
 

 

 

 

Master’s Seminar 

The Role of Memory in Decision Making 

 

Aug 28-29, 2012 

 

A teaching event within the 

 

Bernstein Focus Neuronal Basis of Learning (BFNL): Insect Inspired Robots 

Funded by the German Federal Ministry of Education and Research (BMBF) 

 

Responsible 

Dorothea Eisenhardt and Martin Nawrot 

 

  

  



Seminar/Module 23903 | SS 2012 | FU Berlin 

Final Program  

 

The Role of Memory in Decision Making 

 

Venue  Seminar Room 36.07, Takustraße 3 

 

Date  Aug 28-29 (Tue - Thu) 

 

Faculty 

 

Prof. Dorothea Eisenhardt   Prof. Martin Nawrot   

Systemic Neurobiology   Neuroinformatik   

Institute of Biology   Institute of Biology   

Freie Universität Berlin  Freie Universität Berlin   

 

Organization 

Benjamin Auffarth, Kathrin Brackwehr, Martin Nawrot 

 

Contact  

 

Kathrin Brackwehr, AG Neuroinformatik, Königin-Luise-Str. 1-3, 14195 Berlin 

fon: 838 57920 mail: k.brackwehr@fu-berlin.de 

 

Tutors   
 

Benjamin Auffarth (benjamin.auffarth@fu-berlin.de) 
Tara Dezhdar (t.dezhdar@fu-berlin.de)  
Farzad Farkhooi  (farzad.farkhooi@gmail.com) 
Joachim Hänicke (joachim.haenicke@fu-berlin.de) 
Chris Häusler (chausler@gmail.com) 
Lovisa Helgadottir  (Tel. 838 57291) 
Gundula Meckenhäuser (gundula@zedat.fu-berlin.de) 
Evren Pamir  (evren.pa@googlemail.com) 
Thomas Rost (thomasrost@gmail.com) 
Michael Schmuker (m.schmuker@fu-berlin.de) 
Jan Sölter (j.soelter@fu-berlin.de) 
Johannes  Felsenberg (johannes.felsenberg@fu-berlin.de) 
Christina Buckemüller (Christina.Buckemueller@rub.de) 
Kathrin Marter (k.marter@fu-berlin.de) 
Katrin Gehring (katrin.gehring@fu-berlin.de) 
 

 

 

mailto:gundula@zedat.fu-berlin.de
mailto:johannes.felsenberg@fu-berlin.de
mailto:Christina.Buckemueller@rub.de
mailto:k.marter@fu-berlin.de


Topics 
 

A Working Memory 
 

[1 Larissa Seek] [Tutor: J. Felsenberg] 

Zhang S, Bock F, Si A, Tautz J, Srinivasan MV (2005) Visual working memory in decision 
making by honey bees. Proc Natl Acad Sci USA 102(14):5250-5 (behavior) 

 

[2 Dennis Schmoldt] [Tutor: F. Farkhooi] 

Qi, X.-L., Katsuki, F., Meyer, T., Rawley, J. B., Zhou, X., Douglas, K. L., & Constantinidis, C. 
(2010). Comparison of neural activity related to working memory in primate dorsolateral 
prefrontal and posterior parietal cortex. Frontiers in systems neuroscience, 4(May), 12. 
doi:10.3389/fnsys.2010.00012 (neurophysiology)  [extracellular recording, spike sorting] 

 

[3 Anja Wegner] [Tutor: M. Nawrot]  

Harvey, C. D., Coen, P., & Tank, D. W. (2012). Choice-specific sequences in parietal cortex 
during a virtual-navigation decision task. Nature, 484(7392), 62-68. Nature Publishing Group. 
doi:10.1038/nature10918 (neurophysiology) 

 

Background reading 

Curtis CE, Lee D. (2010) Beyond working memory: the role of persistent activity in decision 

making. Trends Cogn Sci. 14(5):216-22 

 

B Reward encoding and reward prediction 
 

[4  Achim Meyer ] [Tutor:  J. Haenicke] 

Strube-Bloss, Nawrot MP, Menzel R (2011) Mushroom Body Output Neurons Encode Odor-
Reward Associations. Journal of Neuroscience 31(8):3129-3140 (neurophysiology)  

Reward prediction at the mushroom body output after classical conditioning 

 

[5 Anna Nowak] [Tutor: J. Felsenberg] 

Hammer, M. (1993) An identified neuron mediates the unconditioned stimulus in associative 
olfactory learning in honeybees. Nature 366:59-63 (neurophysiology) [intracellular recording] 

 

Background reading 

Glimcher PW (2011) Understanding dopamine and reinforcement learning: The dopamine 

reward prediction error hypothesis. Proceedings of the National Academy of Sciences 108: 

15647-15645 

 

http://www.ncbi.nlm.nih.gov/pubmed/20381406
http://www.ncbi.nlm.nih.gov/pubmed/20381406


 

 

C Perceptual decision making in animals 
 

[6 Masin Abo-Rady] [Tutor: AG Nawrot] 

Uchida N, Mainen ZF (2003) Speed and accuracy of olfactory discrimination in the rat. Nat 
Neurosci 6(11):1224-9 (behavior) 

Wesson, D. W.; Carey, R. M.; Verhagen, J. V. & Wachowiak, M. (2008) Rapid encoding and 
perception of novel odors in the rat. PLoS Biol 6(4), e82 (behavior) 

Uchida et al. describe fast behavioral discrimination of odorants in rats. Wesson et al. describe an 
even faster detection of an unknown odor. Combine both papers for presentation with a focus on 
Uchida et al.2003 

 

For background reading and a more general definition of perceptual decision making see: 

N. Uchida, A. Kepecs and Z.F. Mainen (2006) Seeing at a glance, smelling in a whiff: rapid 
forms of perceptual decision making. Nature Reviews in Neuroscience 7(6):485-491 (review 
article) 

Kristan WB.(2008) Neuronal decision-making circuits. Curr Biol. 2008 Oct 14;18(19):R928-32 
(review article) 

Heekeren HR, Marrett S, Ungerleider LG (2008) The neural systems that mediate human 
perceptual decision making. Nat Rev Neurosci 9(6):467-79 (review article) 

Kable, JW, Glimcher, PW (2009) The neurobiology of decision: Consensus and controversy, 
Neuron, 63: 733-745 (review article) 

Kristan WB.(2008) Neuronal decision-making circuits. Curr Biol. 2008 Oct 14;18(19):R928-32 
(review article) 

 

D Perceptual decision making in humans 
 

[7 Florian Bilz] [Tutor: C. Buckemüller] 

Heekeren HR, Marrett S, Bandettini PA, Ungerleider LG (2004) A general mechanism for 
perceptual decision-making in the human brain. Nature 431(7010):859-62 [functional 
Magnetic Resonance Imaging, fMRI] (human neurophysiology) 

Heekeren HR, Marrett S, Ungerleider LG (2008) The neural systems that mediate human 
perceptual decision making. Nat Rev Neurosci 9(6):467-79 (review article)  

 

[8 Isabell Groß] [Tutor: K. Gehring] 

Kahnt, T., Grueschow, M., Speck, O., & Haynes, J.-D. (2011). Perceptual learning and 
decision-making in human medial frontal cortex. Neuron, 70(3), 549-59. Elsevier Inc. 
doi:10.1016/j.neuron.2011.02.054 (human neurophysiology) 

 

[9 Gustav Schneider] [Tutor: K. Gehring] 

Rolls, E. T., Grabenhorst, F., & Parris, B. a. (2010). Neural systems underlying decisions 
about affective odors. Journal of cognitive neuroscience, 22(5), 1069-82. 
doi:10.1162/jocn.2009.21231 (human neurophysiology) 

 

http://www.ncbi.nlm.nih.gov/pubmed/18957243


Background reading (see also C above) 

Newcombe, V. F. J., Outtrim, J. G., Chatfield, D. a, Manktelow, A., Hutchinson, P. J., Coles, 
J. P., Williams, G. B., et al. (2011). Parcellating the neuroanatomical basis of impaired 
decision-making in traumatic brain injury. Brain : a journal of neurology, 134(Pt 3), 759-68. 
doi:10.1093/brain/awq388 

Gleichgerrcht, E., Ibáñez, A., Roca, M., Torralva, T., & Manes, F. (2010). Decision-making 
cognition in neurodegenerative diseases. Nature reviews. Neurology, 6(11), 611-23. Nature 
Publishing Group. doi:10.1038/nrneurol.2010.148 

 

E Value-based decision making / Neuroeconomics 
 

[10 Sulav Duwal] [Tutor: D. Eisenhardt]  

Peters J, Büchel C. (2009) Overlapping and distinct neural systems code for subjective value 
during intertemporal and risky decision making. J Neurosci. 29(50):15727-34. (human 
physiology) 

For an introduction to value-based decision making see: 

Rangle, A., Camerer, C., Montague, P.R. (2008) A framework for studying the neurobiology 
of value-based decision-making. Nature Reviews: 9, 545-556 (review article) 

 

F Social decision making 
 

[11 Eva Carmarillo] [Tutor: E. Pamir]   

Wu, Y., Leliveld, M. C., & Zhou, X. (2011). Social distance modulates recipient’s fairness 
consideration in the dictator game: an ERP study. Biological psychology, 88(2-3), 253-62. 
Elsevier B.V. doi:10.1016/j.biopsycho.2011.08.009  [EEG] 

 

[12 Sophie Kolbe] [Tutor: G. Meckenhäuser] 

King-Casas B, Tomlin D, Anen C, Camerer CF, Quartz SR, Montague PR (2005) Getting to 
know you: reputation and trust in a two-person economic exchange. Science. 308(5718):78-
83. (human physiology) 

 

[13 Katharina Mangold] [Tutor: K. Marter] 

Ward, A. J. W., Krause, J., & Sumpter, D. J. T. (2012). Quorum decision-making in foraging 
fish shoals. PloS one, 7(3), e32411. doi:10.1371/journal.pone.0032411 (behavior) 

For an introduction to game theory and social influences on decisions:  

Katsikopoulos, K. V., & King, A. J. (2010). Swarm intelligence in animal groups: when can a 
collective out-perform an expert? PloS one, 5(11), e15505. doi:10.1371/journal.pone. 
0015505 

Lee D (2008) Game theory and neural basis of social decision making. Nature Neuroscience 
11, 404 - 409 

Rilling JK, King-Casas B, Sanfey AG.(2008) The neurobiology of social decision-making. 
Curr Opin Neurobiol. 2008 Apr;18(2):159-65. Epub 2008 Aug 7 (review article) 

http://www.ncbi.nlm.nih.gov/pubmed/18639633


G Computational models of decision making and decision making   in 

artificial agents 
 

[14 Jörg Meier] [Tutor: J. Sölter] 

Deco G, Rolls ET (2006) Decision-making and Weber's law: a neurophysiological model. 

Eur J Neurosci. 24(3):901-16. (computational model) 

For overview start with: Wang et al. 2008 above; see other review articles cited above 

This topic is closely related the previous topic on neural correlates of decision making in the macaque. 
Please also read Romo et al. 2003 above. 

 

[15 Philipp Norton] [Tutor: J. Sölter] 

Deco G, Rolls ET, Romo R. (2010) Synaptic dynamics and decision making. Proc Natl Acad 
Sci USA. 107(16):7545-9. (computational model) 

This publication improves previous model above. Please also read Romo et al. 2003 cited for [16]. 

 

[16 Michael Rauer] [Tutor: C. Häusler] 

Lo C-C, Wang X-J (2006) Cortico–basal ganglia circuit mechanism for a decision threshold in 
reaction time tasks. Nature Neuroscience 9, 956 - 963 (computational model) 

 

[17 Martin Seeger] [Tutor: B. Auffarth] 

van Maanen, L., Grasman, R. P. P. P., Forstmann, B. U., & Wagenmakers, E.-J. (2012). 
Piéron’s Law and Optimal Behavior in Perceptual Decision-Making. Frontiers in 
neuroscience, 5(January), 143. doi:10.3389/fnins.2011.00143 (experiment + model) 

 

For background reading, see  

Deco, G., Rolls, E. T., Albantakis, L., & Romo, R. (2012). Brain mechanisms for perceptual 
and reward-related decision-making. Progress in neurobiology, 1-20. Elsevier Ltd. 
doi:10.1016/j.pneurobio.2012.01.010 

Wang XJ (2008) Decision making in recurrent neuronal circuits. Neuron 60(2):215-34 (review 
article) 

Lee, D., and Wang, X.-J. (2008). Mechanisms for stochastic decision making in the primate 
frontal cortex: Single-neuron recording and circuit modeling. In Neuroeconomics: Decision 
Making and the Brain, E.F.P.W. Glimcher, C.F. Camerer, and R.A. Poldrack, eds. (book 
chapter 31, PDF version is included in the online seminar material). 

Chapters 5 'Probabilistic decision-making' + 6 'Confidence and Decision Making' in Rolls ET, 
Deco G (2010) The Noisy Brain. Stochastic Dynamics as a Principle of Brain Function. 
Oxford University Press, Oxford (available at the AG Nawrot, Neuroinformatik, Königin-
Luisen Str. 1-3) (book chapter) 

Gold J, Shadlen M (2007) The neural basis of decision making. Annu. Rev. Neurosci. 2007. 
30:535–74 (review article) 

 

http://www.ncbi.nlm.nih.gov/pubmed/20360555


Larissa Seek, lariseek@zedat.fu-berlin.de, FU Berlin 

	   1	  

Visual working memory in decision making by honey bees - 
Summary 
 
Background and experimental set-up 
The honey bee is known to have a 
robust and flexible working memory. 
This cognitive capacity is defined as a 
memory system that holds information 
in temporary storage during the 
planning and execution of a certain 
task (Dudai Y. 2002). The aim of this 
study was to proof this mechanism by 
investigation of its function and role in 
the decision making process in honey 
bees. They realized this examination 
through a so called delayed match to 
sample (DMTS) paradigm where the 
bees learned to align a prior 
experienced sample to one of two 
samples (one is the same, one is 
novel) in a later choice situation 
(Blough, D. S. 1959). The simplest 
version of the here used task is a 
tunnel system in which the bee has to 
fly to a decision chamber (Fig. 1). The 
stimuli were realized through visual 
pattern. The bees had to learn 
matching a sample pattern in the 
tunnel with one of two comparison 
patterns in a decision chamber at the 
very end. Thus, the goal was choosing 
the same pattern in the decision 
chamber as presented in the tunnel. If 
the bee made a correct choice it 
received a sugar-reward in a 
subsequent cylinder. By making an 
incorrect choice, it arrived in a non 
rewarded cylinder. One important 
criteria for working memory is that 
performance accuracy decays as a 
function of time as distance increases 
(Zhang, S. et al 2005). Therefore the 
authors changed the time between the 
first sample and the choice in a 
decision chamber by varying the 
distance d2 between sample and 
choice (fig. 1 upper). The bees hade to 
retain the information about the 
identity of the pattern maintained in the 
working memory and to apply the 
learned rules to make a right choice 
(Roitblat, H. L 1987). Through this they 
measured the performance of working 
memory. The examination was 

realized by three different 
experimental setups of this apparatus 
and was conducted to the operation in 
accordance to three intrinsic 
considered questions (Zhang, S. et al 
2005).  
 
Procedure and results 
The first of the 3 experiments (series I) 
asked the question, how long bees 
retain the sample in the working 
memory? By increasing the distance 
they increased the delay interval 
between the exposures to sample 
pattern and the choice situation.  Thus, 
it is possible to estimate the retention 
time of the working memory. The 
results show that information could be 
held accurately in the working memory 
for at least 5 seconds before being 
used to make a decision. The 
significantly better performance than at 
random choice level decreases as the 
duration between the presentation of 
the sample stimulus and the 
presentation of comparison stimuli is 
increased. This could be approximated 
by an exponential decay function. The 
performance is reduced to a random 
choice levels at a distance of 475 cm 
and average delay time of 8 seconds.  
Series II investigates the question 
whether bees can learn to perform a 
DMTS task correctly when an 
additional incorrect pattern is present 
in the tunnel? Bees were first trained 
with a single pattern placed at 120 cm 
distance to the decision chamber in a 
learning test. In one transfer test two 
sample patterns were placed at fixed 
distances to the decision chamber. 
The correct sample pattern was placed 
at 120 cm distance (= training 
distance) and an incorrect sample 
pattern at 170 or 50 cm distance. This 
means the incorrect sample was 
positioned either behind or in front of 
the correct sample pattern (Fig. 1 
mean). The aim was to examine 
whether the trained bees would use 
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Figure 1. Schematic illustration of apparatus used in 
the experiments of series I to III consisting of a 
tunnel and a decision chamber. The length oft the 
tunnel is 4.8 m, the wide 22.5 cm and the height 21.5 
cm. The three vertical cylinders representing the 
decision chambers have a height of 25 cm and a 
diameter 22.5 cm as well as three holes as entrance and 
exits. The top most apparatus was used in series I, the 
mean one in series II and the lower set-up in series III. 
IP1 and IP2 characterize the incorrect pattern placed in 
front or behind the sample pattern. 

the sample at training distance to 
make a correct choice in the decision 
chamber or if they were interrupted by 
a second input of another sample 
pattern. They results show that the 
bees are able to learn using the 
relevant sample as “true” to perform 
the task. This is given if the relevant 
sample is always at a fixed position.  
In another transfer test the sample 
pattern was placed at 50 cm and the 
incorrect one at 170 cm distance to the 
decision chamber. So in this 
experiment, neither a sample at the 
known training distance was present. 
Because of the revealed decline to 
random choice level of correct 
choices, they received that the bees 
“got confused”. This assumes the 
discrimination capability between 
correct and incorrect sample pattern of 
basis of position in the tunnel. 
And finally series III, which had its 
focus on the question whether bees 
can learn which of two sequentially 
encountered patterns in the tunnel is 
the pattern to be matched in a decision 
cylinder? In the learning tests two 
sample patterns were placed with a 
displacement of 50 cm (Fig. 1 lower) to 
each other. Thus, they investigated 
whether the bees could learn to match 
the comparison stimuli by using just 
one of the two samples. They could 
show that if the relevant sample has 
always the same place in the 
sequence of presentation, the bees 
are able to learn using the relevant 
one as the right one to perform the 
task. Furthermore they could proof that 
bees are able to generalize the 
learned rule by including novel objects 
(e.g. sector and ring). In addition, in 
another transfer test they increased 
the distance between the two samples 
from 50 cm to 100 cm and could show 
that even at enlarged distance 
situation the bees performed well.  
By performing well arranged control 
experiments the authors could exclude 
any bias by a side preference or 
olfactory hind in the used setups.  
	  
