genes involved in cellular lipid activity
(STARDY), potassium channels (SCN94), and histone
H3 methyltransferase (KM72D) that modulates gene
regulation of the chromatin. Thus far, none of the
mutations have been studied functionally in nonhu-
man animals to address the mechanism that may cause
the language deficit. When such studies are done, they
will need to consider the type of VPL behavior and
whether the brain pathways examined are specialized
for song and spoken language.

3. Conclusion

In conclusion, studying nonhuman animals has pro-
vided insights into components of human speech and
its evolution at the behavioral, neuroanatomical, and
genetic levels. As expected, the molecular profiles
linked to VPL in nonhuman animals and speech in
humans are related to many genes. The challenges
for the future will be to determine the remaining
molecular players, narrowing down the most impor-
tant ones, and deciphering their mechanisms of
action and their gene networks for spoken language.
This will enable scientists to decipher what is ubiqui-
tous among vocally communicating species, what is
specialized in different abilities of VPL, and what may
be unique to humans. Eventually, this will allow us to
disambiguate between the discrete and continuum
hypothesis of vocal production learning and thereby
spoken language.

NOTE

1. Following standard nomenclature, genes are denoted in
italics, proteins in regular font. Uppercase letters denote
the human version of the gene (i.e., FOXP2), lowercase
the mouse version of the gene (i.e., Foxp2), for all other
species FoxP2is used.
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