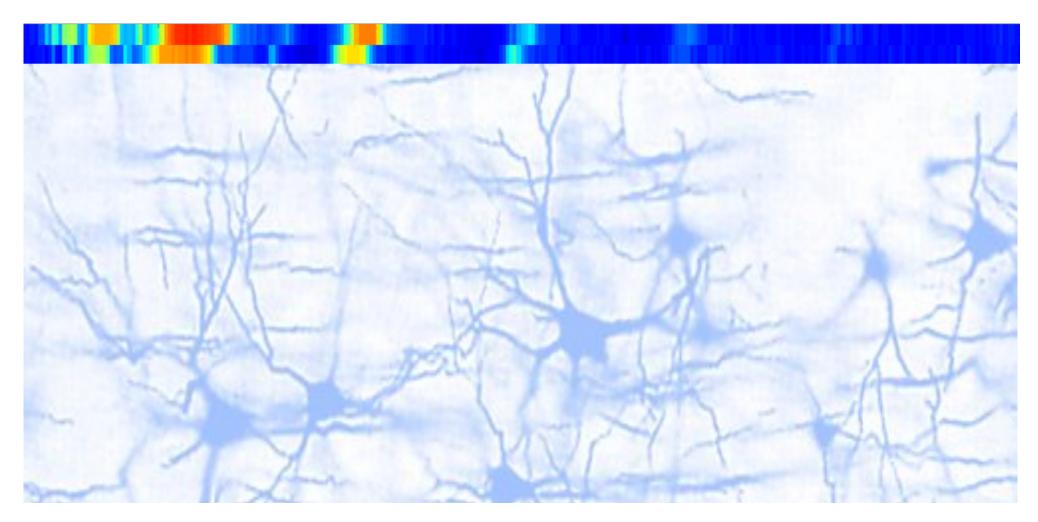
The most famous single-neuron model: Hodgkin and Huxley

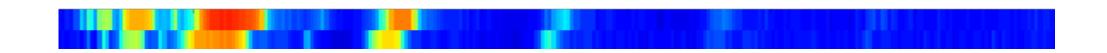
lecture by Susanne Schreiber, tutorial by Eric Reifenstein Institute for Theoretical Biology and BCCN

October 13th 2011

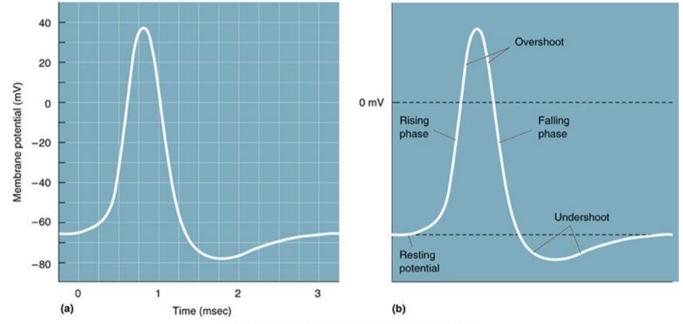


The "Computational Neurophysiology" group

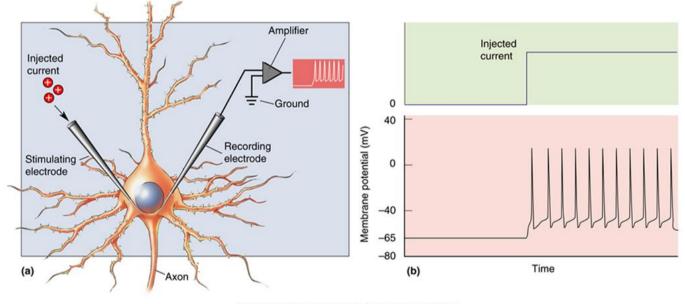
BERNSTEIN CENTER FOR COMPUTATIONAL NEUROSCIENCE BERLIN



The action potential



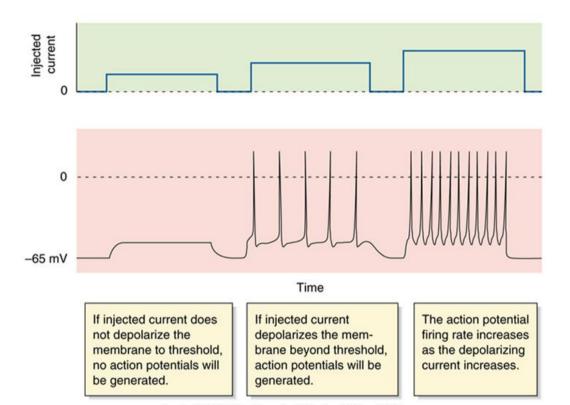
Measuring spikes



Copyright © 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

Depolarization can elicit regular spiking.

