Stochastic Point Processes

Martin Nawrot

Oct 13, 2011
1. Introduction

- interval and count random variables
- Bernoulli process
- Poisson process
- renewal process
- nonhomogenous Poisson process
- non-renewal processes
Computational versus Stochastic Models

computational models

- abstract or biophysical models
- deterministic input/output relation

- Type I / Type II models
- Integrate & Fire
- McCulloch Pitts
- ...

Computer simulations translate synaptic inputs into spike output
⇒ spike train

Useful to investigate biophysics and neural networks

stochastic point process models

- abstract mathematical definition
- probabilistic theory (‘randomness’)
- no input/output conversion

Numeric simulation generates random point process realization
⇒ spike train

Useful to make statistical predictions for spike train analysis
A **point** is a discrete event that occurs in continuous time (or space). We regard action potentials as point events ignoring their amplitude and duration.

A **point process** is a mathematical description of a process that generates points in time (or space) according to defined stochastic rules (probability distribution).

Only a *finite number of events* are generated within a *finite time observation interval* (true for neural spike train).

In computational neuroscience point processes are used *to simulate* single neuron activity and *to predict* the statistical measures of spiking activity.
Spike Train Representation

‘ spike train ‘

discrete time series of events
Spike Train Representation

\[t_1, t_2, \ldots, t_n \]

discrete representation (list)

101000010001000000000010100101000000100010100000000001

binary representation (array)
2 basic random variables:

- inter-event intervals \(X \) (continuous random variable)
- number of spikes \(N \) (discrete random variable) in interval of length \(T \)

Any point process definition uniquely determines its interval and count stochastic, and both random variables are related.
Inter-spike intervals

inter-spike intervals
continuous data
Spike count

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

spike count
discrete data
2. Stationary Point Processes

- interval and count random variables
- Bernoulli process
- Poisson process
- renewal process
A Bernoulli process is *discrete* in time (space). It consists of a finite or infinite sequence of independent random variables $X_i, i = 1, 2, \ldots$ such that

$$\Pr\{X_i = 1\} = p \quad \text{and} \quad \Pr\{X_i = 0\} = (1 - p) \quad \forall i$$

A Bernoulli process is a sequence of *independent* trials and thus the Bernoulli process is *memoryless*. The prominent example is repeated coin flipping where $p = 0.5$. We call trials i where $X_i = 1$ a success. The number of successes m in n trials (equiv. to count distribution) follows the Binomial distribution.
A Bernoulli process is *discrete* in time (space). It consists of a finite or infinite sequence of independent random variables $X_i, i = 1, 2, ...$ such that

$$\Pr\{X_i = 1\} = p \quad \text{and} \quad \Pr\{X_i = 0\} = (1 - p) \quad \forall i$$

A Bernoulli process is a sequence of *independent* trials and thus the Bernoulli process is *memoryless*. The prominent example is repeated coin flipping where $p = 0.5$. We call trials i where $X_i = 1$ a success. The number of successes m in n trials (equiv. to count distribution) follows the Binomial distribution.
A Bernoulli process is *discrete* in time (space). It consists of a finite or infinite sequence of independent random variables \(X_i, i = 1, 2, \ldots \) such that

\[
\Pr\{X_i = 1\} = p \quad \text{and} \quad \Pr\{X_i = 0\} = (1 - p) \quad \forall i
\]

A Bernoulli process is a sequence of *independent* trials and thus the Bernoulli process is *memoryless*. The prominent example is repeated coin flipping where \(p = 0.5 \). We call trials \(i \) where \(X_i = 1 \) a success. The number of successes \(m \) in \(n \) trials (equiv. to count distribution) follows the Binomial distribution.
What is a good time resolution Δt for simulating a series of action potentials?

APs have a duration of about 1-2 ms; thus as useful time resolution is: $\Delta t \leq 1$ ms
What is a good time resolution Δt for simulating a series of action potentials?

APs have a duration of about 1-2 ms; thus as useful time resolution is: $\Delta t \leq 1$ ms

The ratio $\lambda = p / \Delta t$ is called the intensity of the process and determines the rate of point occurrences, identified with the neuronal firing rate. In both examples below the rate is $\lambda = 5/s$ (expectation: 5 events per second).
One possibility to define a point process is the complete intensity function. Consider a point process as defined on the complete time axis \((-\infty, +\infty)\). Let \(H_t\) denote the history of the process, i.e. a specification of the position of all points in \((-\infty, t]\). Then a general description of this process maybe formulated in terms of the probabilities of observing a single event at an arbitrary time \(t\):

\[
P(N(t, t + \delta t) = 1 | H_t) = \lambda \delta t + O(\delta t^2)
\]
One possibility to define a point process is the **complete intensity function**.

Consider a point process as defined on the complete time axis \((-\infty, +\infty)\). Let \(H_t\) denote the **history of the process**, i.e. a specification of the position of all points in \((-\infty, t]\). Then a general description of this process maybe formulated in terms of the probabilities of observing a single event at an arbitrary time \(t\)

\[
P(N(t, t + \delta t) = 1|H_t) = 1
\]

Definition

The **Poisson process** of intensity \(\lambda\) is defined by the requirements that for all \(t\) and for \(\delta \to 0^+\)

\[
P\{N(t, t + \delta t) = 1|H_t\} = \lambda \delta + o(\delta)
\]

- the only process for which all events are completely independent
- ‘simple process’, often used for the description of neural spiking
- the Bernoulli process approximates the Poisson process for \(\Delta t \to 0\).
Poisson process | **count** distribution

\[P\{N(A) = k\} = \frac{\mu^k}{k!} e^{-\mu} \]
\[P\{N(A) = k\} = \frac{\mu^k}{k!} e^{-\mu} \]

\[A = (0, t]; \quad \mu = \lambda \cdot t \]

\[P\{N(A) = k\} = \frac{(\lambda \cdot t)^k}{k!} e^{-\lambda t} \]
Example 1: radioactive decay of 239Pu (half-life: 4110 years).

- continuous time intervals
- discrete event count
Example 2: rain drops

- continuous space intervals
- discrete event count
Poisson process | from **count** to **interval** distribution

\[
P\{N(A) = k\} = \frac{(\lambda t)^k}{k!} e^{-\lambda t}
\]

\[
P\{X_k > t\} = Pr\{N(t) < k\}
\]

\[
Pr\{X_1 > t\} = P\{N(t) = 0\} = \frac{\lambda t^0}{0!} e^{-\lambda t} = e^{-\lambda t}
\]
Model classes

constant intensity λ

<table>
<thead>
<tr>
<th>Poisson</th>
</tr>
</thead>
<tbody>
<tr>
<td>• exponential interval distribution</td>
</tr>
<tr>
<td>• Poisson count distribution</td>
</tr>
<tr>
<td>• events are uniformly distributed in time</td>
</tr>
<tr>
<td>• special case of gamma process</td>
</tr>
</tbody>
</table>
Definition

inter-event intervals are **independent** and **identically distributed** (iid)

Thus

- individual intervals are serially independent
- process history is relevant only up to the previous event
- the intervals between successive points are mutually independent
- the Poisson process is a renewal process

\[\uparrow = \text{replacement from a homogeneous population} \]
Definition

Inter-event intervals are **independent** and **identically distributed** (iid).

Thus

- Individual intervals are serially independent.
- Process history is relevant only up to the previous event.
- The intervals between successive points are mutually independent.
- The Poisson process is a renewal process.
Extracellular single unit recording of spontaneous activity from a so-called extrinsic neuron of the honeybee mushroom body. The empirical interval distribution is estimated by the gray histogram from a total of 1530 ISIs. The mean interval length is $m = 58.7$ ms, i.e. the average rate can be approximated by $\lambda \approx \frac{1}{m} = 17.03/s$. The blue curve fits a gamma distribution, the red curve fits a log-normal distribution. Modified from: [1]

Prominent interval distributions used for renewal models of neural spiking
Model classes

constant intensity λ

Poisson
- exponential interval distribution
- Poisson count distribution
- events are uniformly distributed in time
- special case of gamma process

Renewal
- iid interval distribution
 - $FF = CV^2$
3. Non-Stationary Point Processes

- nonhomogenous Poisson process
- non-renewal processes
Motivation: The concept of a neuron’s ‘firing rate’ is empirically motivated. Experimental repetitions allow to average spike count across trials. Individual neurons can **modulate their firing rate** with time.

Single unit activity from primary motor cortex of the monkey during repeated reaching movement

Data Curtsey: Alexa Riehle, CNRS, Marseille
Definition

We substitute the constant intensity λ by the explicitly time-dependent intensity function $\lambda(t)$ and define the nonhomogenous Poisson process for all t and for $\delta \to 0^+$

$$\Pr\{N(t, t + \delta t) = 1|H_t\} = \lambda(t) \delta.$$

The instantaneous probability is still independent of the process history!
Non-homogenous Poisson process

Bernoulli approximation:

![Graphs showing the Bernoulli approximation for a non-homogenous Poisson process.](image-url)
Model classes

constant intensity λ

- Poisson
 - exponential interval distribution
 - Poisson count distribution
 - events are uniformly distributed in time
 - special case of gamma process

- Renewal
 - iid interval distribution
 - $FF = CV^2$

dynamic intensity $\lambda(t)$

- non-homogenous Poisson

increasing importance of process history
Simulation with **time rescaling**:
- simulate renewal process in ‘**operational time**’ (with unit rate)
- transform to ‘real time’ using your **intensity function** $\lambda(t)$

\[
t' = \Lambda(t) = \int_0^t \lambda(s) \, ds
\]
constant intensity λ

- Poisson
 - exponential interval distribution
 - Poisson count distribution
 - events are uniformly distributed in time
 - special case of gamma process

dynamic intensity $\lambda(t)$

- non-homogenous Poisson
- rate-modulated Renewal

Model classes

- increasing importance of process history
4. Non-Renewal Point Processes

- modeling serial interval correlation
- modeling spike-frequency adaptation
- *In vivo* intracellular recordings, somatosensory cortex in the anesthetized rat

- spontaneous activity (no stimulation)
Non-renewal spike trains | experimental evidence

Experiments by Clemens Boucsein & Dymphie Suchanek
University of Freiburg, Germany

a

Neuron index

\[
\begin{align*}
-0.3 & \quad -0.2 & \quad -0.1 & \quad 0 & \quad 0.1 & \quad 1 & \quad 8 \\
\end{align*}
\]

\[
\begin{align*}
\text{SRC} & \quad \text{\textbullet} & \quad \text{\textbullet} & \quad \text{\textbullet} & \quad \text{\textbullet} \\
\end{align*}
\]

- significant negative serial correlation of intervals in 7 of 8 cortical cells
- spiking process is not renewal

Nawrot et al. (2007) Neurocomputing 70: 1717-1722
<table>
<thead>
<tr>
<th>Reference</th>
<th>Model System & Neuron Type</th>
<th>SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratnam and Nelson (2000)</td>
<td>Weak electric fish, isolated P-type Receptors afferent</td>
<td>-0.52</td>
</tr>
<tr>
<td>Chacron et al. (2000)</td>
<td>Weak electric fish, isolated P-type Receptors afferent</td>
<td>-0.35</td>
</tr>
<tr>
<td>Neiman and Russell (2004)</td>
<td>Paddle fish, sensory Ganglion</td>
<td>\sim -0.4</td>
</tr>
<tr>
<td>Floyd et al. (1982)</td>
<td>Cat splanchnic and hypogastric nerves in vivo</td>
<td>-0.3</td>
</tr>
<tr>
<td>Levine (1996)</td>
<td>Goldfish retina, Ganglion cells in vivo</td>
<td>-0.13</td>
</tr>
<tr>
<td>Rodieck (1967)</td>
<td>Cat Retina, Ganglion cells in vivo</td>
<td>-0.06</td>
</tr>
<tr>
<td>Kuffler et al. (1957)</td>
<td>Cat Retina, Ganglion cells in vivo</td>
<td>-0.17</td>
</tr>
<tr>
<td>Tsuchitani and Johnson (1985)</td>
<td>Cat Lateral Superior Olive in vivo</td>
<td>-0.2</td>
</tr>
<tr>
<td>Nawrot et al. (2007)</td>
<td>Rat Somatosensory Cortex (S1) in vivo, regular spiking cells</td>
<td>-0.21</td>
</tr>
<tr>
<td>Nawrot et al. (2007)</td>
<td>Rat Somatosensory Cortex (S1) in vitro, pyramidal cells</td>
<td>-0.07</td>
</tr>
<tr>
<td>Engel et al. (2008)</td>
<td>Rat medial entorhinal cortex in vitro Layer II stellate and Layer III pyramidal neurons</td>
<td>[-0.1,-0.4]</td>
</tr>
<tr>
<td>Farkhooi et al. (2008)</td>
<td>Honeybee central brain in vivo Mushroom body extrinsic neurons</td>
<td>-0.15</td>
</tr>
</tbody>
</table>

Table 1: Negative 1st order serial interval correlation in different preparations and cell types.

An **autoregressive process** in its general linear form up to **lag** \(p \) reads

\[
X_s = \beta_1 X_{s-1} + \beta_2 X_{s-2} + \ldots + \beta_p X_{s-p} + \varepsilon_s
\]

where

- \(\varepsilon_s \) i.i.d. with specific mean and finite variance.
- \(\beta_i \) correlation coefficient for lag \(i \) and \(|\beta| < 1 \)

We propose the following process to model inter-event intervals

\[
\Delta_s = \exp(X_s) = \exp(\beta X_{s-1} + \varepsilon_s)
\]

When we choose \(\varepsilon_s \) normal distributed with mean \(\mu \) and variance \(\sigma^2 \) then \(\Delta_s \) is log-normal distributed.

Model classes

constant intensity λ

- **Poisson**
 - exponential interval distribution
 - Poisson count distribution
 - events are uniformly distributed in time
 - special case of gamma process

- **Renewal**
 - iid interval distribution
 - $FF = CV^2$

- **stationary non-Renewal**
 - constant intensity parameter
 - non-trivial history dependence
 - serial interval correlations

dynamic intensity $\lambda(t)$

- **non-homogenous Poisson**
- **rate modulated Renewal**

Increasing importance of process history
Measures of interval and count variability

Coefficient of variation (interval variability)

\[CV^2 = \frac{\text{Var}(ISI)}{\text{mean}^2(ISI)} \]

Fano factor (count variability)

\[FF = \frac{\text{Var}(\text{count})}{\text{mean}(\text{count})} \]

definition of relations for renewal process

\[FF = CV^2 \]