Conclusion 

To summarize the results it can be 
concluded that this capability to learn 
relevant sample and to ignore 
irrelevant sample, even at enlarged 
distance and under novel situations 
illustrates the complexity of the honey 
bee’s working memory. Further studies 
should investigate whether bees can 
learn to perform similarly when more 
than two sample patterns are used. 
Additionally, the open question could 
be answered how the bees store the 
information about the position of the 
pattern either by using external 
landmarks or measuring the distance 
to some reference like the position to  
the tunnel entrance.  
	  
	  
	  
	  
	  
	  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Literature:  
Blough, D.S. (1959) J. Exper. Anal. Behav. 
21, 19-26. 
Dudai, Y. (2002) Memory from A to Z, 
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Oxford University Press. Oxford, New 
York. 
Roitblat. H. L. (1987) in Introduction to 
Comparative Cognition (W.H. Freeman, 
New York), pp. 146-189. 
Zhang S, Bock F, Tautz J, Srinivasan MV 
(2005) Visual working memory in decision 
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making by honey bees. PNAS. 102, 5250-
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1. Introduction 

Working memory refers to the ability to maintain and manipulate information in memory over 
a time interval of seconds1. Neurophysiological recordings in animal models have provided a 
neural correlate of working memory in the form of neuronal discharges that are elicited by 
physical stimuli but which persist even after the stimuli are no longer present2. 

The study analyzed how patterns of activity relating to spatial working memory differ be-
tween cortical areas in the context of different tasks. 

 

2. Materials and methods 

2.1. Animals and Materials 

In the experiment the authors used four male, rhesus monkeys.  
The areas used for the neuronal recordings were area 46 and 8 of the dorsolateral pre-

frontal cortex and area 7a of the posterior parietal cortex. Furthermore the cauldal part of the 
Principal Sulcus, the region between the Principal and the Arcuate Sulcus and a part of su-
perior convexity of the lateral prefrontal cortex were included to the prefrontal recordings. 

In order to record the neuronal activity, two cylinders where implanted in the monkeys 
heads. Furthermore arrays of up to eight microelectrodes where used. 

The depth of the cortex encountered by the electrodes provided a coarse map of anatomi-
cal locations. This allowed the authors to superimpose it onto an image, done by Magnetic 
resonance imaging. 

The recorded action-potentials were sorted with the KlustaKwik-algorithm into separate 
units. Finally the focus was set on those neurons who responded on visual stimuli. Neurons 
with significantly different responses to the nine grid-stimulus locations were also observed. 
At the end patterns of the delay period activity of the neurons were observed, whether the 
firing rate increased in the delay period after a stimulus or not. If the firing rate increased the 
neurons were called anticipatory, but if it stayed the same or declined they were called sus-
tained.  

The monkeys sat in a primate chair, which was 60 or 68cm away from a computer monitor 
and their heads were fixed. In preparation for the experiment, the monkeys were trained to 
keep their gaze on a fixation target. To control this, their eye movement was tracked. If a 
monkey breaks the fixation the trail was terminated, otherwise if a monkey completes a trail 
successfully it gathers a liquid reward. 

 

2.2. Behavioral Tasks 

Two behavioral tasks had to be done by the monkeys. The first one was a 
Match/Nonmatch task, where two monkeys had to remember the spatial location of a stimu-
lus that flashed on the screen and had to decide whether a second stimulus flashed on the 
same location or not. The trail started with a fixation period, followed by the first stimulus that 
had to be remembered. This stimulus could appear in one of nine positions in a 3*3 grid. The 
stimulus is succeed by a delay, a second stimulus in the grid and a second delay. At the end 
the monkey had to decide with his gaze between a blue and a green square. He should 
choose the green, if the stimuli matched and the blue if not. For each record they did ten 
repetitions and set the positions of the squares randomly (Figure 1 A ). 

However the other two monkeys did a delayed match-to-sample task. In this task the mon-
keys had to remember a first stimulus and release a lever if another stimulus occurs at same 
position of the first stimulus. In detail the monkey had to pull the lever and foveate a fixation 
point. Again a 3*3 grid was used for the stimuli. Each stimuli was followed by a delay and the 

                                                
1
 Baddeley, 1992 [2] 

2
 Fuster and Alexander, 1971; Funahashi et al., 1989 [3] 
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first stimulus was followed from up to two nonmatches. Also the monkeys were trained to 
release the lever in the delay after the match. Any other release of the lever caused the abor-
tion of the trail (Figure 1 B).  

 

 

Figure 1 | Behavioral tasks. Successive frames indicate the series of stimulus presentations. (A) Stimulus presentations in the 
Match/Nonmatch task. (B) Stimuluspresentations in the Delayed Match-to-Sample task.

3
 

 

3. Results 

3.1. Database 

As already mentioned the recorded areas had been 7a, 8 and 46. For each of the two 
tasks the focus was set on neurons that responded to visual stimuli, especially on spatial 
locations and in addition showed a special discharge in comparison to the baseline during 
the delay. 

On the one hand for the Match/Nonmatch task the activity of 149 neurons was recorded 
from the dorsolateral prefrontal cortex. Furthermore 83 of those were used for further analy-
sis because of their special behavior. On the other hand the authors recorded 60 neurons 
from the posterior parietal cortex and 38 were used for further analysis. 

In the delayed match-to-sample task 48 out of 148 from the prefrontal and 36 out of 119 
from the parietal cortex were analyzed. 
 

3.2. Types of delay period activity 

There were two types of delay period activity. Type one was the so called sustained activi-
ty which was described by a consistent or declining firing rate that extends a respond. 96 
neurons of this type were recorded in the prefrontal and 36 in the parietal cortex. Type two 
showed an increasing firing rate and was called anticipatory. Here 35 and 38 neurons where 
recorded. 

It was pointed out how activity during the delay period changed after a stimulus inside or 
outside of the receptive field.  
  

                                                
3
 Xue-Lian Qi et al., 2010,S. 4 [1] 
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Within the Match/Nonmatch task the parietal neurons exhibited a sustained response if a 
stimulus was in the receptive field and stopped if it was out of the receptive field. Prefrontal 
neurons continued to discharge even after a transient decrease in activity caused by the 
nonmatch stimulus. Moreover a regression analysis showed that prefrontal neurons did not 
differ between a nonmatch out of the receptive field after a match on the one hand and a 
match within the receptive field after a match on the other hand. In contrast to this, the parie-
tal neurons had a decreased firing rate in the nonmatch case. However both types continued 
to discharge if the first stimulus was outside and the second stimulus inside the receptive 
field. The anticipatory activity was not really significant in this task. 

 In the delayed match to sample task, the anticipatory activity was not significant, too. That 
is why the focus was set again on the sustained activity. So it was checked if a sustained 
activity from a stimulus within the field could be disturbed by a stimulus out of the field and 
vice versa. If the stimulus was out of the receptive field, there was no difference, both neu-
rons where still active. The same holds true for a nonmatch within the receptive field (Figure 
2). Of course the case of a match was not considered, because it terminates the trail. 

 

 

Figure 2 | Population responses from neurons with sustained activity recorded in the prefrontal (N = 38) and posterior parietal 
cortex (N = 17). Green arrow represents the delay period following a nonmatch stimulus out of the receptive field. Data are 

shown from the Delayed Match-to-Sample task. (A) Average, normalized responses to the cue presentation in the receptive field 
followed by a nonmatch stimulus out of the receptive field. (B) Average responses to the cue presentation out of the receptive 
field, followed by a nonmatch stimulus in the receptive field.

4
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 Xue-Lian Qi et al., 2010, S.9 [1] 
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4. Discussion 

4.1. Overview over the findings 

The study referred to the differences between the patterns of the delay activity from the 
prefrontal and parietal cortex. Distinct patterns of responses were observed in the popula-
tions of neurons with sustained responses which exhibited differences in the prefrontal 
versys the parietal cortex5. The main finding was that the dorsolateral prefrontal activity 
which represents the spatial location of a stimulus survives the presentation of a nonmatch 
stimulus out of the receptive field. Furthermore they found similarities between the two re-
gions, for example that both regions continued to be active after a nonmatch in the 
Match/Nonmatch task as well as they continued to represent a nonmatch in the receptive 
field in the following delay even though it was not required. 
 

4.2. Type of responses 

The sustained activity was characterized by persistent discharges that extended beyond 
the initial response to a stimulus into the delay period and could encode the location of the 
preceding stimulus. This is the type of activity commonly thought to provide a neural corre-
late of working memory for the preceding stimulus6. 

The anticipatory activity seemed to appear after stimuli at any spatial location, most often 
outside of the neuron’s receptive field and could be informative about the preceding stimulus. 

 

4.3. Task-Effects 

In the Match/Nonmatch task the animals had to compare an initial stimulus and with a se-
cond one, if they matched or not. Even it was not necessary one of the stimuli’s still was rep-
resented in the prefrontal and parietal cortex. Within the delayed match-to-sample task no 
significant differences had been found. 

 

4.4. Implications for functional specialization 

The posterior parietal and dorsolateral prefrontal cortexes are strongly interconnected and 
share many functional properties7. The prefrontal cortex has the ability to preserve infor-
mation. Although a number of candidates were identified, it is not clear yet, which gives the 
prefrontal cortex its unique ability. Candidates are dopamine, which stabilizes the working 
memory8, the dendritic tree size and the composition of the interneurons. All in all it will be a 
mixture of these factors that gives the prefrontal cortex its unique ability. 

                                                
5
 Xue-Lian Qi et al., 2010, S.9 [1] 

6
 Goldman-Rakic, 1995 [4] 

7
 Cavada and Goldman-Rakic, 1989 [5] 

8
 Durstewitz et al., 2000 [6] 
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1 Introduction 

Our current knowledge about working memory can be traced back to the year 1936 where 

Jacobsen used a spatial delayed-response task performed by monkeys. They had to 

remember where the food or cue was located under two identical looking cups. After a delay, 

the cups were not visible during this time, the monkeys had to choose a cup. Large prefrontal 

cortex lesions in the monkeys impaired the performance of this task and it was concluded 

that this part of the brain is essential for cognitive processes. Later in 1973 Fuster conducted 

the same experiments but he simultaneously recorded the electrical activity of the neurons in 

the prefrontal cortex. Surprisingly he found neurons in the prefrontal cortex that had 

increased firing rates during the delayed period. This increased activity may be related to the 

retention of the food location needed to make the correct choice. With the advent of brain 

imaging methods, like Positron emission tomography (PET) and Functional magnetic 

resonance imaging (fMRI), it emerged that areas of activation during working memory tasks 

also include other brain areas in the cortex e.g. the posterior parietal cortex (PPC) [Smith et 

al.1999; Heekeren et al. 2008]. The PPC is interconnected with brain areas responsible for 

sensory and motor processing. In rats studies suggest that the PPC is important for the 

integration of spatial information, route planning and route progression during a memory-

guided navigation task [Calton et al. 2009]. In previous experiments it was shown that 

different classes of cells exist because they had sustained firing rates in the cue-, delay or 

response period of the whole task [Curtis & Lee 2010]. On the other hand and to a much 

higher degree Harvey, Coen and Tank found that different neurons in each class were only 

shortly active at different times and formed sequences of activation. 

 

2 Experimental setup 

They used a virtual T-maze displayed on a toroidal screen, where head-restrained mice, via 

a titanium head plate affixed with dental cement to the skull, had to navigate through, while 

their limbs rested on an air-supported spherical treadmill (Figure 1:1a). They trained the 

mice to associate visual cues with a water reward and to memorize this information during a 

delay period (Figure 1: 2a). Once the mice were proficient at the task, they injected the 

AAV2/1-synapsin-1-GCaMP3 virus into the PPC to visualize calcium transients - an indicator 

for neuronal activity. 

To image the Ca2+ transients in the layer 2/3 of the PPC they implanted a chronic imaging 

window and used two-photon microscopy. They imaged around 65 cells simultaneously in an 

area of about 300 µm by 150 µm.  

The anatomical location of the PPC was identified by performing tracing experiments with 

retrogradely-transported red fluorescent beads to indentify potential inputs and to identify 

potential outputs, PPC neurons were labelled with GFP using viral methods. 
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Figure 1: (1a left) “The experimental apparatus, consisting of a spherical treadmill, a virtual reality 
apparatus (projector, reflecting mirror (RM), angular amplification mirror (AAM), toroidal screen and 
optical computer mouse to record ball rotation) and a custom two-photon microscope 
(titanium:sapphire laser (Ti:S), long-pass filter (LP), galvanometers (X-Y), scan lens (SL), mirror (M), 
tube lens (TL), dichroic mirror (DM), collection lens (CL), biconcave lens (L), bandpass filter (BP), 
focusing lens (FL), photomultiplier tube (PMT), sliding stage (used to move microscope for treadmill 
access), X-Y translation (moves treadmill and mouse), Z-translation (objective focus control) and 
rubber tube (shown in cross-section, for light shielding)). (1a middle) Photograph of experimental 
setup.” (Dombeck et al., 2010) (1a right) “An illustration of the human brain showing the location of 
the posterior parietal cortex, the primary motor complex (M1), and the pre-motor areas (SMA, PMd 
and PMv)” © Barbara Martin / courtesy of Vanderbilt University (2a left) „Diagram of the two versions 
of the virtual T-maze that differed only in the cue period and the reward location. Patterns in the 
diagram reflect the patterns present on the virtual maze walls. (2a right) Screen captures of the virtual 
environment.“ (Harvey et al., 2012) 
 

3 Results 

The anatomical location of the mouse PPC using retrograde and anterograde tracing 

revealed the same position like in rats and primates (Figure 1: 1a right). 

After the imaging they manually selected the interesting cell bodies (Figure 2: 3a left) to 

distinguish 53% of non-active cells with Ca2+ transients less than two per minute and 47% 

were active with more than two transients per minute. 73% of these cells were only highly 

active for a short and specific time in the task. These task-modulated cells had an increase in 

fluorescence variabilty (∆F/F) for more than 1,3 s of the task. 

The majority, around 71%, of the task-modulated cells distinguished the trial type because 

the levels of activity were different during the correct right and left trials (Figure 2: 3a;3b). 

The same pattern could be confirmed with extracellular electrophysiological recordings. In 

this group of the choice-specific cells, 25% were cue cells, 33% prefered the delay and 42% 

were active at the turn. Only a small fraction of neurons were active over the whole trial span 

or showed reward-related signals.  

           

  

View of cue in Maze2             View of cue in Maze1           View of T-intersection             
 

2 

1 
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Figure 2: „ (3a left) Example image of GCaMP3-expressing neurons in layer 2/3. (3a right) Example 
fluorescence intensity traces (∆F/F; grey portions indicate significant Ca2+ transients) for three example 
cells from the left panel on correct right (red) and left (blue) trials. (3b) Activity patterns during the task 
for cells 1–3 from 3a.Colour-coded ∆F/F traces for individual correct left and right choice trials.Each 
row is a single trial aligned to the cue offset, turn onset and trial end. (4a) Histogram of the times of the 
centre-of-mass of the mean ∆F/F trace (tCOM) for choice-specific, task-modulated cells.Cells were 
separated into three groups (cue-,delay- and turn-preferring cells; varying shades of green) based on 
peaks in the distribution. (4c) Sorted normalized mean DF/F traces for cuepreferring (n=101), delay-
preferring (n=133) and turn-preferring (n=170) cells, aligned to the trial start, cue offset and turn onset, 
respectively, on the preferred trial-type. (4d) Normalized mean ∆F/F traces for all the choice-specific, 
task-modulated cells (one cell per row) imaged in all mice (n=404 cells from 6 mice) divided by left-
preferring and right-preferring cells. Traces were normalized to the peak of each cell’s mean ∆F/F 
trace on preferred trials and sorted by the peak time.“ (Harvey et al., 2012) 
 

After they ordered the activity patterns according to the time it was obvious that the Ca2+ 

transients of the cells formed a sequence of neuronal activation over the whole trial length 

(Figure 2: 4d). Classes of cells with cue, delay or response activity could be seen when they 

checked the distribution of activity times of all cells in the population (calculated for each cell 

as the centre-of-mass (COM) in time of the mean ∆F/F, tCOM) (Figure 2: 4a). COM is a point, 

can be real or imaginary, where whole of the body’s mass can be assumed to be located or 

concentrated. It is like balancing a ruler on your finger. 

But still in each class different cells were active at different times and formed sequences 

(Figure 2: 4c). Nevertheless choice-specific sequential activation of neurons were not seen 

when the mice got the visual stimuli alone or just by the running patterns of the mouse. 

As mentioned in the experimental setup 65 cells were simultaneously imaged and in each 

field-of-view (Figure 2: 3a) there are activity peaks from right and left preferring cells and the 

cell number of both types were approximately equal. No anatomical seperation of the task-

modulated, choice-specific cells was present. Moreover different populations of cells were 

intermixed. This holds true in the same way for the cue-, delay or response cells. 

    

    

      
 

4 

3 
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4 Conclusions 

 

In final consideration Harvey, Coen and Tank showed that movement planning through a 

virtual T-Maze, based on sensory information and on memory, relies on the parietal cortex. 

Furthermore the choice to make a left or right turn to get the reward, depending on the initial 

cue, was indicated by sequences of neuronal activity in different neuronal subpopulations 

(cue-, delay- and response cells), where a single neuron was only activated at a defined time 

point during the task. Following this further these neuronal dynamics are already present 

before the delay period, from the moment where the cue was presented. So it seems that the 

ordered progression of the neuronal activity patterns reflects the mouse future choice. 

Working memory including making a choice is reflected by a sequence of activation moving 

from one population of neuron to another in an ordered progression over time and the 

currently active cell contains all information about temporal and spatial progression. 

Contradictory to previous stereotypic models of PPC activity it can be that the PPC, during 

behavioural tasks including a spatial and temporal component, utilize different sequence 

dynamics to deal with the different demands of the task. 

Some models for the cells with the same response pattern emphasized an anatomical 

patched clustering, but this new findings support a model in which subnetworks are 

intermingled in the PPC and where mouse brain microcircuits are composed of functional 

motifs of neuronal activation. 
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Evidence for the Role of Mushroom Body Output
Neurons in Memory Based Decision Making

Achim Meyer

August 21, 2012

Abstract

The role of single neuron activity in decision making is elusive. This
term paper summarizes conditioning experiments, i.e. what could be un-
derstood as decision making, done by Strube-Bloss et al. [SBNM11].
In these experiments honey-bees learned correct responses while be-
ing conditioned. However, the pseudo single-neuron recordings from the
bees mushroom-bodies output layer did not reflect quantifiable short-term
plasticity in comparison between the pre- and post-phase of conditioning.
Correspondingly it might be concluded that these putative neurons are
not involved in learning and thus in the process of forming decisions.
In contrast results of the post-test indicate involvement of the mushroom-
bodies output layer in memory formation. More exactly this memory for-
mation seems to be the result of two putative kinds of plasticity in neuronal
responses. On the one hand fast changes between responding and not
responding to a stimulus was coined ’switching’. On the other hand the
rather slow changing of response strength was called ’modulating’.
Moreover stimulus response could be encoded from the mushroom-body
output layer 150ms after stimulus onset in the post-test. Thus, overall the
mushroom-body is not only associated with memory formation, but also
with memory based decision making.
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1 Decision making in the bee

A crucial challenge in decision-neuroscience is to understand the neural ba-
sis of the process underlying decision making [Hue10]. This neural basis can
be investigated at a single-neuron, population and whole brain level. Decod-
ing single neuron activity is promising to understand decision processes as
single neurons were shown to encode decision variables [SDM97]. Since mea-
surements of single neuron activity are seldom available in humans they are
frequently acquired in animal models.
Strube-Bloss et al.[SBNM11] investigated the decision making process in honey-
bees at a single neuron level. They utilized an olfactory reward condition-
ing paradigm to explore the role of single neuron plasticity in the honey-bees
mushroom-body. The resulting recordings provide evidence for how short and
long-term plasticity give rise to memory formation with respect to a decision
task.

2 Results

Single neuron recordings were acquired in more than 87 fixated honey-bees
performing a conditioning experiment [SBNM11]. The experiment consisted of
a control condition, a conditioning condition and a post-test.

2.1 Control

In the control condition all conditional olfactory stimuli (CS) were presented to
the bees without the unconditioned stimulus (US; here a sucrose reward). Most
(75%) of the recorded extrinsic neurons (EN) of the bees mushroom-body (MB)
did significantly respond to at least one of the ten utilized odor stimuli. Majority
of those responding ENs (70%; 52.5% overall) were sensitive to more than five
of the presented scents.

2.2 Conditioning

During the conditioning condition - for every bee a different CS (CS+) was
paired with the US. In this way the bees decision to reach out for feed by ex-
tending their proboscis was conditioned. They learned to exhibit the proboscis
extension response (PER) within 500ms, when certain odors were presented.
In the course of conditioning 50% of the ENs yielded, on average, a significant
response to CS+. However, also around 50% of ENs responded to the other
CS (CS-).
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2.3 Post-test

2.3.1 Kinds of neuronal plasticity

Three hours after the conditioning condition the conditioning experiment was
repeated in a post-test. During the post-test more than 80% of the EN yielded
a significant response to CS+. I.e. the response to CS+ was stronger during
post-test than during conditioning. In contrast, the response to CS- did not
change significantly. In a comparison between baseline condition and post-
test two types of plasticity in EN, namely ’switching’ and ’modulating’, were ob-
served (figure 1). Switching neurons did either develop a response to the CS+
(they ’recruited’) or they did seemingly drop response to unrewarded CS (they
’dropped’). Modulating neurons moderately changed response spectra by in-
creasing (they ’increased’) or decreasing (they ’decreased’) response strength
towards one or more CS. Notably switching and modulating plasticity were not
present in a comparison between baseline condition and conditioning condi-
tion.

Figure 1: Data from four extrinsic mushroom body neurons [SBNM11]. The
graphs show spike-rate histograms for the control condition (black line) and the
post-test condition (red line). The histograms corresponding to neuron unit1
of bee83 is an example of an increasing/modulating EN. Unit1 of bee73 dis-
plays firing-rates of an decreasing/modulating EN. The plot from NE unit1 bee
67 illustrates recruitment. Finally the unit1 neuron of bee87 yields a dropped
response.
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2.3.2 Tuning of single neurons

Tuning characteristics of modulating and switching ENs are apparently differ-
ent. While switching ENs feature higher life-time sparseness values than mod-
ulating ENs, modulating ENs generally present higher ’empiric’ SNR (figure 2).
This could be general reflection of the information processing trade-off between
sensitivity and specificity. I.e. modulating ENs are more sensitive and hence
less specific to certain stimuli. The contrary seems to be true for switching ENs.

Figure 2: The two bar plots illustrate lifetime sparseness(SL) of ENs in plot
A and ’empiric’ SNR in plot B [SBNM11]. The black bars represent results in
the baseline condition, while the grey bars represent results of the post-test.
Both kinds of ENs (switched and modulated ones) exhibit the same qualitative
changes - sensitivity(SNR) and specificity(SL) increase. However, modulating
neurons in general yield higher sensitivity whilst switching neurons in general
exhibit higher specificity.

2.3.3 Encoding the rewarding stimulus

Additionally activity of switching and modulating ENs can be grouped into cor-
responding population ensembles. Thus the difference in each of the two EN
population with respect to CS+ and other odors can be computed. These con-
trasts between CS+ and other CS reach their significant maximum 150-200ms
after stimulus presentation.

3 Methods

3.1 Conditioning paradigm

As a baseline/control condition naïve bees were fixated and they were pre-
sented ten different odors in a pseudo-random order. Each olfactory stimulus
was presented ten times through a stream of air. The inter trial interval (ITI)
was 1 minute. In the sequential reward conditioning condition five out of the ten
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odors were presented again. In accordance to the first condition each odor was
presented ten times in a pseudo-random order with a ITI of one minute. How-
ever one of the odors, the rewarding stimulus (CS+), was paired with a sucrose
reward (US). In this way the proboscis extension response (PER), i.e. the bees
decision to reach out for feed, was conditioned. Three hours later the condi-
tioning condition was repeated as a post-test to research long-term effects of
the conditioning.

3.2 Electrode placement

To quantize the decision, i.e. extending or not extending the proboscis, one
electrode was attached to the muscle associated with the PER. In honeybees
mushroom-body (MB) extrinsic neurons (EN) were shown to be involved in the
PER [ORMM07]. Thus to record neural activity associated with the PER three
electrodes were put near the alpha-lobe of the MB where ENs are located. In
order to ensure correct placement of the electrodes an fluorescence agent was
applied.

3.3 Data analysis

3.3.1 Unit identification

Respectively two out of the three EN electrodes were contrasted. This resulted
into three 20kHz sampled signals. Those signals were bandpass filtered be-
tween 1Hz and 9kHz. In order to detect spikes the signals were again highpass
filtered at 600Hz. Template-matching spike sorting served to identify action
potentials potentially corresponding to single-neuron. PCA dimensionality re-
duction ensured that the same pseudo single-neuron were recorded in different
conditions. To avoid double detection of single units in several channels an
signal to noise (SNR) criterion was applied.

3.3.2 Response detection

If single neuron units were responding to a stimulus was determined by two
methods: Firstly by testing for a significant difference in interspike intervals (ISI)
before and after stimulus presentation. Secondly by pooling all measurements
corresponding to a certain odor and testing for a significant difference between
activity before and after stimulus onset. The first method is sensitive to rather
slow responses (order of several 100ms) while the second method is sensitive
to faster responses (order of several 10ms).

3.3.3 Tuning measurements

The firing-rate of a unit was estimated by a kernel method [NAR99]. The firing-
rate was used to determine the tuning of units towards the presented odors.
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Again two measurements were utilized. On the one hand lifetime-sparseness
was computed [VG00]. On the other hand an ’empiric’ SNR estimate was cal-
culated [MRV+03]. Additionally for every stimulus a vector of all responses
pooled from all recorded neurons was created.
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Reward encoding and reward prediction 

“An identified neuron mediates the unconditioned stimulus in associative olfactory 

learning in honeybees”  

Hammer, M., Nature, Vol 366, 4 November 1993 

For the first time, M. Hammer was able to identify a single neuron mediating the 

unconditioned stimulus in classical conditioning of the proboscis extension response in the 

honeybee.  

Classical conditioning 

In classical conditioning a neutral stimulus (conditioned stimulus = CS) can be trained to elicit 

a response that is originally evoked by another unconditioned stimulus (US). Pavlov first 

observed associative learning in 1927 when a neutral stimulus (CS = the ringing of a bell) 

elicited a conditioned response (CR = increased salivation) which is originally elicited 

(unconditioned response = UR) by an unconditioned stimulus (US = food; Pavlov I.P., 1927); 

with these findings he built the foundation for future theories of learning. Also honeybees can 

learn to associate two unrelated stimuli in this manner.  

Proboscis extension in the honeybee 

Proboscis extension is a reflex in honeybees that is part of its feeding behavior. The 

proboscis is a tubular mouthpart in bees that serves the sucking of liquids. Its extension is 

triggered by antennal sucrose stimulation. Sucrose stimulation of the antenna is the US that 

leads to proboscis extension (UR). Interestingly, a puff of odour as CS can also elicit 

proboscis extension (CR; Bitterman, M.E. et al., 1983).  

Finding neurons that mediate the unconditioned stimulus 

Neurons that are involved in mediating the US need to fulfill two criteria that allow it to 

function in associative learning. Firstly, they need to show a response to the US and 

secondly, they must converge with the pathway of the CS. To identify neurons that match the 

abovementioned criteria in honeybees, single impaled cells in the subesophageal ganglion 

were tested for their responsiveness to sucrose (US) and visualized by staining. 
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Intracellular recordings are used to study the activity of a specific neuron. During intracellular 

recordings, microelectrodes are inserted into a particular neuron to measure the membrane 

potential. The resting potential of a neuron is based on the ion concentration of sodium and 

potassium ions across the membrane and lies between -60mV and -80mV. During an action 

potential, changes in the ion concentration across the membrane lead to the depolarization 

of the neuron, the membrane potential reaches up to +40mV. This change in membrane 

potential during an action potential can be measured and quantified. The activity of the 

neuron can be described as the number of action potentials or the frequency of action 

potentials across time (Carter, M., Shieh, J., 2009).   

VUMmx1 and its role in mediating the unconditioned stimulus 

Hammer and colleagues measured the activity of different neurons in the subesophageal 

ganglion using in vivo intracellular recordings. They found a single neuron, the interneuron 

VUMmx1 (ventral unpaired median neuron maxillare 1), which responds to sucrose with a 

long burst of action potentials. Furthermore, it innervates neuropiles (synaptically dense 

networks of nerve fibers) in the brain that are involved in the processing of odour. VUMmx1 

thus shows a response to the US (sucrose) and also converges with the pathway of the CS 

(odour). It consequently fulfills the aforementioned two criteria that suggest its involvement in 

associative learning.  

Conditioning depends on temporal contiguity between the CS and US. Forward pairing 

describes a situation in which the onset of a CS precedes the onset of an US. In this case, 

the CS signals that the US will follow shortly after and results in the association between the 

two stimuli. In contrast, in backward pairing the sequence is reversed, the CS immediately 

follows the US. This does not lead to the association of the CS with the US and therefore 

acts as a control for non-associative effects.  

To find out whether VUMmx1 mediates the US in honeybees the authors set up an 

experiment where they replaced the US delivery with the depolarization of VUMmx1. In a 

positive control, they used forward and backward training with a sucrose reward as US. They 

tested the change in response by comparing the pretest 5 minutes prior to the training with 

the test 10 minutes after the respective training. In another group of bees they did the same 

experiment but replaced the US with the depolarization of VUMmx1. Remarkably, they found 

that there is an increase in the response of M17 (the muscle responsible for the proboscis 

extension reflex) after forward pairing, but not after backward pairing, irrespectively of using 

sucrose as reward or the activation of VUMmx1. The increased motor response correlates 
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with a long-lasting increased action potential frequency (fig.1). To clarify the specificity of this 

effect the bees were differentially conditioned to two different odours (fig.2). This means that 

one odour was paired with the US (CS+); the other one remained unpaired (CS-). A 

prolonged excitation of VUMmx1 was recorded as response to the paired stimulus (CS+) but 

not to the unpaired stimulus (CS-). Thus, VUMmx1 responds similarly to a learned odour as it 

does to an US, which is in line with the idea for associative learning that the “meaning” of the 

US is transferred to CS. 

 

 

 

Fig.1: Plasticity of VUMmx1’s odour response in substitution experiments. a and a’: The rapid 
phasic odour response is reduced after backward paring compared to pre-test (a) but is increased 
after forward pairing (a’). b and b’: Post-stimulus interval histogram from 15 consecutive 1-s 
intervals after stimulus onset (Hammer, 1993). 
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Fig.2: Response plasticity of VUMmx1 in differential conditioning experiments. Bees were 
differentially conditioned to two odours (carnation, orange-blossom). One odour was specifically 
paired with the US (CS+); the other (CS-) was delivered specifically unpaired inbetween. a: 
Responses recorded from VUMmx1 and M17 5 min before (pre-test) and 10 min after (test) 
differential conditioning. b and b’, post-stimulus interval histogram of CS+ (b) and CS- (b’) 
(Hammer, 1993). 

 

Conclusion 

In conclusion, it was possible to identify a specific neuron that appears to be the cellular 

basis of an unconditioned stimulus. The long-lasting discharge of VUMmx1 by odour allows 

the assumption that the responsiveness of the neuron to an odour could depend on the 

associative strength of the odour. This is also shown by the different responses to two 

differentially conditioned odours.  

A follow up study showed that the molecular basis of associative learning mediated by 

VUMmx1 in honeybees is the neuromodulator octopamine (Hammer and Menzel 1998). 

They showed that replacing sucrose with octopamine injections into the mushroom bodies or 

antennal lobes and pairing those with odours also lead to associative learning. 
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Summary: Speed and accuracy of olfactory discrimination in the rat; Uchida N, Mainen ZF 
(2003) and
Rapid encoding and perception of novel odors in the rat; Wesson DW, Carey RM, Verhagen 
JV, Wachowiak M (2008)

by Masin Abo-Rady

Perceptual decision making can be used at the discrimination of two odors to find out how 
neuronal  and  behavioral  responses  differ  in  reaction  to  those  dissimilar  odors.  So  it  is 
interesting to study the limits of perception and corresponding behavioral translation. 
The  goal  of  this  work  is  to  show the  temporal  constrains  on  the  accuracy  of  olfactory 
discrimination in rats. The following questions will be elaborated: 
1. How fast is an odor discrimination performed? 
2. Does it take more time to discriminate odors more accurately? 
3. Are there differences in discrimination speed, if the odors are chemically similar?

Introduction
When an odor is perceived, the olfactory receptor neurons (ORNs) are stimulated and show 
odor  specific  spiking patterns.  Subsequently  the glomeruli  in  the olfactory bulb  (OB) are 
activated and show a unique spatial  pattern1,  which can be visualized and processed to 
spatial  maps.  It  is  known that  odor discriminations show highly  overlapping maps,  which 
suggests that the information for discriminations can be provided by these fine differences in 
the spatial representation2. This summary will focus on Uchida et al. 2003.

Methods
Male rats were trained in a two-choice odorant discrimination test under water restriction as 
motivation. Each trial began with a nose poke into an odor sampling port, which started a 
computer controlled delivery of an odor A for 1 second. Subsequently the rat had to choose 
one out of two further ports, one with odor A and the other with odor B, to get water as a 
reward. The reward was only available for 2 seconds in the port presenting odor A. Different 
odors were used and the movement time and time for discrimination were measured.  (This 
psychophysical test should underline the speed and accuracy of odor discrimination.)  

Results
For dissimilar odor pairs the test showed that rats discriminated odors with an accuracy of 
97,4% in a median odor sampling time of 223 ms. Almost the same results were received for 
odor pairs which show highly overlapping patterns of glomerular actions (229 ms at 95,6% 
accuracy).  Completing this test, using  four similar odor pairs (e.g. hexanol versus heptanol) 
and two not similar odor pairs (e.g. caproic acid versus hexanol), it was observed that the 
accuracy significantly correlated with the odor similarity (the higher the odor similarity the 
higher the accuracy of discrimination), but the  odor sampling time did not.
To increase the difficulty of discrimination, eight mixtures of two odors in different proportions 
were presented to the rats (Fig. 1a). This performance revealed a sigmoidal function (Fig. 
1b), in which the accuracy of discrimination dropped strongly for mixture ratios about 50/50 
(Fig. 1c). On the contrary the speed of discrimination did not change significantly. Thus, rats 
seem to develop a rapid strategy for odor discrimination regardless of the task difficulty.



A  further  point  was  to  see  whether  the  accuracy  is  dependent  on  the  sampling  time 
irrespective of task manipulations. For each pair of odors and mixture ratio trials were divided 
according to the odor sampling time, in order to produce a conditional accuracy function 2. It 
was observed that the accuracy of discrimination increased rapidly within the first 200 ms, 
and subsequently flattened (Fig. 2a). This happened regardless to mixture ratio (Fig. 2b). It 
was also  shown that  longer  odor sampling times seemed to be associated with  a lower 
accuracy instead of an enhanced one.
As it is known that rats only need short time to discriminate an odor accurately (about 200 
ms), it is assumed that only one odor sample, detected with one sniff, is sufficient to show 
maximum  performance  in  discrimination.  To  test  the  sniffing  pattern,  three  rats  were 
implanted  with  sensors  measuring  the  temperature  of  nasal  air  flow.  At  odor  onset  the 
sniffing frequency was the highest followed by a slightly decline while odor sampling period. 
Despite the difficulty of odor mixtures the number of sniffs did not change (Fig. 2c). Every 
time one to two sniffs were enough to discriminate an odor properly.



Discussion
The performed psychophysical tests which were performed showed some clear constraints 
of odor discrimination in rats. It was shown that discrimination is achieved in less than 300 
ms or about  two sniffs.  The Analysis  including natural  variability in odor sampling period 
revealed that maximum accuracy was accomplished in less than 200 ms, which is equivalent 
to one sniff (Fig. 2d). The discrimination accuracy did not improve, even if more sniffs were 
taken. Further the test showed clear constraints of how fast perception and neural activity 
need  to  be  processed  to  ensure  proper  odor  discrimination.  It  was  indicated  that 
discrimination  speed is  independent  of  chemical  similarity or  the mixture difficulty of  two 
odors. Apart from that the accuracy of odor discrimination evolves quickly,  saturates after 
short odor sampling time and depends on the mixture difficulty. 
The study of  Uchida  and Mainen  (2003)  focused on well-trained animals.  To gain  more 
insight  in  the mechanisms and the procedure of  discrimination  Wesson et  al.  performed 
some  experiments  with  the  focus  on  perception  and  encoding  of  novel  odors  in  rats. 
Therefore  optical  imaging  with  calcium-sensitive  dyes  was  used  to  demonstrate  which 
receptor neurons, with input to the rat olfactory bulb, were activated. This method enabled 
the subtle outline of the timing of odor perception when a novel odor occurred. That novel 
odor evoked spontaneously expressed odor discrimination with high-frequency exploratory 
sniffing.  Using this  imaging allowed separate estimation of  how long the transmission of 
sensory signals needed to the brain and the time needed for central events underlying odor 
discrimination and response initiation1.  Interestingly,  discrimination of a novel odor from a 



learned one occurs in 150-200 ms, and is by so at least as fast as discrimination of learned 
odors. A probable explanation is that in the training of discriminating odor from another, the 
animal gets used to the repeatedly presented odor and thereby habituates to this stimulus, 
which is expressed in a slower and weaker reaction. Partitioning the whole process, 50 ms 
after sensory input arrived in the brain the behavioral response begins, which shows that the 
central processing of discrimination is extremely rapid. Moreover it is completed even before 
spatial  maps of  glomerular  activity have fully developed.  This indicates that  activation of 
ORNs below maximum is  sufficient  so  start  a  reaction,  which  means that  the  response 
amplitude of many glomeruli is reached after a behavioral response has already begun. 
Further investigations showed that only the presence of an odor is not enough to trigger 
perception and discrimination. It is required that rats first inhale odors to activate the ORNs, 
which happens with the first sniff.

Conclusion
Uchida and Wesson showed that odor discrimination happens very quickly in about 200 ms. 
It was also displayed that discriminating a novel odor happens even a little bit faster than the 
determination between two learned odors. The different parts of odor discrimination were 
shown, and it became clear that discrimination is essential for estimating the significance of 
different odors and the ensuing actions and behavior of an animal.

References:
1 Wesson  DW,  Carey  RM,  Verhagen  JV,  Wachowiak  M  (2008)  Rapid  encoding  and 
perception of novel odors in the rat. PLoS Biol 6(4), e82
2 Uchida N, Mainen ZF (2003) Speed and accuracy of olfactory discrimination in the rat. 
Nat Neurosci 6(11):1224-9
3 Text modified from Uchida et al. 2003 Figure 3
4  Figure 2 a and b modified from Uchida et al. 2003 Figure 5 a and b, Figure 2 c and d 
modified from Uchida et al. 2003 Figure 6 c and d
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Introduction 
 
Perceptual decision-making is the behavioural response to a perception in the environment. 

An essential question is how and where these decisions are made in the human brain.  

Former studies were performed using single-unit recordings in monkeys which had to 

perform discrimination tasks [1-5]. From the results it was proposed that environmental 

information coded by different pools of spike frequency specific neurons (selectively tuned to 

different perceptual conditions like the direction of motions) are integrated providing the base 

for the animals decision making [6]. Findings in other studies suggest that higher-level 

cortical regions (for instance the dorsolateral prefrontal cortex (DLPFC), [1, 6]) compute 

perceptual input by comparing the outputs of selectively tuned lower-level sensory neurons 

[7-9]. They also found that the neuronal activity in areas involved in decision-making 

gradually increased and then remains elevated until a response was given. The increase was 

slower during difficult trials than in easier ones [7, 8]. 

To investigate if these processes are also true for more complex cognitive operations in 

humans Heekeren et al. used functional magnetic resonance imaging (fMRI) while 

participants had to decide whether an image was a house or a face. From previous 

neuroimaging studies it is known that there are face and house selective regions in the 

human ventral temporal cortex [10-14]. Other studies found out that a change of the blood-

oxygen-level-dependent (BOLD) signal in a specific region is a reliable indicator for changing 

neuronal activity in this region [15, 16]. 

In this study Heekeren and colleagues wanted to identify the regions for face and house 

recognition more precisely and wanted to know if there are higher-level cortical regions with 

outputs proportional to the differences of the activities of face and house responsive regions, 

respectively. 

 

 

Methods 

 

Two groups of 12 healthy volunteers without any neurological, visual or psychiatric disorders 

participated in the imaging and behavioural experiments, respectively. 

Subjects were shown 38 pictures of faces and houses while using magnetic resonance 

imaging (MRI). To vary difficulty distracting noise was added to the presented pictures. 

Pictures were processed so that all resulting images had an identical frequency power 

spectrum [17] with graded amount of noise. The images had two different amounts of noise, 

lower noise (correctness above 95 % = suprathreshold) and higher noise (correctness down 

to 82 % = perithreshold).  

Images were shown for 1 s on a back projection screen and after a forced delay (analogous 

to a compareable monkey study [7]) subjects had to decide (button press) whether the image 

showed a house or a face.  

The whole brain data were collected by a 3T GE Signa scanner (GE Medical Systems). MRI 

data were pre-processed for analysis of brain image series and modelling. Trials, in which  

subjects gave no or incorrect responses, were pooled together and used as error trials. Thus, 



only correct trials were used for modelling regressors for the four conditions (suprathreshold 

face and house and perithreshold face and house). For more details see Methods, Heekeren 

et al. (2004). 

 

Results 

 

Heekeren et al. identified for each subject voxels in the ventral temporal cortex responding 

more specific to faces than to houses and vice versa (Fig. 1a). These regions were selective 

for one category (faces or houses) and showed higher responses to suprathreshold than to 

perithreshold images. This indicates that activity in those regions represent the sensory 

evidence for the two respective categories (Fig. 2b). 

The frontal eye field (FEF, Brodmann area (BA)6), the supplementary eye field (SEF) and the 

parietal regions (interparietal sulcus, IPS) gave larger responses to difficult trials indicating 

requiring more attentional resources for correct performances (Fig. 2a).  

 

 
Figure 1: from Heekeren et al. (2004). FMRI data illustrating representation of sensory evidence in maximally face- and house-
responsive voxels. a, Maximally face- (Face, orange) and house-responsive (House, green) voxels in one subject. b, BOLD 
change corresponds to perceptual evidence for respective classes of stimuli. Mean responses (n = 12, error bars represent 
standard error of the mean) in face- and house-selective voxels to the four different conditions (from left to right: suprathreshold 
face (~ 10% noise), perithreshold face (~ 45%), perithreshold house (~ 53%), suprathreshold house (~ 10%)). For the respective 
preferred category, both face- and house-selective regions responded more to suprathreshold than to perithreshold images 
(face-selective: P < 0.041, paired t-test one-tailed; houseselective: P < 0.001) while the opposite was true for the non-preferred 
category (faceselective: P < 0.013; house-selective: P < 0.002). For face-responsive: suprathreshold face > perithreshold face > 
perithreshold house > suprathreshold house (analysis of variance, linear contrast, P < 0.001); for house-responsive: opposite 
pattern (P < 0.001). 

 

Furthermore in several higher-level decision-making brain regions, e.g. in the superior frontal 

sulcus (BA8/9), the posterior cingulate cortex (BA31) and the superior frontal gyrus (BA9), 

the response to suprathreshold images was greater than to perithreshold ones (Fig. 2a). 

Heekeren et al. also showed that a region in the depth of the superior frontal sulcus is the 

only region which showed a greater response to suprathreshold images and getting input 

from lower-level sensory regions (Fig. 2b). Furthermore, the task-related signal changes 

correlate positive with the task-performance (Fig. 2c). 

 



 
Figure 2: modified after Heekeren et al. (2004). a, Brain regions showing a main effect of task difficulty: orange: easier (low 
noise proportion) > harder (high noise proportion); blue: harder > easier. FEF, frontal eye field; INS, insula; IPS, intraparietal 
sulcus; PCC, posterior cingulate cortex; SEF, supplementary eye field; SFG, superior frontal gyrus; SFS, superior frontal sulcus. 
b-c: Perceptual decision-making in posterior DLPFC. b, Region in the depth of the left SFS, showing both a higher response to 
suprathreshold images of faces and houses relative to perithreshold images, and a correlation with |Face(t ) - House(t )|, 
suggesting that this brain region integrates sensory evidence from sensory processing areas to make a perceptual decision 
(BA8/9, easier > harder: x = -24/y = 24/z = 36, z max = 4.20; correlation with |Face(t ) - House(t )|: x = -22/y = 26/z = 36, z max = 
3.66, coordinates in MNI system refer to local cluster maxima, and z max to the corresponding z-value). c, Signal changes in the 
posterior portion of the DLPFC predicted task performance (r = 0.413, P = 0.004). Points represent average BOLD change and 
performance for each condition (suprathreshold face, perithreshold face, perithreshold house and suprathreshold house) and 
subject. 

 

Conclusion 

 

This study showed that pools of selectively tuned lower-level sensory neurons exist. In this 

case they are tuned to houses and faces and are lying in the ventral temporal cortex. As 

already shown in single-unit recordings in monkeys [8] the neural activity in lower-lever 

regions of humans increased proportionally to the strength of the signal. The output of these 

regions provides sensory information, both in humans and monkeys.  

It was also shown that higher-level regions, namely the left posterior DLPFC, perform 

decision-making tasks by integrating and comparing the output of lower-level sensory 

neurons in a subtractive process. In Heekeren’s study this region showed greater response 

to suprathreshold images and its activity was correlated to the difference between the signals 

of the face- and house-selective regions, indicating a putative site for signal convergence 

and a possible comparison act. These results are comparable to the Shadlen model of 

perceptual decision-making [7, 8]. Also, the measured signal changes predicted the task 

performance but were not in line with predicted model data derived from monkey studies. 

The comparisons process was also shown in electrical stimulations experiments [1]. In other 



studies with experiments on perceptual decision-making [18-20] the left posterior DLPFC is 

activated, too, thus indicating that this prefrontal region has general decision-making function 

not only in comparing faces and houses. 

In lower-level sensory neurons the rate of activity increased slower during more difficult trials 

(perithreshold images). Higher-level cortical regions responded more to decisions made 

about suprathreshold images whereas the opposite was true for brain regions associated 

with the attentional network. This indicates that these regions require attentional resources to 

form correct performances. 

Because the studies in monkeys mostly parallel the studies in humans the basic neural 

process of perceptual decision-making seems to be some kind of conserved during brain 

evolution. 
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1. Introduction 

The article ‘Perceptual Learning and Decision-Making in Human Medial Frontal Cortex’ was 

written by Thorsten Kahnt, Marcus Grueschow, Oliver Speck and John-Dylan Haynes and 

was published in May 2011 in the journal Neuron. In it, the previous assumption that 

perceptual learning leads to changes in early visual areas (Sasaki et al., 2010; Seitz and 

Wannabe, 2005) is replaced by the theory of perceptual learning being part of the framework 

of reinforcement learning and with that it is based on changes in higher decision-making 

areas. Evidence for that is given by an orientation discrimination task with human subjects 

and associated functional magnetic resonance imaging (fMRI). 

2. Improvements in Perceptual Decision-Making 

The orientation discrimination task was executed with 20 human subjects and lasted 4 days. 

Subjects had to fixate a central cross while a low contrast Gabor was shown in the right 

upper visual field (Figure 1A). They had to decide whether the orientation of the Gabor has 

changed in clockwise or counterclockwise direction and the orientation deviated from 45° up 

to 4° in both directions. As a reward for a correct answer, the fixation cross turned green, 

whereas an incorrect answer resulted in a red fixation cross. FMRI data was recorded on the 

first and last day of the experiment during 6 training runs. The second and third day involved 

15 training runs in a mock scanner (Figure 1B). 
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Figure 1. Experimental set-up and time course (Kahn et al. (2011), figure 1 A,B) 

(A) Sketch of the orientation discrimination task  

(B) Time course of the experiment with the events of each experimental day 

 

The results of this task showed a distinct effect of perceptual learning in which performance 

of the subjects increased with training during the experiment. The number of correct answers 

increased with both, the number of training runs and the number of days during the 

experiment. It could also be shown that subjects became increasingly sensitive to small 

deviations from 45°. 

3. A Reinforcement Learning Model for Perceptual Decision-Making 

For better explanation of the results and the improvement of perceptual learning in general a 

reinforcement learning model was created and compared with the original data of the 

orientation discrimination task. In the model, the computed decision variable DV is the basis 

of the perceptual choice. DV is the product of a sensory stimulus x and a perceptual weight 

w. The sensory stimulus x is formed from the stimulus orientation minus 45°, whereas the 

perceptual weight w accounts for the ability to read out sensory information provided by the 

stimulus x and which changes over learning. For that it is updated by means of an error-

driven reinforcement learning mechanism. A more positive DV results in a clockwise 

decision, whereas a negative DV indicate a counterclockwise decision. An expected value  
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EV is the probability that the current trial will be rewarded and is provided by the absolute 

value of DV. EV is then compared with the actual reward r of the trial and a reward prediction 

error δ can be computed, that updates the perceptual weight w in proportion to a learning 

rate α. The decision variables for each subject were calculated and compared with the 

original data of the task. It could be shown that the reinforcement learning model 

characterizes subjects’ perceptual choices and improvements very well. A significant effect of 

training runs and of training days of the model data have been revealed and learning process 

was also accompanied by a steepening of the psychophysical function. 

4. Neural Representations shown by fMRI 

Once the authors knew that the model makes computations of perceptual learning possible, 

the neural representations of stimulus orientation and decision variable in the brain were 

investigated. Therefore functional magnetic resonance imaging (fMRI) was used, where brain 

activity is measured by detecting associated changes in blood flow. The orientation of the 

Gabor during the stimulus presentation was significantly encoded in the lower left early visual 

cortex (Figure 2A), the left lateral parietal cortex (Figure 2B), the precuneus and the medial 

frontal gyrus. The data also shows that predictions about the orientation of the Gabor can be 

made (Figure 2A and B, scatterplot on the right) and that activity in some specific subregions 

increases or decreases with larger angle changes of the Gabor. This suggests that 

information about the physical properties of the stimulus is encoded in the early visual cortex 

as well as in higher brain regions. Because the model says that the orientation is not directly 

responsible for the decision, but the decision variable DV plays an important role, the activity 

patterns of brain regions that are involved in decision making were identified and 

representations of DV were searched. These were found in the left putative lateral 

intraparietal area (LIP), the anterior cingulated cortex (ACC) and the precuneus but not in the 

early visual cortex. 
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Figure 2. Encoding of stimulus orientation in the brain (Kahnt et al., 2011, figure 4 A,C) 

(A) Information about stimulus orientation is encoded in the early visual cortex (blue 

circle). Scatterplot on the right visualizes the relationship between actual orientations 

and the predicted ones by the model. 

(B) Same as in (A) but for information about stimulus orientation in the lateral parietal 

cortex (blue circle). 

 

Because the physical stimulus orientation and DV of the model are correlated to each other it 

is difficult to separate the regions where sensory evidence is represented from the regions 

which are involved in perceptual learning and decision-making. A distinguishable point is that 

DV changes during the learning process, and responsible regions should follow the changes 

and have more information about DV than about the stable stimulus orientation. A t-test 

analysis of a voxel-wise comparison of the fMRI data between information maps of DV and 

stimulus orientation revealed only one significant cluster in the ACC. In this region there is 

more information about DV present than about the orientation of the Gabor, which leads to 

the assumption that the ACC plays a key role in perceptual learning. 

Next, the possibility of changes in the early visual stimulus representations during the 

learning process was investigated, because a previous study has suggested this possibility  

A 

B 
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(Schoups et al.,2001). There were no significant differences if the information about stimulus 

orientation and the information about DV in the early visual cortex.  Also, no significant 

evidence for a changing of the representation of stimulus orientation with training could be 

shown, because there was no difference in orientation encoding between the first and the 

second scanning session. All together these results suggest that the course of learning does 

not lead to changes in the representation of sensory evidence in early sensory areas.  

Because alternative learning models could also predict a decision variable which increases 

over the learning process, more evidences for a real reinforcement learning mechanism were 

needed. As signed reward prediction error signals can be seen as evidence for reinforcement 

learning processes (Bayer and Glimcher, 2005; Schultz et al. 1997), these signals from the 

model were regressed against the feedback-locked BOLD signal of the fMRI analysis of each 

voxel. It could be shown that there are significant correlations between model-derived 

prediction errors and activity in reward related regions such as the ventral striatum, which 

indicates further evidence for reinforcement learning process in perceptual learning. 

Nevertheless, it had still to be proven that learning related changes in DV are related to an 

updating mechanism that is based on signed prediction errors as proposed by the 

computational model. For that a conjunction analysis was carried out which searched for 

voxels which fulfill two criteria. They should contain more information about DV than 

orientation and the fMRI BOLD signal should correlate with signed prediction errors derived 

from the model. A cluster of voxels in the ACC fulfilled both criteria and supports the 

assumption that there is an important role of reinforcement processes in perceptual learning 

and decision-making in the ACC. 

5. Summary 

To summarize the results, strong evidence for perceptual learning-related changes in higher 

order areas was provided, like e.g. in the ACC where behavioral improvements in a specific 

orientation discrimination task led to activity changes. A reinforcement learning model was 

created and it could have been shown that the model explains perceptual improvements 

during the learning course very well. It shows that learning leads to an enhanced readout of 

sensory information, which in turn leads to noise-robust representations of decision 

variables. The used updating mechanism is based on signed prediction errors, like in 

classical reward learning.  

All together these results suggest that perceptual learning is based on reinforcement learning 

processes and that the same neural processes as in reward-based learning are also  
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activated during decision-making. These findings question the distinction between perceptual 

and reward-based learning and increases the understanding of the neurobiological bases of 

perceptual learning processes. 
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Edmund T Rolls, Fabian Grabenhorst, and Benjamin A. Parris 

 
 

by Gustav Schneider 
 
 
 

Main Message 

Representations of the affective (reward or punishment) value of many stimuli and events and 

their subjective correlate pleasantness versus unpleasantness are present in the mid 

orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC). These involve all different 

kinds of stimuli like olfactory1;2;3;4, taste5;6;7, somatosensory8, temperature9, visual10, 

monetary11;12, and social stimuli13;14;15;16. If a stimulus is presented a representation of the 

affective value on a continuous scale may be formed, and that may be followed by a binary 

decision process. This could involve separable brain systems. 

One aim was to test whether different brain systems have activity that is differently related to 

taking a categorical decision versus rating on a continuous scale and if different brain systems 

are involved. 

 

Methods 

To investigate these problems they performed a fMRI study in which the same set of stimuli was 

used in different trials. Either only the affective value and intensity had to be rated on a 

continuous scale or binary decisions had to be made about whether a second stimulus was 

more or less pleasant or more or less intense. They used olfactory stimuli because many of 

them have affective value (e.g. pleasant or not) and they can be delivered with a short delay 

between them. The participants were twelve healthy volunteers (7 men and 5 women, mean 

age=27 years). The set of olfactory stimuli used were selected based on previous fMRI studies3. 

The unpleasant odors were hexanoic acid (10% v/v) and isovaleric acid (15%) and the pleasant 

odors 1M citral and 4 M vanillin. The stimuli were delivered with a purpose-built continuous 

airflow 10-channel computer-controlled olfactometer in a MRI scanner3. The system was free of 

any auditory, tactile, or thermal shifts and medical clean air was continuously delivered with a 

pressure regulator and a flow meter. Each trial started at t = 0 sec with the first odor delivered at 

t = 2 sec accompanied by a visual label stating “sniff first stimulus”. After a clean-air-delivering 

period of 6 sec the participants had to decide the pleasantness, intensity or rate the stimulus. 

The second odor was presented for 2 sec accompanied by a visual label stating either “sniff 

decide pleasantness”, “sniff decide intensity” or “rate stimulus”. Then there was a 6-sec period 

with clean air and at t = 16 sec the words “first stimulus” and “second stimulus” appeared on the 

screen for 2 sec and the participants had to make a decision (Figure 1). On rating trials the 

subjective ratings were made at t = 16 sec. The first rating was for the pleasantness of the 

second odor (-2 – 2) and the second for the intensity (0 – 4). 

 



 

Results and Discussion 

They found significantly larger BOLD signals in the medial prefrontal cortex area 10 when a 

decision had to be made compared with when the same affective olfactory stimuli had to be 

rated for affective value and intensity (Figure 2A, pink circle). The term “BOLD-signal” is used 

to refer to the level of signal from the BOLD effects that are measured by fMRI. The implication 

is that this part of the medial area 10 contributes in some way beyond representing affective 

value to the decision-making process. At least the more dorsal part of medial area 10 had 

signals that were related to decisions about pleasantness. Furthermore, the signals in medial 

area 10 were not correlated with the pleasantness (or intensity) ratings supporting the 

hypothesis that activity in medial area 10 is more closely related to decision-making than to the 

representation of affective value. Additionally they found that that the medial area 10 BOLD 

signal related to decision-making versus rating extended down into a part of medial OFC (Figure 

2A, yellow circle). The activations there were not related to the pleasantness of the olfactory 

stimuli. So at least parts of the medial OFC may be involved in decision-making and not in 

representing the affective value of the stimuli or may receive feedback connections from brain 

regions such as medial area 1017 implicated in the decision-making. The mid part of the OFC is 

not implicated in processing that is special to taking the decision, but it is implicated in the 

continuous affective representation of the stimuli. An anterior part of insula had activations 

related to decisions about intensity versus only rating whereas agranular insula had activations 

related to decisions about pleasantness versus only rating. This suggests that affective decision-

making recruits the far anterior (agranular) insula, which is activated by taste-olfactory 

convergence that can contribute to making a flavor pleasant18 and might be involved in 

autonomic effects resulting from the decision19. The dorsal part of the ACC was also implicated 

more in decision-making then representing affective value (Figure 2A, white circle) and in 

decision-making about both pleasantness and intensity. The dorsal ACC region showed more 



activation on difficult than on easy trials, consistent with the possibility that difficult decisions 

require more attention or conflict, which engage this brain region20. 

 

 

They suggest that decision-making parts of the medial prefrontal cortex are anterior to the region 

further posterior in the mid OFC where there is a correlation with the pleasantness ratings. 

Additionally they found that that the medial area 10 BOLD signal related to decision-making 

versus rating extended down into a part of medial OFC. 

In medial prefrontal areas in which the BOLD signal was larger during choice decision-making it 

was the case that even during decision-making some deactivation was found, which may be 

past dependent. Although these regions were somewhat deactivated during decision-making 

(Figure 2) the signal was much lower when choice decisions were not being made and 



continuous was being assessed. Moreover, the signal present in medial prefrontal cortex during 

decision-making does appear to be relevant to decision-making because lesions of these in 

humans impair decision-making. As future study it would be very interesting to examine exactly 

how neuronal activity in this region is related to decision-making. 

The activity of human ventral premotor cortex was greater for decisions about the intensity than 

for decisions about the pleasantness of olfactory stimuli. 

The activations in the medial prefrontal cortex area 10 region were correlated with the easiness 

of the decisions about intensity. No significant effects of this type of analysis of task easiness 

were found in the OFC regions described here, where there was a correlation of the BOLD 

signal with the continuous-valued pleasantness ratings. An interesting finding, however, is that 

areas such as DLPFC may be especially related to decision-making about the physical 

properties of stimuli such as their intensity. Other brain regions such as the more dorsal parts of 

medial prefrontal cortex area 10 (Figure 2) may be more closely involved in affective decision-

making. Their engagement in decision-making tasks may be related to greater attentional or 

emotional processing on difficult trials. 

 

References 
1 

  Grabenhorst, F., Rolls, E. T., Margot, C., da Silva, M. A. A. P., & Velazco, M. I. (2007). How pleasant and unpleasant stimuli 
combine in different brain regions: Odor mixtures. Journal of Neuroscience, 27, 13532–13540. 
2   

Anderson, A. K., Christoff, K., Stappen, I., Panitz, D., Ghahremani, D. G., Glover, G., et al. (2003). Dissociated neural 
representations of intensity and valence in human olfaction. Nature Neuroscience, 6, 196–202 
3   

Rolls, E. T., Kringelbach, M. L., & de Araujo, I. E. T. (2003). Different representations of pleasant and unpleasant odors in the 
human brain. European Journal of Neuroscience, 18, 695–703 
4   

Rolls, E. T., Critchley, H. D., Mason, R., & Wakeman, E. A. (1996). Orbitofrontal cortex neurons: Role in olfactory and visual 
association learning. Journal of Neurophysiology, 75, 1970–1981 
5
   Grabenhorst, F., Rolls, E. T., & Bilderbeck, A. (2008). How cognition modulates affective responses to taste and flavor: Top down 

influences on the orbitofrontal and pregenual cingulate cortices. Cerebral Cortex, 18, 1549–1559 
6
  Small, D. M., Gregory, M. D., Mak, Y. E., Gitelman, D., Mesulam, M. M., & Parrish, T. (2003). Dissociation of neural representation 

of intensity and affective valuation 
in human gustation. Neuron, 39, 701–711 
7
   Rolls, E. T., Sienkiewicz, Z. J., & Yaxley, S. (1989). Hunger modulates the responses to gustatory stimuli of single neurons in the 

caudolateral orbitofrontal cortex of the macaque monkey. European Journal of Neuroscience, 1, 53–60 
8
  Rolls, E. T., OʼDoherty, J., Kringelbach, M. L., Francis, S., Bowtell, R., & McGlone, F. (2003). Representations of pleasant and 

painful touch in the human orbitofrontal and cingulate cortices. Cerebral Cortex, 13, 308–317 
9
    Guest, S., Grabenhorst, F., Essick, G., Chen, Y., Young, M., McGlone, F., et al. (2007). Human cortical representation of oral 

temperature. Physiology and Behavior, 92, 975–984 
10

  OʼDoherty, J., Winston, J., Critchley, H., Perrett, D., Burt, D. M., v& Dolan, R. J. (2003). Beauty in a smile: The role of medial 
orbitofrontal cortex in facial attractiveness. Neuropsychologia, 41, 147–155 
11

  Knutson, B., Rick, S., Wimmer, G. E., Prelec, D., & Loewenstein, G. (2007). Neural predictors of purchases. Neuron, 53, 147–156 
12

   OʼDoherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations 
in the human orbitofrontal cortex. Nature Neuroscience, 4, 95–102 
13

   Spitzer, M., Fischbacher, U., Herrnberger, B., Gron, G., & Fehr, E. (2007). The neural signature of social norm compliance. 
Neuron, 56, 185–196 
14

   Moll, J., Krueger, F., Zahn, R., Pardini, M., de Oliveira-Souza, R., & Grafman, J. (2006). Human fronto-mesolimbic networks 
guide decisions about charitable donation. 
Proceedings of the National Academy of Sciences, U.S.A., 103, 15623–15628 
15

   Hornak, J., Bramham, J., Rolls, E. T., Morris, R. G., OʼDoherty, J., Bullock, P. R., et al. (2003). Changes in emotion after 
circumscribed surgical lesions of the orbitofrontal and 
cingulate cortices. Brain, 126, 1691–1712 
16

   Kringelbach, M. L., & Rolls, E. T. (2003). Neural correlates of rapid reversal learning in a simple model of human social 
interaction. Neuroimage, 20, 1371–1383 
17

   Petrides, M., & Pandya, D. N. (2007). Efferent association pathways from the rostral prefrontal cortex in the macaque monkey. 
Journal of Neuroscience, 27, 11573–11586 
18

   de Araujo, I. E. T., Rolls, E. T., Kringelbach, M. L., McGlone, F., & Phillips, N. (2003). Taste-olfactory convergence, and the 
representation of the pleasantness of flavour, in the human brain. European Journal of Neuroscience, 18, 2374–2390 
19

   Critchley, H. D., Wiens, S., Rotshtein, P., Ohman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. 
Nature Neuroscience, 7, 189–195 
20

   Greene, J. D., Nystrom, L. E., Engell, A. D., Darley, J. M., & Cohen, J. D. (2004). The neural bases of cognitive conflict and 
control in moral judgment. Neuron, 44, 389–400. 



Summary report on `Overlapping and Distinct Neural

Systems Code for Subjective Value during Intertemporal and

Risky Decision Making, Peters et al 2009'

by

Sulav Duwal

August 19, 2012



Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Equal Valuation of Rewards with Same Subjective Value . . . . . . . . . . . 3
Stability of Individual's Discount Rates . . . . . . . . . . . . . . . . . . . . 3
Characterization of DD and PD by Hyperbolic Function . . . . . . . . . . . 3
Analysis of Reaction Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Analysis of Hemodynamic Activity . . . . . . . . . . . . . . . . . . . . . . . 3

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Introduction

The neural mechanism for valuation of di�erent types of reward may consist of regions
or network speci�c to the reward type and a generic system where results from domain-
speci�c regions are integrated. In the study, the authors considered two type of rewards,
namely delayed reward and risky reward and attempted to delineate the underlying neural
process. Delay discounting (DD) or intertemporal choice refers to the phenomenon that
the current, subjective value of a reward decreases as the delay until its receipt increases,
whereas, probabilistic discounting (PD) or risky choice refers to the phenomenon that the
subjective value of a reward decreases as the odds against receiving it increases (See Rangel
et al. 2008 [7] for detailed introduction). Though subjective choice preferences have been
well studied in domain of PD and DD, only few have investigated the underlying neural
mechanism.

Material and Methods

Experiment 1

Peters et al. 2009 [6] conducted two types of experiments. The �rst type of experiment,
which included 22 subjects, consisted of three sessions. Subjects showing stability of dis-
counting across the �rst and the second sessions, which included behavioral tests without
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fMRI (functional magnetic resonance imaging) scanning, were selected for the third ses-
sion, which consisted of behavioral tests accompanied by fMRI scanning. A total of 13
subjects was selected for the third session and subjects' BOLD (BLOOD OXYGENA-
TION LEVEL-DEPENDENT) changes were analyzed. Median time between the �rst and
the second sessions and between the second and third session were 9 days and 4 days
respectively.

The behavioral test comprised of two parts. In each part, subjects made repeated
binary choices either between a �xed immediate reward and a greater reward delivered
with delay or between a �xed immediate reward and a greater reward delivered with a
given probability. The amount of the delayed and probabilistic reward was reduced in a
stepwise fashion after two successive choices of the delayed and probabilistic reward and
increased in a stepwise manner after two successive choices of the immediate reward. The
purpose of adjusting the reward amount was to induce the reversal of preference (for e.g
from immediate reward to delay reward) allowing to estimate indi�erence amounts at which
subjects showed indi�erence between the immediate and the delayed/probabilistic options.
For a number of delays and probabilities, their indi�erence amounts were estimated and the
subjective discounted value (SV ) were calculated. For delay discounting and probabilistic
discounting, equation 1 and equation 2 were �tted to data respectively.

SV =
1

1 + kD
(1)

SV =
1

1 + kθ
(2)

where D is delay in days and θ is odds for losing. The best-�tting discount rate k was
estimated for each subject. k describes the propensity of subject to be patience in case of
delay discounting and risk aversive in case of probabilistic discounting. In the third session,
subjects performed the behavioural test as in previous session with delay and probabilistic
options computed based on previous pretests in such a way that a subject chosed delayed
or risky rewards roughly over immediate rewards in 50 % of trials. The brain-hemodynamic
activity of subjects were scanned using fMRI during the test.

Experiment 2

The �rst type of experiment was designed based on the assumption that delayed and
probabilistic rewards with same subjective value are valuated equally. The purpose of the
second type of experiment was to test the validity of that assumption. In contrast to the
previous behavioural test, the behavioural test in second type of experiment comprised
of repeated binary choices between delayed and probabilistic options. Based on previous
pretests (from the �rst and the second session), the delay and probabilistic rewards were
computed in a such manner that in half of trails delay rewards have higher subjective
value and in other half lower subjective value than probabilistic rewards. The assumption
would be refuted, if delayed options (probabilistic options) are systematically preferred
over probabilistic options (delayed options) of similar subjective value.
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Result

Equal Valuation of Rewards with Same Subjective Value

In the second experiment, the proportion of trials in which subjects showed preference
for delayed rewards over probabilistic rewards was plotted as a function of subjective
discounted value di�erence between them. Logistic functions were �tted to individual
subject data and the subjective values at which subjects were indi�erent about choices
were estimated. The mean indi�erence point over all subjects was determined to be close
to and insigni�cantly di�erent than zero, which showed the validity of assumption on which
the �rst experiment was based.

Stability of Individual's Discount Rates

In 13 subjects out of 22, assessment of discount rates in �rst and second sessions which were
on average 119 days apart showed good stability providing support for trait like stability
of individual preferences over a long time period. Across all subjects, high correlation was
observed between discount rates from a behavioural pretest shortly before the fMRI session
and during fMRI session ( median time interval between the second pretest and scanning
was 4 days). The observation indicated that the participants' propensities to be patient or
risk-averse are well preserved over long period of time.

Characterization of DD and PD by Hyperbolic Function

The choices for both DD and PD in the third session were also well characterized by
hyperbolic function. Discount rates showed considerable inter-subject variation and there
was a negative but non-signi�cant correlation between the DD and PD discount rates for
individuals.

Analysis of Reaction Time

In the third session with fMRI scanning, the reaction times (RT) were analyzed as a
function of subjective value. Firstly, the trials were ordered according to subjective value
of delay/probabilistic rewards and divided into three categories of roughly the same size.
The categories consist of trials with delay/probabilistic rewards with subjective value

1. higher than �xed immediate reward.

2. similar to �xed immediate reward.

3. lower than �xed immediate reward.

The RTs were generally faster in the �rst category than in other two categories.

Analysis of Hemodynamic Activity

In the third session, brain regions in which the magnitude of hemodynamic response showed
a positive correlation with subjective (discounted) value were searched.
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Figure 1: (Figure extracted from Peters et al. 2009 [6]) Figures at the left side showing
the �tting of equation 1 and equation 2 on data of subject 001 from the study [6]. The
�gures on the right side shows the increment of indi�erence value as a function of delay or
risk.

A Distinct Network for Subjective Valuation During DD

Kable and Glimcher et al. 2007 [3] previously performed experiments which showed that
certain brain regions correlate to the subjective value of delayed reward during intertem-
poral choice and identi�ed them. The authors were able to replicate the previous �nding
by Kable and Glimcher et al. 2007 [3]. During delay discounting, following regions showed
strong correlation with subjective value.

1. Posterior Cingulate Cortex

2. Ventral Striatum

3. Medial Prefrontal Cortex

Furthermore, they identi�ed regions which showed signi�cantly higher correlation with SV
for DD than with SV for PD.

A Distinct Network for Subjective Valuation During PD

The regions showing pronounced correlation with subjective value during PD are given
below.

1. Right Superior/Inferior Parietal Lobule
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2. Left Middle Occipital Gyrus

3. Ventral Striatum

They also identi�ed brain regions showing signi�cantly higher correlation to SV during PD
than during DD.

Figure 2: (Figure extracted from Peters et al. 2009 [6] ) Regions marked with blue (lateral
parietal cortex) showed correlation with subjective value of DD, while regions marked with
red (superior parietal regions) correlated with subjective value during PD. Minimal overlap
of clusters can be observed.

A Common Core Network

Left ventral striatum and right central orbito frontral cortex (OFC) were found to code
for subjective value in both cases strongly implicating these regions form or are part of
domain-general reward valuation.

Discussion

Subjective discounted values were well modeled by hyperbolic function of delays or odd
for losing. Furthermore, preservation of individual traits like risk aversion or impulsiveness
was also observed for a long period of time. From fMRI scanning, brain regions involved in
subjective valuation of rewards were identi�ed. A distinct network of regions was identi�ed
which codes the subjective value for DD and PD. A common system coding for subjective
value of both delayed and risky reward was also observed strongly implicating the network
in providing neural basis of a common neural currency of stimulus value. In line with
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previous observation where activities in OFC correlated with the value of decision options
( Padoa-Schioppa and Assad et al. 2006 [5] ) as well as value di�erence between decision
options ( FitzGerald et al. 2009 [1]), the authors also found OFC activities correlating
with subjective value of rewards. The role of ventral striatum ,however, is not clear. Some
studies (Kable and Glimcher et al. 2007 and Knutson et al. 2007 [4]) reported ventral
striatum to code subjective value, whereas, other like Hare et al. 2008 [2] argued that it
codes a prediction error rather than a value signal. Nevertheless, OFC and ventral striatum
are part of a system which integrates di�erent and distinct valuation system, in a manner
that is independent of the precise nature of the decision option.

In summary, the study delineates neural mechanism of reward valuation into domain-
speci�c and domain-general networks. The ventral striatum and OFC are the part of the
common system which integrates the result from domain-speci�c valuation in a manner
such that the intrinsic value is independent of the precise nature of reward. The study
further suggests that di�erent decision options may compete for neurocognitive resources
through the domain-general networks.
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Social distance modulates recipient’s fairness consideration in the dictator 

game: An ERP study. Yin Wua, Marijke C. Leliveldb,  XiaolinZhouc, d

Social Distance (SD) is closely related to decision-making. SD is a relationship between two 

people; it is defined by physical and social features. People use different scripts when they 

meet friends to the ones they use when they contact strangers. (Fiske and Taylor, 1991); It 

appears moreover that friends are more concerned about the sense of various moral norms 

such  as  fairness  (Shapiro  1975). Social  distance  can  be  manipulated  to  show how the 

fairness norm is activated and how it influences people’s fairness consideration  (Lind and 

Tyler, 1988; Mandel, 2006; Parks et al., 1996; Singer, 1998). In this study, participants play a 

dictator game (DG) in which they receive (un) fair offers from either friends or strangers while 

their brain potentials are recorded. Results show that after manipulating the social distance, 

the fairness consideration is active  (Charness and Gneezy, 2008) but is not clear how the 

recipient  reacts  to  fair  or  unfair  offers  from  the  allocator  due  to  the lack  of  recipient 

participation. Event Related Potentials (ERP) technique makes it possible to know the implicit 

response from the recipient.  It  derives  from Electroencephalogram (EEG)  technique  and 

measures changes in the mental states in response to one external event. Medial Frontal 

Negativity (MFN) and P300 components are two deflections in the signal wave of the ERP, 

negative and positive respectively.  Each one has a specific window time. In addition, it  is 

evoked by some specific processes, such as high-order cognitive operations (for P300) and 

outcome evaluation  (for  MFN)  (Donchin  and  Coles,  1988).  P300  also  is  sensible  to  the 

magnitude (Sato et al., 2005; Yeung and Sanfey, 2004) and valence reward (Hajcak et al., 

2005, 2007; Wu and Zhou, 2009; Yeung et al., 2005). As a result, P300 reflect an increase in 

during attentional/affective process in friend’s condition. However, in economic transactions 

recipient and allocator are in conflict because the amount of reward does not correspond with 

their expectative. As for the MFN, the results show that the magnitude of this component 

decreases in unfair offers from friends in contrast with P300 that is higher for fair offers than 

for unfair ones, irrespectively of friends or stranger consideration.

METHOD

The experiment was conducted as a 2X2 factorial design in which the first factor was the 

fairness level (fair vs unfair) and the second factor refers to the SD from the allocator to the 

recipient (friends and strangers). The participants were informed about the rules of the game 

and  the  considerations  of  the  experiment.  Furthermore,  the  recipients  filled  up  some 

questionnaires for “True Scale” before the experiment and some other after it to assess the 

grade of satisfaction with the allocator offer.  

http://www.sciencedirect.com/science/article/pii/S0301051111001980#aff0005
http://www.sciencedirect.com/science/article/pii/S0301051111001980#aff0020
http://www.sciencedirect.com/science/article/pii/S0301051111001980#aff0015
http://www.sciencedirect.com/science/article/pii/S0301051111001980#aff0010
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The EEG was recorded  from 64 electrodes sites but only some anterior-posterior and central 

posterior electrodes signal were statistically analyzed due to their relevance for the study 

(Gehring and Willoughby, 2002; Hajcak et al., 2005, 2007). 

RESULTS

The  “Setup  Questionnaire”  and  the  “True  Scale”  disclosed  the  faithfulness  and 

trustworthiness of the friends, respectively.   Furthermore the EEG analysis evidences the 

close relationships between friends.  As far as satisfaction rating goes, the results prove that 

the  recipient  was  particularly  resentful  to  the  unfairness  coming  from a  friend  (Fig  1A). 

ANOVAs  statistical  analysis  from  ERPs  responses  show  that  MFN  component  is  more 

negative in unfair offers than  in fair offers in friend-allocation condition ( Fig 1B up and down) 

in both anterior-posterior and central posterior regions. Nevertheless the P300 component is 

more positive in fair  offers than in unfair  offers in central-posterior region (Fig 1C up 1D 

down)

Fig. 1. Upper line shows behavioral and ERP results. (A) Satisfaction rating for fair and unfair offers; (B)mean amplitudes (MFN) in

the 240–340 ms time window for fair and unfair offers at the anterior-frontal region; (C) peak amplitudes in the 250–600 ms time

window for fair and unfair offers at the central-posterior region.

Bottom line shows topographic maps for (B) topographic map for MFN in the 240–340 ms time window; (D) topographic map for

P300 in the 400–550 ms time window.

A B C

DISCUSSION

This study demonstrated that the recipient’s consideration of fairness in the dictator game 

can  be  modulated  by  the  social  distance  between  the  recipient  and  the  allocator.  The 

differential  MFN responses to fair  and unfair  offers in  the friend-allocation condition  may 
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reflect  the  detection  of  social  expectancy  violation  (Fehr  and  Gachter,  2002;  Fehr  and 

Fischbacher, 2004; Messick and Sentis, 1983) and this norm is strongly adhered to friend 

condition in social interaction  (Mandel, 2006; Shapiro, 1975). During evolution, the human 

brain  developed  mechanisms  to  detect  deviations  from  social  norms  (Montague  and 

Lohrenz, 2007) and  these  mechanisms  share  the  same neural  ways  that  reinforcement 

learning  (Harris and Fiske, 2010). Dopamine signals input in the cortex to generate MFN 

responses  that  encode  error  prediction  for  monetary  reward  as  well  as  violations  of 

expectancy towards social norms. The null effect in MFN response for fair and unfair offers in 

the  stranger  -allocation  condition  may be due to  the introduction  of  the  friend-allocation 

condition into the experimental setup. External studies suggest that MFN responses can be 

context-dependent (Holroyd et al., 2004; Yu and Zhou, 2006b, 2009) thus the participation of 

friends  in the experiment may automatically activate people’s social identity and influence 

recipient’s fairness expectancies regarding friend’s and stranger’s offers (Bohnet and Frey, 

1999; Halpern, 1994, 1997; Mandel, 2006; Shapiro, 1975).

The finding s of P300 component suggests that fair offers are intrinsically linked with larger 

rewards in magnitude and more positive responses  (Sato et al., 2005; Yeung and Sanfey, 

2004). This insights could reflect differential distribution of attentional resources  (Leng and 

Zhou,  2010;  Nieuwenhuis  et  al.,  2005;  Wu and  Zhou,  2009;  Yeung  and Sanfey,  2004). 

Moreover, the lack of an interaction between fairness level and social distance might indicate 

that the neural system could evaluate the fairness of offers in a parallel way during the late 

stage of elaborated processing.

To conclude, the results suggest that violation of the social norms can be detected at an 

early stage of evaluative processing, as indexed by the MFN effect in brain potentials; and 

that this detection could be context-dependent and modulated by social distance.
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Introduction

In our every day life we have to make several decisions and choices, some of them made in the
context of social interactions. Many neurobiological studies used game theory to probe the neural
basis of decision making and suggested that these features might be re�ected in brain areas involved
in reward evaluation and reinforcement learning [1, 2]. One important social signaling mechanism is
the expression and repayment of trust. Although this human behaviour is very complex instances
of it can be encoded into economic exchange games. The given study by King-Casas et al seeks to
reveal the human brain areas involved with trust and reputation as well as their change over time
and experience through a series of economical exchange games.

Two-Person Exchange Game and Measurement of its Neural Correlates

During the game, one person plays the investor and the other person the trustee. At the beginning
of each round the investor gets 20$. Then he can invests any fraction of 20$ with the trustee, who
obtains three times the investment and decides afterwards how much he wants to repay the investor.
In this context, trust is de�ned as the amount of money which is send between the players. Ten
consecutive rounds were played by 48 subject pairs. With the multiround format of the game trust
becomes bidirectional and it is possible to study reputation building as the partners develop internal
models of each other with proceeding rounds. In order to minimize in�uences on trust (e.g. context
and communication) player identities were never revealed. Neural correlates were measured using
event-related hyperscan-functional magnetic resonance imaging (h-fMRI), which enables to monitor
homologous brain regions of two subjects simultaneously. Measured brain activity was converted
into a blood oxygenation dependant (BOLD) signal.

Investor Reciprocity as Best Predictor of Changes in Partner Trust

Investements (I) and repayments (R) were scaled by the amount available to be sent. With linear
regression analysis di�erent predictors of change in trust by trustees (∆Rj) and investors (∆Ij)
were examined: previous investment/repayment, change in investment/repayment and previous in-
vestor/trustee reciprocity. The term reprocitiy in this context depicts the fractional change of money
sent across rounds in response to a fractional change in money sent by the partner.

King-Casas et al identi�ed reciprocity by the investor as the best
predictor for future trust expressed by the partner and therefor
declared it as the focus of analysis. Investor reciprocity on round
j was de�ned as ∆Ij − ∆Rj−1, where ∆Ij is the fractional
change in investment from round j − 1 to j and ∆Rj−1 the last
fractional change repayment.
The exchanges were divided into three groups corresponding to
benevolent, malevolent and neutral reciprocity. For benevolent
reciprocity, investors are sending more money in response to a
decrease in repayment by the trustee. For malevolent reciprocity
the investor decreases his investment although the trustee has
increased his repayment in the preceding round.

Figure 1: BOLD signal of head of

caudate in trustee brain for di�erent

kinds of investor reciprocity.

With general linear model analysis four brain regions were identi�ed, whose BOLD signal was greater
for benevolent or malevolent investor reciprocity than for neutral reciprocity. These regions (inferior
frontal sulcus, superior frontal sulcus, thalamus and inferior/superior colliculli) correspond to re-
gions most activated for a surprise signal. In the head of caudate the BOLD signal was signi�cantly
greater for benevolent reciprocity, compared to malevolent reciprocity (two-tailed t test, P < 0.005)
and neutral reciprocity (two-tailed t test, P < 0.05) (Fig. 1).
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Intention to trust signals and Model building of partner

The head of caudate was subjected to a region-of-interest

Figure 2: Timeshift of the �intention to

trust� signal.

analysis and the signal was identi�ed as the �intention
to trust� signal. It was expected that this signal would
show strong cross-brain correlations: benevolent/malevo-
lent reciprocity by the investor is expected to generate the
intention to increase/decrease repayment (trust) in the
brain of the trustee. Some region of investors brain should
anticipate the trustees next decision, re�ecting changes in
their own reciprocity. Indeed correlations could be found
between the MCC (middle cingulate cortex) of investors,
the ACC (anterior cingulate cortex) of trustees and the
caudate of trustees. Interestingly the peak of the cross
correlogram between investor MCC and the trustees �in-
tention to trust� signal in the caudate, showed a 14-s shift
from early to late rounds. This �Intention to trust� signal
was then segregated according to the next decision of the
trustee to increase or decrease repayment. Fig. 2 shows

the corresponding time series. In early rounds of the game the peak of the signal for intended in-
creases in trust occurs after the investors decision is revealed. In late rounds this peak shifts 14-s and
occurs just before the revelation of the investors decision (only in the case of benevolent reciprocity).
These data suggest that the trustee is building a virtual model of the investor. In order to evaulate
this assumption the game was played again with the modi�cation that the trustee should guess the
next investment. With proceeding rounds of this game the guesses got more accurate.

Discussion

The results suggest that di�erent regions of the brain are involved in trust and reputation during
social decision making. The head of the caudate seems to recieve and compute information about
the fairness of a social partner's decision and the intention to repay that decision with trust. The
observed time shift of this �intention to trust� signal in late rounds of the game is similar to shifts
of reward prediction error signals from reinforcement learning, which involve dopaminergic neurons.
The scheme of such classical conditioning experiments is simple: a neutral stimulus is combined
with a delayed surprising reward. After repeated pairing a burst in dopaminergic activity occurs
just after the neutral stimulus, but not after the reward like before. In the trustee brain the neutral
stimulus is the cue for the partner to invest. The analog to the reward is the revelation of the
increased investment. Left is the question why the �intention to trust� signal transferred to the time
just before the revelation. Asides
Finally it should be mentioned that the complexity of social decision making modelled into a game
alters the neural basis. In such games anonymous agents are interacting with each other. But in
reality people pay attention to the characteristics of others and their interactions are dependent
on their observations of others. Many factors are in�uencing the expression and repayment of
trust. Possible in�uences include cultural or genetic di�erences, moral character, facial expression
and gender [2, 3]. For example it could be shown that women participating the trust game show
signi�cantly more reciprocity than men [4].
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1. Introduction 

Social group living animals receive both information from their own and information from their 

group members, whereas observing other group members provide the individuals with a 

large amount of information at low cost (Ward et al., 2012). The social information may often 

be helpful for an individual, e.g. information about food patches whereas ‘blind copying’ of 

defective social information from other may be unprofitable. Each individual seek to 

maximize their self-interests (Lee, 2008), so individuals may be in a decision conflict and 

must balance between their own experience and that of others. A model which explains the 

decision-making in group-living animals is the quorum response. Ward and colleagues 

investigated the role of quorum responses in the movement decisions of fish (Ward et al., 

2008). They showed that individuals respond only when a threshold number of individuals 

perform a particular behavior. The quorum response explains how group-living animals can 

integrate and filter social information to produce accurate group decisions (Ward et al., 

2012).  

In this experiment Ward et al. examined the mechanisms used in the movement decisions of 

foraging fish shoals which first approach to a food patch and then leave it. To analyze 

whether the behavior of the test fish is group dependent, they compared their observations to 

a quorum response model. 
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2. Methods   

 

Experimental setup 

To investigate the decision-making behavior of three-spined sticklebacks which are group-

living fish, an experimental arena was constructed that offered a two-choice decision to the 

fish. The Y-maze experimental area consisted of a starting point, from which two 

monofilament lines guide to two identical refuges. The refuges were marked as shading 

areas at the opposite end of the aquarium. On the monofilaments, replica sticklebacks could 

be mounted and pulled along by an electric motor at a speed of 4 cm/second. Direction was 

from the starting point to one of the refuge. The replica sticklebacks were introduced to 

stimulate the experimental fish producing a following response. Along the route of the replica 

fish, a simulated food patch containing bloodworms were placed to test both the approach to 

a food patch and the leaving from the food patch.  

 

 

Figure 1: Experimental setup. The Y-maze experimental area consists of a starting point from which two 

guidelines guide to two identical separated refuges which are marked as shading areas. The test fish are 

introduced to the experimental area at the starting point. Replica fish are mounted on one of the guidelines and 

pulled along by an electric motor. Along the route of the replica fish a food patch were placed. (Ward et la., 2012) 

 

Experimental protocol 

The test fish were introduced to the experimental aquarium in a clear box at the starting point 

and were allowed to habituate for 5 minutes before tests started. Either 0,1 or 2 replica fish 

were positioned randomly at one of the two guidelines. When test fish were released from 

their box, replica fish were moved simultaneously by the onset of the electric motor in the 
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direction of one of the refuge. When replica fish reached the food patch, it paused for 30 

seconds before moving off again to the refuge. The experiments finished when all fish had 

entered the shaded goal zones or 60 seconds after the replica fish had moved off from the 

food patch. The number of replica fish which were presented at each trial was 0, 1 or 2 

respectively and the group size of test fish varied from 1, 2, 4 to 8.  

 

Data 

The experiment was divided in two stages: approach to the food patch and leaving from the 

food patch. The number of approaching and leaving were counted and then compared to the 

quorum response, which was investigated in further experiments (Ward et al., 2008). 

 

 

3. Results 

 

The number of test fish which approach to the food patch increased with the number of 

replica fish. 

In the first part of the experiment the number of test fish which approach to the food patch 

were measured. Figure 2.1 shows the distribution of the number of fish that went to the food 

patch for each group size (1, 2, 4 and 8) for no replica fish (figure 2.1a), one replica fish 

(figure 2.1b) and two replica fish (figure 2.1c). When there is no replica fish presented, the 

test fish choose the left or right channel at random at a group size of 1 (figure 2.1a). This 

expectation can be referred to the null hypothesis. Furthermore, at a group size of 4 and 8 

individuals the distribution of the number going to the food in the absence of a replica fish is 

U-shaped (figure 2.1a).  

In the presence of one or two replica fish, the test fish moved more often to the food patch 

compared to trials where no replica fish was presented (figure 2.1b and 2.1c). This result is 

consistent in all group size treatments. Only at a group size of 8, two replica fish increased 

the approaching frequency compared to the presence of one replica.  

The solid line compares the quorum model with the experimental data. Figure 2.1 shows that 

there is no significantly difference between the experimental data and the model prediction in 

any different replica fish size and group size combination.  

 

The presence of replica fish increased the movement away from the food, whereas the 

leaving decreased with the initial group size.   

The second stage of the experiment measured the movements away from food patch and 

the tendency of test fish to decide between following the replica fish and collecting food. 
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Figure 2.2 shows the proportion of fish at the food patch that left the food patch immediately 

following the departure of the replica fish.  

When there was no replica fish presented the movement away from the food patch was 

independent from the initial group size (figure 2.2a). However in the trials where one or two 

replica fish were presented, the movements away from the food patch increased with the 

number of the replica fish (figure 2.2b and 2.2c) but decreased at the same time with the 

number of the group size.  

 

 

 

Figure 2.1: Distribution of the number of fish that went to the food patch for each group size for (a) no replica fish, 

(b) one replica fish and (c) two replica fish. The solid line represents the quorum response model. 

Figure 2.2: The crosses represent the proportion of leaving the food patch following the departure of the replica 

fish for (a) no replica fish, (b) one replica fish and (c) two replica fish. The numbers represent the number of the 

observations in which fish was observed at the food patch. The solid lines illustrate the model prediction based on 

a quorum response.  

(Ward et al., 2012) 
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4. Conclusion 

In this experiment the movement decisions of three-spine sticklebacks toward and then away 

from a food patch can be explained by a quorum rule. Fish approach and then leave the food 

patch when a number of conspecifics were raised above a threshold number of initiators. 

This threshold number is constrained by the group size.  

The greater tendency to follow replica fish in smaller groups could be explained by the fact 

that group living animals in smaller groups are at a greater risk of predation than those in 

larger groups (Godin et al., 1985). In contrast fish in larger group are less responsive to the 

departure of a single replica fish, whereupon the departure of at least two replica fish triggers 

a greater following response. This could be explained by the need of a threshold number of 

leader fish to release a following response. Additionally the departure of a single fish could 

be an error and therefore a disadvantage for the following fish (Ward et al., 2012). 

Further experiments showed that the quorum rule is also consistent with group-living 

behavior in other contexts, e.g. behavior under predation risk (Ward et al., 2008) and in 

distinguishing phenotypic difference (Sumpter et al., 2008). Therefore the quorum rule 

provides a general standard to explain decision-making in group-living animals and could 

even predict the behavior of group-living animals.  
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1. Introduction 

The term paper summarizes the investigations and results presented in [Deco et 

al, 2006] and is structured as follows: at first, related experiments and issues are 

overviewed. The model itself is described and explained afterwards before the results 

of theoretical and experimental analyses are presented and finally discussed. 

 

Deco and Rolls describe in [Deco et al, 2006] a leaky integrate-and-fire attractor 

model which aims to reflect the decision-related activity of neurons in the ventral 

premotor cortex (VPC) during a vibrotactile frequency comparison task. 

 

1.1. Flutter discrimination task 

The model presented in the considered paper ([Deco et al, 2006]) describes 

neuronal activities which occur during a vibrotactile frequency comparison task, 

presented in [Romo and Salinas, 2003]. In this task, a monkey (Macaca mulatta) must 

compare two different frequencies, which are presented to the monkey one after 

another both for 500 ms with a short delay of 3 seconds in between. One hand of the 

monkey is restrained, such that a mechanical stimulator, which will oscillate vertically 

during the test, touches one digit of the monkey’s hand. The other hand is placed on 

an immovable key by the monkey, which triggers the test to begin. At first, the 

stimulator vibrates at a base frequency f1 and after a short delay at a comparison 

frequency f2. Afterwards, the monkey releases the key with the unrestrained hand and 

presses one of two possible buttons, one representing f1 > f2 and the other f1 < f2 

respectively. Note, that prior to the tests the monkey was trained to push the one 

button when f1 was the higher frequency and the other button otherwise. 

Thus, the monkey’s task conceptually consists of the following sequence of neural 

operations: encoding the frequency f1 of the first stimulus, maintaining it in working 
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memory, encoding f2, compare f2 with memorised f1 and finally output the result of the 

comparison via the motor system. 

Note that investigations ([Mountcastle et al, 1968]) have found that ‘humans and 

monkeys have similar abilities for detecting and discriminating the frequencies of 

mechanical sinusoids delivered to the hands’ ([Deco et al, 2006]) 

 

1.2. Weber’s law 

In 1834, Ernst Heinrich Weber discovered that the ratio of the difference-threshold 

Δf (or just noticeable difference, i.e. the amount of change needed for a sensory 

organ to recognize that a change occurred) to the background intensity f is a constant 

k = Δf / f. 

 

1.3. Background of the model: neuronal data underlying the vibrotactile 

discrimination 

Since the objective is to model the process of decision-making, it would be nice to 

detect a confined area in the brain about which there exists good evidence that this 

process is located there. Thus, important areas of the brain and their relevance to the 

neural operations, mentioned in subsection 1.1., and vice versa are described in 

[Deco et al, 2006] and will be briefly, and hence without references, summarized 

here. 

In [Deco et al, 2006], it is said that spiking neurons in the primary somatosensory 

area (S1) only reflect the stimuli frequencies themselves during the stimulation 

periods. This also accounts for neurons in the secondary somatosensory area (S2), 

but furthermore there are activities during the later part of the second stimuli (with f2), 

which are said to reflect the comparison and thus the result of the decision. However, 

the authors of [Deco et al, 2006] describe the ventral premotor cortex (VPC), the 

medial premotor cortex (MPC) and the primary motor cortex (M1) as areas which 

represent the decision-process. Especially neurons in the VPC area ‘seem to reflect 

the core of the processing that links sensory information with action, and therefore 

they may represent the decision-making process itself, rather than the representation 

of the stimulus’ ([Deco et al, 2006]). 

 

2. The leaky integrate-and-fire attractor model 

An attractor model can be described as an often recurrently connected network of 

nodes with weighted transitions. Such a network, depending on its input and the 

interconnectivity of the nodes, gradually converges to some stable patterns, called 
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Figure 1: The architecture of the neurodynamical model for a probabilistic decision-making network. 
(taken from [Deco et al, 2006]) 

attractors. An attractor might be one-dimensional (point attractor), two-dimensional 

(line, ring and plane attractor) or even of higher dimension. 

Simplified, a leaky integrate-and-fire (LIF) neuron with some input (inhibitory or 

excitatory) and output connections works in a way that it integrates all incoming 

currents from afferent spikes and fires when the depolarization of the cell membrane 

crosses a specific threshold. Note, that this model is detailed enough to represent the 

functioning of the underlying biophysical system including time constants, latencies 

and conductance. 

In [Deco et al, 2006], the probabilistic decision-making is modelled by an attractor 

network of LIF neurons (depicted in Figure 1), which has two pools of neurons 

representing the two decision states (f1 > f2) and (f1 < f2). Furthermore, there is a state 

of nonspecific excitatory neurons, which contains all other excitatory neurons not 

included in the task, and a state of inhibitory neurons. Conductance values for the 

synapses are modelled by the connection weights, which represent interneuron 

connections established by Hebbian learning (‘what fires together, wires together’), 

and are assumed to be formed preliminary (e.g. by self-organization mechanisms). 

Hence, the weights are set as follows (as a result of a mean-field analysis of the 

network; details are omitted here): W+ = 2.2 > 1, W- = 0.86 < 1, WI = 1.015 and all 

other weights set to 1. 
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In this model, all four pools of neurons receive as input a spontaneous 

background activity from external excitatory connections typically found in neurons in 

the cerebral cortex, denoted by λext = 2.4 kHz. In addition, both pools (f1 > f2) and (f1 < 

f2) receive inputs encoding the stimulus-specific information at the time when the 

second stimuli f2 is presented, which is λ1 for (f1 > f2) and λ2 for (f1 < f2). In [Deco et al, 

2006], it is assumed that these information originate from S2, as well as from the 

prefrontal cortex (PFC) and it is found that there are two types of S2 and PFC 

neurons: ‘neurons with positive (f+) and others with negative (f-) monotonic 

relationships between the firing rate and the stimulus vibrotactile frequency’ ([Deco et 

al, 2006]). Thus, λ1 = f+
1
 + f-

2
 and λ2 = f-

1 + f+
2. 

 

3. Results 

During their investigations, the authors of [Deco et al, 2006] found that the LIF 

network is subject to finite size noise and hence always converges to either one of the 

two attractors with neuron pools (f1 > f2) or (f1 < f2) active, which represent the 

decision states. Thus, the network presented is a biased competition model of 

decision-making. 

To fully characterize the dynamics and the probabilistic behaviour of the system 

described above, a computer simulation of the spiking network model is run. 

Figure 2 illustrates the probability of correct discrimination as a function of the 

difference between the two presented vibrotactile frequencies to be compared. In all 

tests, f1 = f2 + Δf holds and thus f1 > f2. Hence, Δf (called ‘Delta frequency (f1 – f2)’ in 

Fig. 2) describes the difference between both frequencies. The lines in Fig. 2 were 

calculated by fitting the diamond points (the actual measured results) with a 

logarithmic function. If, during the 500 ms of comparison in one test, the network 

converges towards a point-attractor with a spiking activity > 10 Hz for the pool (f1 > f2) 

and at the same time the spiking activity for the pool (f1 < f2) is low, the classification 

is defined to be correct.  
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In the second panel of Figure 2 

the stars (*) indicate the actual 

neuronal data measured in the real 

experiment with the monkey for f2 = 

20 Hz, as reported in [Romo and 

Salinas, 2003]. 

The main result, illustrated in 

Figure 2, is that the difference Δf 

between f1 and f2 in order to reach 

a threshold of 85% of correct 

classifications (dashed lines in Fig. 

2) must increase when the base 

frequency f2 increases. 

Furthermore, the authors of [Deco 

et al, 2006] found that the 

difference-threshold Δf increases 

linearly as a function of the base-

frequency f2. This surely 

corresponds to Weber’s law 

regarding the vibrotactile 

discrimination task. 

 

4. Discussion 

The authors of [Deco et al, 

2006] presented an attractor 

network which models probabilistic 

decision-making. As a main result 

they found that the just-noticeable-

difference, at which two stimuli can 

be discriminated, increases linearly 

as a function of the base 

frequency. This corresponds to Weber’s law. Furthermore, they note that ‘this is the 

first time we know when the implementation of a psychophysical law is not the firing 

rate of the neurons, nor the spike timing, nor is single neuron based, but instead is 

based on the synaptic connectivity of the network and on statistical fluctuations due to 

the spiking activity in the network’ ([Deco et al, 2006]).   

Figure 2: Probability of correct discrimination as a function of 
the difference between the two presented frequencies to be 
compared. The dashed line represents the threshold of 
correct classification for a performance of 85% correct 
discrimination. (from [Deco et al, 2006]) 
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Introduction

Decision making is a cognitive process that is performed when evaluating information and, based 

on this  information,  choosing one of  two or more alternative actions (Wang, 2008).  To experi-

mentally analyze the execution of decision making on a neuronal level, the presented information 

and possible outcomes should be as straightforward and repeatable as possible. An example of an 

experiment that fulfills these requirements is the comparison of two subsequent vibrational stimuli 

(in  the  range  of  10-50  Hz) applied  to  the  skin  of  trained  rhesus  monkeys  (Macaca  mulatta) 

(Hernández et al., 1997; Romo et al., 2004). In these experiments the monkeys were presented 

with  a  vibrotactile  stimulus  of  a  certain  fequency  f1,  followed by  a  delay  period and then the 

presentation of a second stimulus of a different frequency f2. If they correctly discriminated which 

stimulus was higher in frequency,  they were rewarded with a drop of  liquid (Hernández et  al.,  

1997). In order for this discrimination to take place, the intensity of f1 must be stored in working 

memory during the delay period as well as the presentation period of f2. 

Recording from single neurons in the ventral premotor cortex (VPC) during the experiment, Romo 

et al. (2004) found out that some neurons diplay a high firing rate if the first stimulus was stronger 

than the second (f1 > f2) while others respond to the decision f2 > f1. A third group of neurons – 

named “partial differential neurons” – reflects the memory of f1. Their behaviour during the experi-

ment is illustrated in Figure 2A. The firing rate of these partial differential neurons is high during the 

presentation period of f1 (with the maximum being proportional to the intensity of f1) and low at the 

beginning of the delay period. During the delay the rate gradually increases to a level that again 

reflects f1. The further increase while f2 is presented depends on the intensity of f2. Since the firing 

rate is higher when f1 > f2 than when f2 > f1 for a given f2, the response of the partial differential 

neurons might play a role in the decision making process (Romo et al. 2004).

The summarized publication (Deco et al., 2010) proposes a synaptic mechanism that contributes to 

the response properties of these partial differential neurons. The authors present a model in which 

they  play  a  major  role  in  sequential  decision  making,  improving  upon  a  previously  proposed 

attractor model.
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Figure 1. (A) Attractor network architecture for decision making. The evidence for decision 1 is applied via 

the λ1 inputs and that for decision 2 is applied via the λ2 inputs. (B) Neural network with synaptic facilitation 

between excitatory neurons to model the “partially differential” neurons recorded in the VPC. The recurrent 

arrows indicate recurrent connections between the different  neurons in a pool.  The gray lines show the 

connections in the fully connected network. Modified after Deco et al. (2010)

Attractor Model

Deco  and  Rolls  (2006)  described  a  model  in  which  an  attractor  network  consisting  of  two 

populations  of  neurons,  each  with  it's  own  input  (λ1 and  λ2)  encoding  f1 and  f2,  respectively, 

compares the stimuli (Figure 1A). Recurrent collateral excitatory connections between the neurons 

in each of the populations enhance the response to their input through positive feedback. At the 

same time the two populations compete with each other through another population of inhibitory 

neurons.  Through  the  mechanisms  of  inhibition  and  recurrent  feedback  the  network  has  a 

tendency towards one of two steady states depending, amongst other factors, on the inputs (Deco 

et al., 2012). Once reached, these “attractive” states (hence the name attractor network) are hard 

to leave, thus forming a persistent neural activity and consolidating the decision.

In the VPC, though, vibrotactile stimuli are encoded by the same neurons (Deco et al.,  2010), 

which constitutes a problem for the described network, as it relies on two distinctive inputs. 

Partial Differential Model

The model of the partial differential neurons (Figure 1B; Deco et al. 2010) consists of an excitatory 

selective population of interconnected neurons receiving input from the vibrotactile stimuli (f1 as 

well as f2). Connected to the selective population is an excitatory nonselective population of neu-

rons (without an input) and both populations connect to an inhibitory pool of neurons. Every neuron 

in  the  model  also  receives  a  nonspecific  external  stimulation.  This  signal  –  described  by  the 

authors as „a learned attention signal“ (Deco et al., 2010, p. 7546) – is linearly increased from 2.4 

kHz (sum of spikes received over all synapses by each neuron) to 2.544 kHz over the duration of 

the delay period.
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Unlike in the attractor network model, here the the memory of the first stimulus is not upheld by 

recurrent connections, as this would result in a constant high firing rate during the delay period, 

which is not the case in partial differential neurons (Fig. 2A; Romo et al., 2004). Instead, a process 

called short-term synaptic facilitation is used the explain the slow ramping of the firing rate during 

the delay. This process arises after an action potential opens Ca2+ channels in the presynaptic 

terminal. The temporarily increased Ca2+ concentraiton now increases the amount of neurotrans-

mitter released during following spikes (Zucker & Regehr, 2002). 

Therefore the synapses in the excitatory selective population are strengthened during the presen-

tation of f1, when these neurons fire at a high rate. Then, during the following delay period the ac-

tivity gradually ramps up due to the increase of the nonspecific external stimulation. The slope of 

this ramp depends on the amount of synaptic facilitation received earlier, which in turn depends on 

the intensity of the first stimulus (f1). Thus the firing rate of the differnetial selective neurons at the 

end of the delay period again encodes f1. During the comparison period (the presentation of the 

second stimulus) the excitatory selective neurons receive f2 as input, while still being synaptically 

facilitated by the presentation of f1. Therefore the firing rate at this point reflects the sum of the 

memory of f1 and the current input of f2, which is lower for f1 < f2 than for f1 > f2 (for a given f2).

Figure  2.  Modified  after  Deco  et  al. 

(2010) (A) Activity of a single partial dif-

ferential  neuron  recorded  in  the  VPC 

during  the  vibrotactile  discrimination 

task, after Romo et al. (2004). The f1 pe-

riod was from 500 to 1000 ms,  f2 from 

4,000 to 4,500 ms. f2 was 18 Hz in both 

cases.  When  f1 was 26 Hz (red plot), 

the firing rate during f1, at the end of the 

delay period, and during the comparison 

period when  f2 was being applied was 

higher than when  f1 was 10 Hz (black 

plot). Approximately 30 trials were used 

to  generate  these  peristimulus  time 

histograms for each pair for this single 

neuron. (B) Activity  of  the  modeled 

partial  differential  neurons.  Temporal 

evolution of average firing rates across 

trials and neurons for the comparison of 

f1 = 10 Hz < f2 = 18 Hz (black) and f1 = 

26 Hz > f1 = 18 Hz (red). 
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Results

Figure 2B illustrates the firing rate of the modeled partial differential neurons over time. Similarly to 

the the neurons recorded in the VPC (Fig. 2A) the responses are high during the presentation of f1 

and low at the beginning of the delay. Towards the end of the delay they slowly ramp upwards to 

represent the memory of f1. During the comparison period again the firing rate is lower for f1 < f2 

than for f1 > f2 (Fig. 2B).

Discussion

The presented model describing the response of the partial differential neurons by using a single 

input neural network as well as simulating the synaptic facilitation process offers a possible expla-

nation for the previous recordings of single neurons in the VPC during a vibrotactile discrimination 

task. While the activity of the modeled neurons (Fig. 2B) does not exactly mirror the response of 

the neurons recorded in the VPC (Fig. 2A), it exhibits the basic characteristics of the partial dif-

ferential neuron behaviour. Specifically, the firing during the comparison period is higher if f2 > f1.

If the partial differential neurons – encoding the sum of the two stimuli – are fed into one input of 

the previously described attractor network (Deco & Rolls, 2006) and neurons that only encode the 

second stimulus (Romo et al., 2004) into the other input, the attractor network could subtract the 

second stimulus from the sum of both stimuli to effectively compare f1 against f2 (Deco et al., 2010). 

In conclusion the combination of the two models suffice to propose a neuronal mechanism for 

sequential decision making using a single input for subsequent stimuli.
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Cortico-basal ganglia circuit mechanism for a
decision threshold in reaction time tasks

Course: Role of Decision Making
A summary by

Michael Rauer (mrauer@zedat.fu-berlin.de)

1 Introduction

In 2002 Roitman and Shadlen performed trials on rhesus monkeys which had to solve reaction
time tasks [Roitman and Shadlen, 2002]. They exposed monkeys to screen, with randomly
moving dots. Also known as random-dot motion discrimination task. Depending on the chosen
coherence level, a certain amount of dots take a similar direction und the monkey reacts with
a saccade to follow the majority of dots. This saccade is defined as a decision in this setup.
Choosing a low level of coherence makes it harder to decide in which direction the dots are
moving since less information is provided.
During these experiments the correlation of saccades and lateral intraparietal (LIP) area were
investigated. Here they found a correlation between decision speed and accuracy, depending
on the amount of noise (randomly moving dots) in the stimulus intensity (coherently moving
dots). To find out what the circuit mechanisms may look like, it is important to figure out the
important areas which are involved. This summary is based on the publication of Lo and
Wang, which introduce and describe a cortico-basal ganglia circuit mechanism for a decision
threshold in reaction time tasks [Lo and Wang, 2006].

2 The cortico-basal circuit mechanism model

The cortico-basal ganglia circuit mechanism is an approach to describe the uptake of a visual
stimulus where the system may respond by a saccade. The model implements a competition
mechanism such that the system response is either a left- or right-wise saccade. For illus-
tration and abbreviations of the description below, see figure 1. The network distinguishes
between left and right pathway (superscripts L and R, respectively). Connections consist of
inhibitory (suffix ’i’) and excitatory (suffix ’e’) synapses. The model builds on a stochastic
multi-compartment scheme.
Here, three layers are used to build the model. An input layer, a regulatory layer and an output
layer which triggers the reaction.
The Cortex (Cx) is known to process visual stimuli [Roitman and Shadlen, 2002], so this
forms the input layer of the presented model.
For the output layer, Superior Colliculus (SC) is associated with optico-motorical properties,
which triggers the saccades [Saito and Isa, 1999].
Basal Ganglia represent the regulatory layer in the model. Here the Basal Ganglia are split
into the Caudate Nucleus (CD) and Substantia Nigra pars Retina (SNr).
The network further includes inhibitory and excitatory connections. Since the network dis-
tinguishes between right and left, it shows a pathway for each side, and both pathways are
connected to each other. They are symmetric, so everything which is true for the left popula-
tion, is true for the right one.
To keep the order of signal propagation first the Cortex is described, which is the input layer.
The CxeL takes up the stimulus and shows self-excitatory behavior. It also excites CxeR.
But the more one or both excitatory populations are stimulated the more likely it is for Cxi to
inhibit CxeL and CxeR. Further Cxe stimulates SCe and CD of Basal Ganglia.
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Second, Superior Colliculus, taking excitatory stimulus from the Cortex, SCe is directly ex-
cited by Cxe. SCe also shows self-excitatory behavior, but also takes part in a negative
feedback loop. While the self-excitation only works as self-transition on SCeL or SCeR itself,
the negative feedback, once stimulated by one, inhibits both of the SCe population. SCe is
also inhibited from Basal Ganglia. SCe exhibits a ’winner-takes-it-all’ situation, meaning either
SCeL or SCeR sends out a burst and triggers the saccade. Additionally, Cx builds a positive
feedback loop with SC, which causes the inhibitory Cxi to inhibits both Cxe populations.
Third, the regulatory layer, the Basal Ganglia is responsible for regulating the propagation of
signals. SNr shows tonic behavior and inhibits SCe. But when CD becomes stimulated and
a certain threshold is crossed it inhibits SNr and the inhibition on SCe vanishes. This layer
takes great responsibility for triggering saccades. As the inhibition vanishes, it takes less to
excite SCe and cross its threshold and consequently trigger a saccade. [Lo and Wang, 2006]

Figure 1: Network model

3 Model behavior

As illustrated in section 2 the system consists of several excitatory and inhibitory connections.
So how does the system’s response depend on the strength of stimuli? First we assume the
threshold for SCe (see figure 1) is lower than the threshold of CD. In case where stimuli
are not strong enough to cross either thresholds, no saccade will be triggered at all. If the
stimulus exceeds the threshold of SCe, SCe remains inhibited by SNr and does not trigger
a saccade. So this requires a stimulus to be strong enough, such that the Cxe cross the
threshold of CD, which inhibits SNr and consequently, SNr releases SCe from inhibition.
Since we assume that the threshold of Cxe-CD is higher than the threshold of Cxe-SCe, a
saccade is only triggered if the CD threshold is crossed.
Figure 2 shows an example of what happens as coherence of the random dot motion raises
to 12.8 %. At this coherence level enough information is provided to determine a direction.
The dots are directed to the right. So in a) the frequency for the CxeR raises higher than in
CxeL. It reaches a peak at about 480 ms with 20 Hz.
In b) the same time axis is shown describing CDR and SNrR. Where SNr is at a constant
frequency of 80 Hz, CD remains silent at 0 Hz. As the stimulus of the Cxe-CD connection
(see a)) crosses the threshold at about 480 ms, CD sends out a brief burst of 60 Hz at
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maximum, which reduces the frequency of SNr to almost 0 Hz.
In c) both, SCe and SCi remain silent until the threshold of Cxe-CD is crossed. Then at
around 480 ms SCe performs a strong burst raising up to at least 250 Hz stimulating SCi,
which immediately inhibits SCe to 0 Hz frequency. The short burst of SCe triggers is a right-
wise saccade. To the the system behavior Lo and Wang varied the thresholds of Cx-CD

Figure 2: Frequencies of single neuron populations: The stimulus is at 12.8 % coherence. a)
The frequency of the right cortical neuron population rises until it reaches a peak at
about 20 Hz and becomes silenced (about 0 Hz). Left neuron population frequency
rises, but does not exceed a frequency of 5 Hz. b) SNr shows tonic behavior with
a frequency of about 80 Hz. CD remains at 0 Hz. At about 480 ms, CDR is
stimulated and inhibits SNrR. The frequency of SNrR drops to 0 Hz. c) As only
the right ’path’ is stimulated, SCR shows as short, strong burst slightly delayed to
the peak of CxeR in a). Frequency of SCL slightly rises but does not exceed the
threshold. Output of the system is a right-wise saccade.

and Cx-SC. The reaction of the model showed that the threshold of Cx-CD has a huge
impact on whether a saccade is triggered or not. In contrast, changing the threshold of the
Cx-SC connection shows only a small effect on the experimental outcome. Both findings are
consistent with biological measurements, and leads to the interpretation that the basal ganglia
represent a regulatory unit in this context.
The variation in thresholds are a time-accuracy trade-off. So if there is a few information and
a lot of noise (only a small amount of dots are moving coherently) and the thresholds are low,
there might be a fast decision, which is more likely to be wrong. On the other hand, when the
threshold is too high, it may take too long to find a decision. This leads to the idea that the
thresholds are highly variable in biological systems.
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4 Results and conclusions

Lo and Wang built cortico-basal circuit model for describing a reaction time task. It is based
on the reaction of a neuronal network being exposed to an optical stimulus.
The model is built from three functional regions, such that there is an input, a regulatory and
an executing part, which in biological systems are a part of the Cortex, the Basal Ganglia,
and the Superior Colliculus. By threshold changing it can be shown that the model behaves
consistently with measurement data. So Lo and Wang were able to create a simplified and still
consistent model using the cortico-basal ganglia regulation mechanism [Lo and Wang, 2006].
Since the model is simplified, it can be extended to model more neural regions and maybe
use different task to find out how the system behaves.
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Structure of this paper

 1 Introduction to Piéron's Law and the original article
 2 Description of the experimental methods
 3 Description of the statistical methods and results

 3.1 Direct approach, results and discussion
 3.2 Linear ballistic accumulator (LBA) model, results and discussion

 4 A theoretical framework for Piéron's Law: the Bayesian ideal observer model
 5 General discussion and conclusion

1. Introduction to Piéron's Law and the original article

The relationship between stimulus intensities and perceptual observables has been studied early 
on in psychophysics. E.g., the works on the Weber-Fechner law and later on Stevens' power law 
[1] were concerned with the connection between the physical strength of a stimulus and its 
perceived magnitude. Stevens was able to establish power laws for a wide range of stimuli.

In a related context, Piéron’s Law [2, 3] is a psychophysical observation which connects another 
variable, the mean response time (MRT), to stimulus intensity. In close analogy to Stevens' law, it 
states that MRT decreases as a power function of the stimulus intensity I, i.e.

where α, β > 0 are parameters, 
γ > 0 denotes the non-detection related time and 
MRT – γ denotes the detection-related time.

According to Piéron's Law, human brains respond quicker to more intense stimuli and slower to 
less intense stimuli. This contrasts with mechanical machines for which the response time to a 
stimulus is usually fixed. The power law equation is expected to hold with specific parameters for 
each individual and stimulus modality.

A possible interpretation suggests that smaller stimulus intensities are associated with more 
uncertainty. Therefore more evidence must accumulate for a response where the uncertainty is 
larger. The power law implies that the rate at which the MRT improves decreases as the intensity 
increases.
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Since the original publication [2], Piéron's Law has been confirmed for various sensory modalities 
and decision tasks, including brightness [2], tone [4], taste [5], odor [6], heat [7] and color 
perception [8]. The authors of the present paper [9] extend Piéron's law to a more general context: 
the law is hypothesized to hold in general for decision-making under uncertainty. In this 
formulation, stimulus intensity is replaced by the degree of discriminability between two noisy 
stimuli. Correspondingly, the notion of signal detection gets replaced by a decison between two or 
more alternatives.

The first part of [9] describes a two-alternatives forced choice (2AFC) experiment in which this 
hypothesis is confirmed. In the second part a theoretical foundation of Piéron's law by means of a 
Bayesian ideal observer model is described. 

Generally, two main categories of models to study decision-making have been proposed (see [10] 
and references therein): one category, biologically motivated models, is built “bottom-up“ using 
neurophysiological entities such as individual neurons. The other category are phenomenological 
models. Usually, these models use a threshold concept together with stochastic processes to 
model the accumulation of evidence before a decision is made.
The simplest phenomenological model is the drift–diffusion model, in which the first passage of one 
random process through the threshold determines the decision. The model can be modified to 
reproduce the speed-accuracy tradeoff (i.e. the negative correlation between response time and 
rate of correct results) which has been, e.g., observed in random dot motion experiments (cf. [11, 
12]). 
In the race model two or more random processes race towards their thresholds and compete for 
alternative decisions. This model allows a biological interpretation of the random variables as 
representing different pools of neurons. Importantly, both the linear ballistic accumulator model [9, 
13] and the assumptions underlying the Bayesian Ideal Observer [9] are conceptually close to the 
race model. Both will be introduced below.

2. Description of the experimental methods

The main experiment in [9] is concerned with stimulus discriminability in a random dot-motion task. 
Participants were six students. The authors used a MATLAB program to create a moving-dot 
kinematogram as described below and displayed in Figure 1.

In each stage of the experiment, 25 % of the dots in a circle were moved in a certain direction (the 
“target” direction) while the rest moved randomly. The target direction and another, “false” direction 
at an angular distance d were presented along a surrounding circle. The alternatives were chosen 
randomly from the top half of the circle, the angular distance was sampled from an exponential 
distribution.
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The task consisted in deciding between the two alternatives by pressing certain keys on a 
keyboard. Times were accepted between 200 ms and 2000 ms post stimulus presentation, other 
times were discarded. Each participant repeated 210 x 7 (number of directions) iterations of the 
task after an initial training period.

3. Description of the statistical methods and results

3.1 Direct approach, results and discussion

In a first attempt, the authors of [9] fit two models directly to the experimental data. As no further 
statistical modelling was performed, this approach was termed “direct“. The two model equations 
used are:

Power model (Piéron's Law):

Exponential model (alternative):

For each combination of model and participant, the model's quality was assessed by calculating 
the correlation between actual and predicted values, and the model's Bayesian information 
criterion (BIC), defined as

where L = maximised likelihood of the parameters, given the data,
k = 2 = number of parameters,
n = number of data points.

3

Figure 1 [9, p. 2]: The moving-dot kinematogram. A certain percentage of the dots 
moves in a target direction, the rest moves randomly. The difficulty of the task is varied 
by changing the angular distance d between the true and false alternatives.



The BIC penalizes the number of parameters in a model and trades it off against its log-likelihood. 
High values of BIC indicate overfitting and/or low likelihood of the model.
Power and exponential models are then compared by means of their evidence ratio,

indicating how many times more likely the data had occured under the power model than under the 
exponential model.

The direct statistical approach was discarded because the non-decision time γ took unrealistic 
values under this approach. (658 ms on average for the exponential, between 0 ms and 810 ms for 
the power function, where plausible values would range from 200 ms to 500 ms.) 

3.2 Linear ballistic accumulator (LBA) model, results and discussion

Instead of the one-stage, three-parameter optimisation, a two-stage parameter estimation 
procedure was applied:

Stage 1: estimation of γ using the LBA model,
Stage 2: estimation of α, β, keeping γ fixed.

LBA model

The LBA model [13] assumes that a decision is made after accumulation of evidence for a 
particular option when a decision threshold has been reached. For each competing alternative, one 
accumulator random variable is maintained. The starting amount of evidence is drawn from a 
uniform distribution. Evidence for each alternative accumulates by adding random variables which 
are sampled successively from a normal distribution N(νd, σ). νd is called the drift rate. That 
decision is made for which cumulative evidence reaches a threshold first. Because of the 
randomness, both correct and false decisions are made by the model.

To determine the LBA model parameters, decision times and choices are fitted to the experimental 
values for each participant. It was found that introducing angular dependencies besides that of νd 
did not improve BIC. The fitted models allowed to two conclusions. Firstly, for each participant, the 
drift rates were monotonically increasing with the angular distance, and secondly, the non-decision 
time γ was for all participants between 270 ms and 504 ms with an average of 381 ms, i.e. it fell 
into the expected range.

With the obtained γ parameter, the α and β parameters were again fitted numerically. Typically, β  
ranged from 0.2 – 0.3 for the power law. As expected, the correlation between actual and observed 
values dropped slightly. On the other hand, now for four participants the evidence ratio was 15 to 
415 times in favor of the power model, and for the remaining individuals still greater than one. 
Overall results are displayed in Figure 2, comparing the exponential and power function fits.
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4. A theoretical framework for Piéron's Law: the Bayesian ideal observer model

A Bayesian ideal observer model was designed in [9] to model an observer making optimal choices 
given a task under uncertainty (for example, a noisy stimulus). It is assumed that the observer is 
able to process information optimally by conditioning on all prior data. Such an ideal observer 
model is able to reproduce Piéron's Law as demonstrated in the following.

The analysis starts from the fact that given observed motion directions D, under a uniform prior 
distribution, a decision favoring direction i occurs as soon as 

where Hi corresponds to the hypothesis that the correct direction is i, and θ is an unknown 
threshold parameter. Hence, assuming a normal distribution for the individual pieces of evidence xt, 
without loss of generality

where DT denotes the decision time and the μ1, μ2 can be interpreted as the target and false 
directional alternatives, respectively. 
Taking the logarithm and the expectation value, one obtains a proof for (the decision time related 
part of) Piéron's Law with β = 2,

5

Figure 2 [9, p. 4]: Power vs. exponential functions. Each panel represents one individual. The 
abscissa shows MRT, the ordinate shows stimulus discriminability (angular distance). One can see 
that the power law tends to fit the data better than the exponential function.



In summary this shows that in this framework Piéron’s Law emerges if optimal information 
processing is assumed in the Bayesian ideal observer model.

5. General discussion and conclusion

Piéron’s Law had previously only been studied in experiments in which stimulus intensity was the 
degree of freedom. The new findings derived in the present article [9] are twofold.

First, a more general regularity was postulated extending from intensities to the more 
comprehensive notion of choice difficulty (discriminability), even in situations in which stimulus 
intensities are kept constant. MRT relates to choice difficulty in the same way as to stimulus 
intensity under the classical formulation.
This hypothesis was confirmed in a random dot motion 2AFC experiment. While a direct statistical 
approach did not yield the expected results, evidence for the hypothesis was overwhelming when a 
two-stage statistical procedure involving a LBA model was employed.

Finally, a Bayesian observer model was constructed which is able to explain the power law 
behaviour, thus linking human decision-making to ideal information processing. The numerical 
discrepancy between the power law exponent β in the theoretical model and the one seen in the 
experiment remained unexplained.

In a broader context, the results of [9] generalize previous findings and establish a theoretical 
connection between phenomenological models of decision-making and Piéron's Law. It would be 
interesting to see whether this generalization also works for other classes of stimuli for which the 
classical notion of Piéron's Law has previously been confirmed.
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Comments on drafts

- Abo-Rady sends comments on Gross's draft
- Bilz sends comments on Camarillo's draft
- Camarillo sends comments on Rauer's draft

- Duwal sends comments on Meier's draft
 - Gross sends comments on Seeger's draft
 - Kolbe sends comments on Norton's draft

 - Mangold sends comments on Wegner's draft
- Meier sends comments on Schmoldt's draft
- Meyer sends comments on Seeger's draft

- Nowak sends comments on Abo-Rady's draft
- Norton sends comments on Bilz's draft
 - Joachim Haenicke sends comments on Meyer's draft

- Rauer sends comments on Seek's draft
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- Seek sends comments on Kolbe's draft

- Schmoldt sends comments on Schneider's draft
- Schneider sends comments on Mangold's draft
- Wegner sends comments on Duwal's draft
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