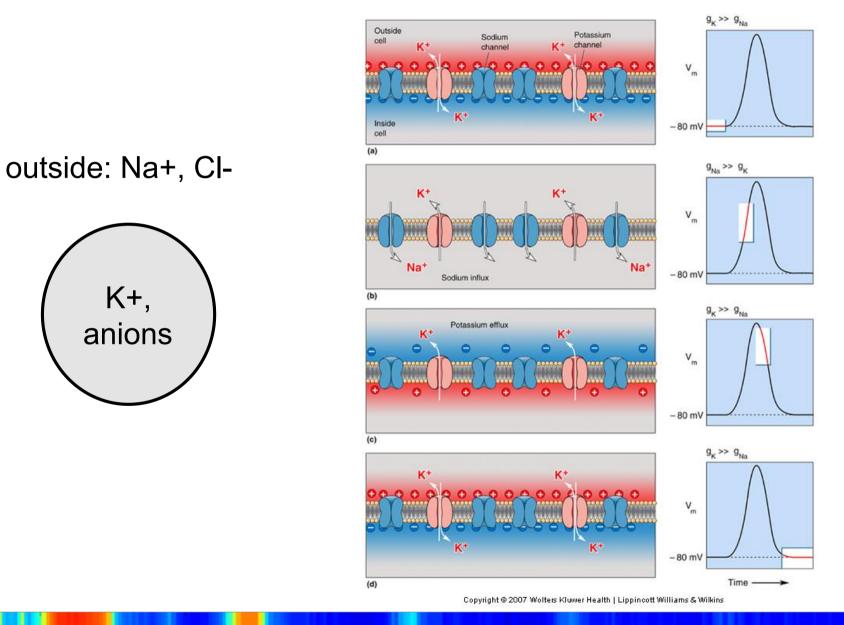
Firing depends on the input



Copyright © 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

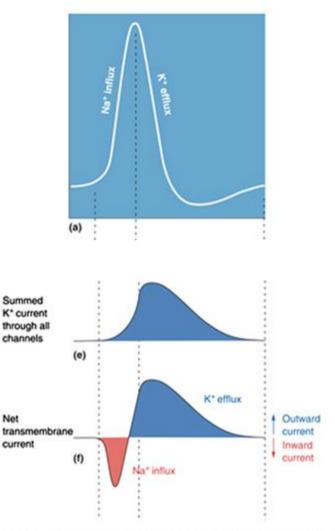
The firing rate depends on the size of the injected current.

Flow of ions during an action potential



Currents during the AP

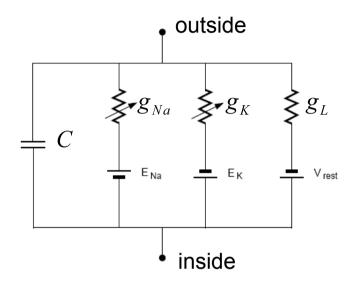
During the action potential both sodium and potassium currents flow across the membrane.



Copyright © 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

The Hodgkin-Huxley Model

The membrane viewed as electrical circuit



Kirchhoff's law:

$$C\frac{dV}{dt} = -I_{Na} - I_{K} - I_{L} + I_{input}$$
$$I_{Na} = g_{Na}(V - E_{Na})$$

potential, where the net flow of ions across the membrane is zero (even if channels were open)

determined by **electric forces** and **diffusion** (inside versus outside charge and concentration)

Nernst equation:

$$E = \frac{V_T}{z} \ln\left(\frac{[\text{outside}]}{[\text{inside}]}\right)$$

The membrane viewed as electrical circuit

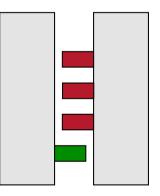
$$C\frac{dV}{dt} = -I_{Na} - I_{K} - I_{L} + I_{input}$$

$$C\frac{dV}{dt} = -g_{Na}(V - E_{Na}) - g_{K}(V - E_{K}) - g_{L}(V - E_{L}) + I_{input}$$

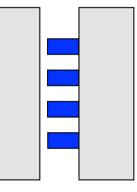
The conductances are not constant, but functions of the voltage V.

Gating particles of sodium and potassium channels

sodium channel:



potassium channels:



3 x m gating particles 1 x h gating particle 4 x n gating particles

$$g_K = \overline{g_K} n^4$$

$$\implies g_{Na} = \overline{g_{Na}} m^3 h$$

The Hodgkin-Huxley voltage equation

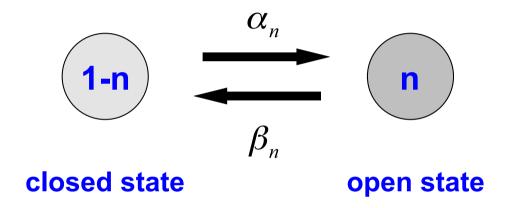
$$C\frac{dV}{dt} = -g_{Na}(V - E_{Na}) - g_{K}(V - E_{K}) - g_{L}(V - E_{L}) + I_{input}$$

$$C\frac{dV}{dt} = -\overline{g_{Na}} \ m^{3}h \ (V - E_{Na}) - \overline{g_{K}}n^{4}(V - E_{K}) - g_{L}(V - E_{L}) + I_{input}$$

But what are the dynamics of m, h, and n?

Linear kinetics for transitions between states

First order kinetics:



Resulting differential equation for dynamics:

$$\frac{dn}{dt} = \alpha_n(V)(1-n) - \beta_n(V)n$$

Dynamical properties of the gating variables

$$\frac{dn}{dt} = \alpha_n(V)(1-n) - \beta_n(V)n$$
reformulation:

$$\tau_n(V)\frac{dn}{dt} = n_{\infty}(V)$$

$$\int_{0}^{0} \frac{1}{0} \frac$$

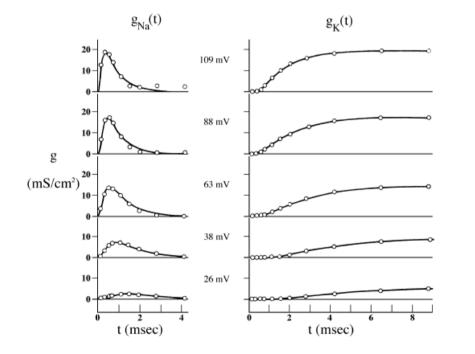
Susanne Schreiber, BCCN Berlin

-n

Measuring rate constants

$$\dot{n} = \alpha_n(V)(1-n) - \beta_n(V)n \dot{m} = \alpha_m(V)(1-m) - \beta_m(V)m \dot{h} = \alpha_h(V)(1-h) - \beta_h(V)h ,$$

rate constants were fitted by Hodgkin & Huxley:



$$\alpha_n(V) = 0.01 \frac{10 - V}{\exp(\frac{10 - V}{10}) - 1},$$

$$\beta_n(V) = 0.125 \exp\left(\frac{-V}{80}\right),$$

$$\alpha_m(V) = 0.1 \frac{25 - V}{\exp(\frac{25 - V}{10}) - 1},$$

$$\beta_m(V) = 4 \exp\left(\frac{-V}{18}\right),$$

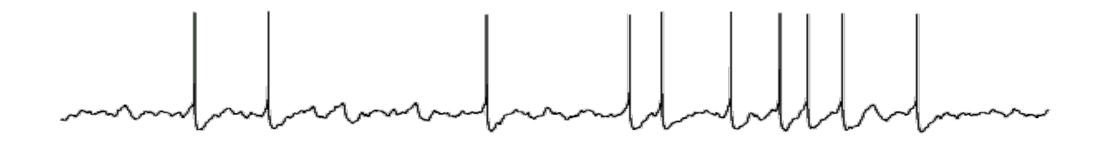
$$\alpha_h(V) = 0.07 \exp\left(\frac{-V}{20}\right),$$

$$\beta_h(V) = \frac{1}{\exp(\frac{30 - V}{10}) + 1}.$$

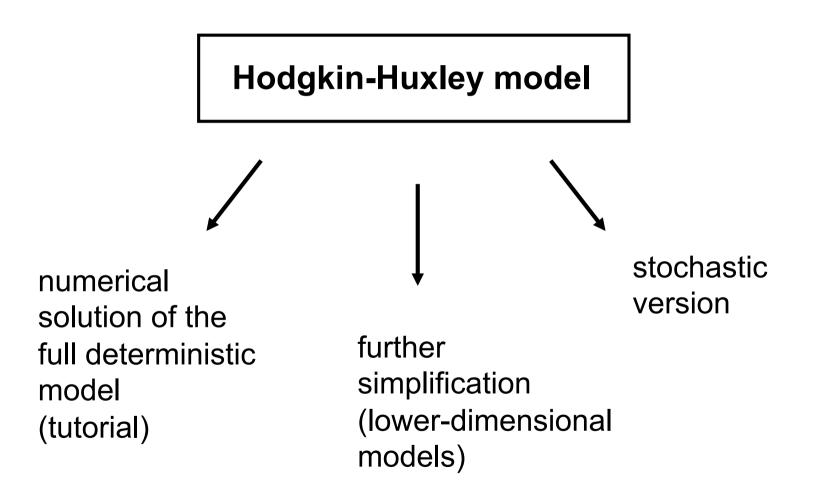
The full Hodgkin-Huxley model

system of four differential equations, coupled via the membrane potential V:

$$\begin{split} C\dot{V} &= I - \overbrace{\bar{g}_{\mathrm{K}} n^{4}(V - E_{\mathrm{K}})}^{I_{\mathrm{K}}} - \overbrace{\bar{g}_{\mathrm{Na}} m^{3}h(V - E_{\mathrm{Na}})}^{I_{\mathrm{Na}}} - \overbrace{g_{\mathrm{L}}(V - E_{\mathrm{L}})}^{I_{\mathrm{L}}} \\ \dot{n} &= \alpha_{n}(V)(1 - n) - \beta_{n}(V)n \\ \dot{m} &= \alpha_{m}(V)(1 - m) - \beta_{m}(V)m \\ \dot{h} &= \alpha_{h}(V)(1 - h) - \beta_{h}(V)h , \end{split}$$

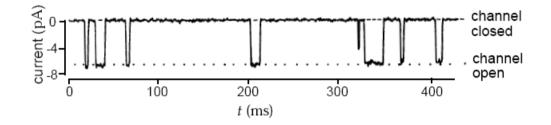


Conductance-based models



Ion channel stochasticity

one channel – two states only:



the more channels, the less noise in the population signal:

