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The Role of Memory in Decision Making

Reward encoding and reward prediction error

Svenja Specovius

SoSe 2010

Introduction to the Experiments

The ability to predict future rewarding events like the presence of food is important for
animals. Dopamine neurons have been identified with processing such rewarding stimuli.
Further information about the processing of rewarding stimuli have been discovered in
studies by Schultz et al [3, 4], Mirenowicz et al [2] and Ljungberg et al [1]. During several
experiments the activity of dopaminergic neurons in two male Macaca fascicularis mon-
keys were measured to study neuronal reactions to different conditioned stimuli.
The neuronal activity of dopaminergic neurons was recorded. For this purpose extracellu-
lar single unit recording was applied from the ventral tegmental area (VTA) and substantia
nigra. They are located in the midbrain. Tungsten microelectrodes that were insulated
with glass were used. For acute recording these electrodes were inserted each day into
the midbrain of the monkey by a cannula.

The monkeys had to perform different reaction tasks. A trigger signal occurred, when the
monkey should perform the task. The trigger signal was a sound or a light. The task the
monkeys had to perform was for example pushing a lever. If the monkey reacted cor-
rectly, it got a reward, that was a drop of fruit juice or a piece of apple. After the learning
phase there were further experiments also with rewarding stimuli. This was called the
established phase. In a third phase the monkey received the trigger signal, performs the
reaction task, but the reward failed to appear. There were also free liquid experiments
where the monkey got liquid outside of a task.

Results and Discussion

Figure 1 shows the Peri-Stimulus-Time-Histograms (PSTH’s) and raster plots of one neu-
ron for three different experiments. When the monkey received a reward in the absence
of a task (free liquid trials) [2], the dopaminergic (DA) neuron responded to the unpre-
dicted reward with an increased firing rate (Figure 1 top). DA neurons responded in
the same way to rewards during the learning phase. In this context reward means an
appetitive or rewarding stimulus. The same neurons did not respond to aversive stimuli.
After the learning phase, the monkey expected the trigger signal to indicate the rewarding
stimulus (established phase). The trigger signal acted as the conditioned stimulus (CS),
the rewarding stimulus as the unconditioned stimulus (US). In this established phase the
dopaminergic neuron did not respond to the rewarding stimulus. However the neuron
showed a response to the conditioned stimulus. It reacted by an increased firing rate
a few ms after the CS. This shows that the monkey understood the trigger signal as a
prediction of the reward. The monkey predicted a reward because of the learned rela-
tion between the CS and the rewarding stimulus. This is called reward prediction. The
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Figure 1: PSTH and raster
plots of one DA neu-
ron during 3 experiments,
spikes are plotted over
time [ms], each row in the
raster shows one trial; top
before learning: no condi-
tioned stimulus (CS), neu-
ron responds to rewarding
stimulus by increased ac-
tivity; middle established
phase: CS given, neuron
does not respond to re-
ward, but to CS; bottom
third phase: CS given, no
reward, neuron respond to
CS by increased activity,
activity of neuron is de-
pressed by absence of re-
warding stimulus

dopaminergic neurons react if the expectation is not fulfilled. Another interesting point is
that the DA neuron was depressed by the absence of the rewarding stimulus (Figure 1,
bottom). The depression of the DA neuron occurred exactly at the time, when in other
experiments the reward was given. This behaviour indicates that the prediction of reward
also includes the exact time prediction.

Conclusion

Dopaminergic neurons process reward information due to the expectation of reward. The
neurons only respond if the reward differs from the expectation. If the reward is higher
than the expectation, the activity of the neurons gets increased which leads to a positive
signal in the recording. If the reward is lower than expected, the activity of the neurons is
decreased, which leads to a negative signal in the recording. If the reward is absent, the
DA neuronal activity is completely depressed. Hence dopaminergic neurons encode the
mismatch between reward expectation and reward fulfilment. This is called reward pre-
diction error. Furthermore dopaminergic neurons can precisely encode the time, when a
reward is expected.
In summary there are three important functions of the dopaminergic neurons:

• Reward prediction
expectation of a reward (US) due to a conditioned stimulus (CS)

• Reward error encoding
encoding the mismatch between reward prediction and actual reward

• Temporal prediction
encoding exactly the time, when a reward is expected
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Temporal difference learning as concept of reinforcement learning
Christian Hoppe

Introduction
Temporal difference learning is one algorithm or concept in the field of Reinforcement
learning in which an agent ought to make some actions with respect to maximizing some
function or cumulative reward. Inspired by behavioral data on how animals actually learn
to predict, the temporal difference learning algorithm tries to predict the future reward of
an action. Dopamine neurons in the ventral tegmental area (VTA) and substantia nigra
have been identified with the processing of reward stimuli and reward prediction. These
neurons change their firing rate if a reward stimulus is given (food, fruit juice, etc.). If
this stimulus is preceded by another stimulus (light or sound) then the animal begins to
associate the first stimulus with the second. The first stimulus is now conditioned (CS).
After the learning phase one can observe that the dopamine neurons change the firing
rate. An increase of action potentials at the time of the reward in the unconditioned
state follows after learning an increase directly after the CS and when the reward is
given there is no change in the firing rate. If the reward stimulus is not presented than
a decrease in the firing rate occurs at the time of the predicted reward. So the time at
which a reward occurs is associated with the CS. The difference of the predicted and
experienced reward somehow mimics the prediction error function of TD and researcher
found that the brain has implemented some kind of TD for prediction of rewards and
the exact occurrence.

Temporal difference
Temporal difference methods were introduced by Richard Sutton and Andrew Barto in
the 1980s1 2. The computational goal of learning is to use sensory cues to predict a
discounted sum of all future rewards (value function):

V (t) = E(
∑
i

γir(t+ i)) = E[γ0r(t) + γ1r(t+ 1) + γ2r(t+ 2) + · · ·]

with r(t) is the reward at time t, 0 ≤ γ ≤ 1 is the discount factor and E[· ] denotes
the expected value of the sum up to the end of the trial. The discount factor affects
the view into the future in the way that if it is close to one, the rewards from the far
future are taken strong into account and with it being close to zero, nearly all future
rewards will not influence the value function. Also the TD has the Markov property,
which means that the future rewards depend only on the current time step and not on
preceding steps.

1R. S. Sutton and A. G. Barto, Psychol. Rev. 88 (no. 2), 135 (1981); R. S. Sutton, Mach. Learn. 3,9
(1988)

2R. S. Sutton and A. G. Barto, Proceedings of the Ninth Annual Conference of the Cognitive Science
Society (Seattle, WA, 1987); in Learning and Computational Neuroscience, M. Gabriel and J. Moore,
Eds. (MIT Press, Cambridge, MA, 1989). For specific application to eyeblink conditioning, see J.
W. Moore et al., Behav. Brain Res. 12, 143 (1986)
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At each time step there is some information available so that a recursive formula:

V̂ (t) = E[r(t) + γV̂ (t+ 1)]

can be obtained. In that way one need not to simulate the whole trial to estimate the
possible future reward. Now one can define an error in the estimated predictions with
information available at each successive time step:

δ(t) = r(t)γV̂ (t+ 1) − V̂ (t)

This prediction error can be used too update the current state in which the agent is and
change the next possible action to minimize the error and maximize the future reward.

Application
Schultz et al.3 applied the TD concept to a test case in which a reward is given 50ms
preceded by a stimulus. The model predicts the future reward with an increase of the
value function (figure below). With each ongoing trial this models adapts to the reward
signal and the response of the system shifts to the CS. So that after “learning”(40 trials)
the stimulus at 10ms, the model predicts a reward right after the CS.

Figure 1: Response shift in value function while learning

The value function V(t) as a func-
tion of time and trial. In the first
trial nothing is predicted as it is
the fact that here is the first time
where the stimulus is presented.
With the next trials an increase
can be observed around the time
of the reward. And with ongoing
trials a shift occurs towards the
time of the stimulus. The depres-
sion is from one error trial where
the reward was withheld.

3Schultz W. A Neural Substrate of Prediction and Reward. Science. 1997;275(5306):1593-1599
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Summary
Dopamine neurons in the VTA and substantia nigra report ongoing prediction of rewards.
Evidence for this is reviewed by Schultz et al.4, Montague et al.5 and others. Supporting
data of these neurons while simple conditioning tasks show that the output is consis-
tent with a prediction error signal which is used in machine learning theory(temporal
difference learning is one field) to adjust future actions for maximizing some function
or the prediction of reward. TD can be used to estimate the difference between the
current state and the associated reward and future rewards. This difference can be used
to update the current value of the state and change probably the future action. With
this concept it is possible to let computer programs learn along some predefined rules
and let robots interact and learn to survive6.

4Schultz W. A Neural Substrate of Prediction and Reward. Science. 1997;275(5306):1593-1599
5Montague PR. A Framework for Mesencephalic Predictive Hebbian Learning. Brain. 1996;76(5):1936-

1947.
6Doya, K, and Uchibe, E (2005). “The Cyber Rodent project: exploration of adaptive mechanisms for

self-preservation and self-reproduction.” Adaptive Behavior 13, 149–160
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Neuromodulation, Instruction and Behavioural Plasticity 

Hammer & Menzel (1994). A write up by Rithwik Mutyala towards the seminar on The Role 

of Memory on Decison Making. Topic: Reward Encoding and Reward Prediction Error.  

Abstract 

________________________________________________________________ 

Introduction  

The success of survival of an organism furthermore that of a species depends 

greatly on its ability to cope with its environment. The constitution of an 

organism fixes by genetics and its behaviour determine the thriving or extinction 

of its species. Although genetics are influenced by environment, it is through 

behaviour that an organism interacts with, adapts to or modifies its environment. 

In such a scenario the importance of learning and modifying behavioural 

responses becomes evident. An organism has to cope with internal states like 

hunger and external conditions like availability of food and as such needs to 

respond to the combination of internal and external states. In this chapter some 

of the mechanisms of the process of Behavioural Plasticity are discussed. 

Neural Assemblies 

Nervous systems organisation in to circuits and neural networks can be viewed 

analogically as the hardware of the system which defines the capabilities of the 

system. Then the observed flexibility of the system is explained by the software 

which is the neural assemblies. Authors suggest that “Neural assemblies can be 

thought of as actual interpretations of possible states of a given net, and are 

equivalent to functional meaningful states of activity.” The questions that arise 

then are  

 How are neural assemblies generated? 

 What are the mechanisms that help switch between them? 

Adaptation and Neural Assemblies 

Two mechanisms have been hypothesised for the behavioural adaptation 

1. Selective activation and modulation of already existing assemblies 

2. Experience dependent reorganisation and generation of functional 

assemblies. These then lead to addition of new and meaningful states of 

networks. 



Neuromodulatory neurons play a major role in former whereas the later utilizes 

or depends on the mechanisms of Neuromodulation. And hence it should be 

noted that these two are not mutually exclusive but in many cases work in 

concert. 

1. Selective activation and modulation of already existing assemblies 

In this case the already existing relationships between external/internal cues to 

pre-defined behavioural patterns are modulated or previously inactive systems 

are activated in response to the cues. These could be achieved by 

1. Action at Synapses: modifying the synaptic gain through chemical 

neuromodulators like Serotonin. These compounds modify the 

transmission at synapses. 

2. Action on Neurons:  modifying the properties of neurons themselves in as 

assembly through chemical neuromodulators. As was shown in rhythm 

generator circuits (in the chapter examples), this can essentially change 

the output of the network. Thereby giving rise to new functional 

modalities. 

3. Direct action of Modulatory Neurons: modifying the tonic (the continuous 

stable activity of the neruon) activity of the particular neurons themselves. 

These in turn might activate different assemblies based on the activity 

level. 

The references in the chapter provide examples for the above mechanisms which 

would be discussed in the presentation. Also since the effect of a 

neuromodulator is determined by the receptor of the target neuron, it is evident 

that the neuromodulator activity is target specific. This in turn implies that the 

same neuromodulator can have opposing effects on the target assembly. 

2. Re-organisation and Generation of New Assemblies 

In this case the existing behavioural patterns (or neuronal assemblies) are 

learned to associate with new cues. This further raises the question about 

1. Which stimulus combinations should be given new meaning (in terms of 

behaviour in the simplest case) 

2. Which meaning should the stimulus get. (eg. Defensive, appetitive, 

aggression, withdrawal etc) 

A solution to these seems to come from the instructive influence of other 

neurons. Classical conditioning has been shown as a good example where the 



role of these instructors becomes clear. Here a genetically determined, 

biologically relevant response to a stimulus (referred to as US: unconditioned 

stimulus) is associated with a earlier biologically meaningless new stimulus 

(referred to as CS: conditioned stimulus). The chapter shows examples of 

Aplysia and Honey –Bee as model systems for illustration. The following figure 

shows two plausible mechanisms for reorganisation and generation of new 

assemblies. 

 

In case A: the US activates a behavioural response (motor in Aplysia and 

Honeybee) and an arousal response. The US generally activates a modulatory 

pathway which overlaps with the CS pathway. When temporally contiguous (CS 

-> US), the activities of the system associates the target US assemblies with that 

of CS. This implies that the CS now can generate the behavioural as well as 

arousal properties of US and therby act as an instructor.  

In case B: here the activity of two neurons is either potentiated or depressed 

depending on the correlated or anti-correlated activity respectively (related to 

hebbian learning). Thus two different inputs can be associated by either 

increasing or decreasing the synaptic strengths. In this case the modulatory 

systems act as either permissive or gain-setting systems. In many hebbian 

systems attention has been shown to act as the modulatory system by affecting 

the sub-threshold firing of the target. 

Conclusion 

Neuromodulation appears to be involved at all organisational levels of nervous 

systems and mediate mechanisms of behavioural adaptivity. Studies of these 

systems have proven to be powerful tools for further analysis in bridging the gap 

between cellular (functional assemblies) mechanisms and observed meaningful 

behaviour. 

____________________________________________________________ 



A case study of investigating neuromodulatory systems can be seen from the 

publication by Martin Hammer, 1993, ‘An identified neuron mediates the 

unconditioned stimulus in associative olfactory learning in honeybees’ 

In this study an interneuron is identified as a plausible agent in associative 

learning of feeding behaviour (Proboscis Extension Reflex: PER) and specific 

odours (CS) by classical conditioning. In determining so, the author looks at the 

physiology as well as the functional properties of the neuron.  

Physiologically the identified neuron VUMmx1 is associated with primary 

olfactory system (which has been shown to mediate arousal), Mushroom bodies 

(essential sites for induction of a stable olfactory associative memory) and the 

output region of the brain (Lateral Procerebrum). Thus the neuron provides a 

good convergence between different pathways. Functionally the neuron is 

associated (with Sucrose as US) with long-lasting firing ~30s and also the 

arousal of the olfactory system.  

To test the hypothesis that the identified neuron is indeed the modulatory agent 

in association, the US was replaced by depolarisation of the VUMmx1. The 

subjects were clearly shown to exhibit associative learning in this scenario 

between odours (as CS) and behaviour (observed as PER).  

This investigation also shed light on some of the properties of the learning. For 

example,  

 Learning was achieved only when CS is presented before VUMmx1 

stimulated firing by current injection and not after. The requirement of 

temporal contiguity to classical conditioning is clearly implicated in this 

example. 

 Parallel processing of modulatory and reflexive behaviour is also shown 

as VUMmx1 evokes little or no motor activity (PER) when CS is 

presented after US. This uncoupling has been hypothesised to allow for 

more complex forms of learning. 

 Also the Plasticity of the VUMmx1 to respond differently to learned 

versus not-learned odour stimuli was shown. 

In conclusion, among the above results, this investigation showed for the first 

that a single neuron could affect associative learning. This study clearly 

demonstrates the usefulness of studying Neuromodulation pathways in further 

understanding and unravelling the underlying principles of behavioural learning 

and specifically associative learning. 
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Summary will be handed out during the seminar.

Stollhoff, N., Eisenhardt, D. (2009) Consolidation of an extinction memory depends on the unconditioned stimulus magnitude previously experienced during training. J Neurosci, 29 (30): 9644-9650




Visual working memory in decision making by

honey bees

Zhang et. al.
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1 Introduction

In the past decades it was shown that bees have perceptual and “cognitive”
capacities and are able to abstract general features of a stimulus. Like mon-
keys, pidgeons and other vertebrates, bees can be trained to use symbolic
rules, e.g. for navigating. The simple nervous system of bees is an at-
tractive model system, displaying essential elements of many many complex
behaviors.

2 Methods and Materials

For the experiment 15 bees were marked individually. They were trained
to fly through a tunnel and then into a decision chamber at the end of the
tunnel (see figure 1 a). In the initially training phase the feeder was placed at
the entrance of the tunnel and then moved step-by-step through the tunnel.
Depending on the experimental series a sample pattern was presented at a
point in the tunnel. Reinforcement learning was used in the training phase:
Bees that made the correct choice in the decision chamber were rewarded by
sugar solution. In the training phase bees were trained to match a sample
pattern with one of the two pattern presented in the decision chamber.
The sample pattern was presented alternatively in 20 min blocks during the
testing and training phase. The positions of the comparison pattern in the
decision chamber were swapped every 10 minutes.
Altogether there were 3 series of experiments. In the first one it was tested
how long the sample could be retained in working memory, in a second series
two sample pattern were placed in the tunnel (one representing the correct
one). In the third experimental series bees were trained using a two sample
pattern placed one behind the other in the tunnel.
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Figure 1: (A) Illustration of the apparatus used, consisting of a tunnel and
a decision chamber attached to the end. (b) Results of series II showing the
choice frequency in different learning and transfer tests. The results show
that bees are not able to decide on untrained sample patterns (Transfer
test 3). Moreover the choice frequency for two sample pattern (one of them
beeing the correct one) at different distances to the entrance is better than
random choice. (c) Results of experimental series I indicate an exponential
decay of matching accuracy with increase of flight time. (d) Sample pattern
used for training and testing.
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2.1 Series I.

In this series the tunnel was 4.8 m long, except of the last two trials where
the length was increased to 7.2 m. The sampple pattern was positioned 25
cm from the decision chamber. In the decision chamber the bees had to
choose the pattern that matched the sample pattern presented in the tunnel
to get a reward. To measure an estimate of the retention time, the delay
time was defined as the duration between the bees passing the pattern and
entering the decision chamber.
During the test phase, the position of the sample stimulus was varied sys-
tematically.

2.2 Series II.

In a training phase, bees were trained with a single pattern. This sample
pattern was positioned 120 cm from the entrance of the decision chamber.
After that the bees were tested with two pattern, one representing the “cor-
rect” one. The position of the sample pattern was 120 cm from the entrance
of the decision chamber, whereas the incorrect pattern was presented at a
distance of either 50 cm or 170 cm from the entrance of the decision chamber.

2.3 Series III.

In the training phase of the 3rd series, bees were trained with 2 sample
pattern 50 cm apart. During the training the positions of the two samples
were changed regularly, but the distance was always kept and the sequential
order of the correct and incorrect sampled was always preserved. In one
training experiment the correct sample pattern was always the first one, in
a second training experiment the second pattern was the correct one. To test
whether bees could generalize the rule they learned, they were also trained
with with novel patterns.
In the test phase the pattern positions were randomly varied.

2.4 Data collection

In 20 min training blocks, sample pattern were presented alternatively dur-
ing training and testing phase. The position of the comparison patterns were
swapped every 10 min. For the data analysis all choices for each visit of the
bees were taken and the performance of each bee was evaluated separately.
To ensure statistical independence of the samples the sample size (n) was
taken to be the number of bees. To determine whether the performance of
the choices was better than random t-test was used.
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3 Results

The performance of the experiments was measured over all 286 visits by the
16 bees.

3.1 Series I.

With an average frequency of choice of 75 ± 3 percent in favor of the match-
ing pattern, bees showed a strong significant preference. The average delay
time measured was 1.24 ± 0.1 sec. The experiments with different tunnel
length revealed, that the accuracy with with the bees matched the sample
pattern in the decision chamber decreased with as the distance increased
(Fig. 1 c). At a tunnel length of 375 cm the average delay time was 6.52 ±
0.86 sec, with a performance significantly better than random choice. At a
tunnel length of 475 cm the average delay time was 8.86 ± 1.23 sec, with a
performance at randome choice level.

3.2 Series II.

In the training tests, the bees choosed the correct pattern with a rate of
64 ± 3 percent (see figure 1 b). The bees continued choosing the right
matching pattern in the decision chamber at a rate of 64 ± 4 percent, when
the incorrect sample pattern was presented behind the correct pattern. In
the third set of tests, the correct sample pattern was placed 50 cm and
the incorrect at a distance of 170 cm before the entrance of the decision
chamber. Having a training distance of 120 cm before the entrance of the
decision chamber, the bees were confused and choice frequency of 50 ± 6
percent was at random choice level.

3.3 Series III.

The results of the first experiments show, that bees are able to learn to
choose the first sample pattern presented. With a choice frequency of 73 ±
3 percent the rate was significantly better than random choice. Confronting
the bees with unfamiliar sample sets the choice frequency was 66± 4 percent.

4 Discussion

The results of series I revealed that sample pattern can be held in memory
for period of 5 sec. It was also shown, that the information retained in the
working memory decays exponentially as a function of time. The experimen-
tal results of series II demonstrate, that not only sample pattern are learned,
but also acquire information about the distance to the dicision chamber are
taken into account. The experimental results of series III indicate, that bees

4



can learn which of presented patterns is the pattern to be matched. The
learned rules can also be applied to novel sample patterns. In contrast the
bees were not able to make decisions by learning the position of the relevant
sample.

5 Supporting material

The supporting material contains a video, showing the apparatus and the
flight of the bees. This video can be found on:
http://www.pnas.org/content/suppl/2005/03/21/0501440102.DC1/01440Movie1.mpg
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Summary 
 
In this study the authors first present electrophysiological evidence for PFC (prefrontal 

cortex) neurons which presumably encode information about one-dimensional sensory 

stimulus quantities in working memory. In order to test their hypothesis, Romo et al. applied 

the ‘vibrotactile discrimination task’. The subject’s (human or monkey) finger tip touches a 

mechanical stimulator which delivers a certain vibration. After a delay of three seconds a 

second stimulus in a different frequency is applied (Fig. 1a). The subject now has to compare 

these two stimuli and pushes one out of two response buttons depending on whether the 

frequency of the second stimulus was higher or lower than the first one. As the different 

frequencies lie on a continuous scale between 6 and 42 Hz, this task is parametric. Two 

different stimuli sets were used (Fig. 1b, c).  

After training, neurophysiological recordings 

were made during task performance. 

Therefore, four monkeys (Macaca mulatta) 

were trained to accomplish the task. During 

test performance, seven independently 

movable microelectrodes (500µm apart, in 

parallel) recorded from the prefrontal cortex. In 

a pilot study conducted earlier, the authors 

found neurons only in the inferior convexity of 

the PFC (Fig. 1d) responded during the whole 

task. In this study they were exclusively 

interested in the neuronal activity during the 

delay period . From the first 3 macaques 

(stimulus set A) they successfully recorded 

318 neurons that discharged during the delay 

and categorized them according to their 

discharge features. Two main groups could be 

distinguished: ‘positive monotonic neurons’, which increase their discharge rate with 

increasing base frequency and ‘negative monotonic neurons’ whose firing rate decreases 

with higher base frequencies (Fig. 2a, b, e, f). 

Fig. 1 vibrotactile discrimination task. a, sequence of 

delivered stimuli. b, pairs of frequencies, numbers in grey 

boxes give the percentage of correct trials. Set A: 

Probability (p) to experience a lower comparison stimulus 

varies between 0 and 1. c, Set B: p=0,5. d, insertion site in 

the PFC next to the principle sulcus (ps) 

3 s delay 
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In both groups most of the recorded neurons could be further subclassified into a) ‘early 

neurons’ , responding quickly after the base stimulus, b) ‘persistent neurons’ , carrying a 

signal about the base stimulus during the whole delay period (Fig. 2c) and c) ‘late neurons’ , 

responding during the last second of the delay period (Fig.2d). 

These amazing results led to the question ‘Which information do PFC neurons of the 

inferior convexity encode actually – the base frequ ency or the anticipated motor act?’  

With the help of a very clever idea Romo et al. could find the answer: Instead of delivering 

stimuli set A (Fig. 1b) where the probability for the comparison stimulus to be lower than the 

base frequency varies between 0 and 1, they applied stimuli set B (Fig. 1c). Here, the base 

frequency doesn’t carry any information about the anticipated motor act (to push the right 

button) because there is always a 50:50 chance for each button to be the right one. As the 

proportion between the different neuron classes (‘early’, ‘persistent’ and ‘late’), which were 

recorded in the fourth macaque, was the same as in the set A trials, the recorded PFC 

neurons shouldn’t encode any information about the base frequency. The authors conclude 

that monotonic neurons were encoding the memorized base stimulus frequency itself.  

Summarized they had two findings: 1) working memory responses for tasks that do not 

include a spatial component are preferentially found in the ventral region of the lateral PFC, 

2) PFC neurons can retain working memory information also induced by non-visual 

modalities. 

Fig. 2 discharge of recorded neurons. a, c, e positive monotonic. b, d, f negative monotonic. a, numbers on the left 

indicate base frequency, numbers in the center comparison frequency, every line of dots comprises a trial, each dot 

is an action potential, grey boxes in a, b, c, d: delivered stimuli. e, f, mean firing rates averaged across delay period 

plotted against the base frequency. b, grey dots at the end indicate motor movement (to push the button) 



Speed and accuracy of olfactory

discrimination in the rat

Matthias Kluge

1 Introduction

Odorant receptors are located in the olfactory bulb and compose the glomeruli. An
odor activates such in a unique pattern, some even with highly overlapping glomerular
representation, which can be discriminated by rats. The conventional paradigm is
that olfaction is a slow sense, implying a trade-o� between speed and accuracy of
discrimination over the time scale of the temporal evolution of the representation.
Several studies suggest that the identi�cation of distinct odors can be achieved in
<= 0.5s1. In contrast, humans performing di�cult binary mixture discriminations
are quite slow with 1 - 2 s.
The results of the presented study was obtained by operant conditioning using a two-

alternative choice odor discrimination. A dissimilar odor pair was discriminated with a
median odor sampling time(between odor onset and withdrawal from the odor port) of
223ms[229ms] and an accuracy of 97.4%[95.6%] and a median movement time(between
withdrawal from the odor port and entry into the choice port) of 274ms[272ms]. Similar
results were obtained for highly overlapping glomerular activation patterns shown in
the brackets before.

2 Discrimination speed

The relationship between similarity in glomerular representations and the accuracy
and timing of the discrimination is examined by intrinsic optical imaging, which maps
the responses of the olfactory bulb to di�erent odors. Glomerular activity patterns
were more similar within a odor class2. Odor similarity was quanti�ed using a vector
distance metric3.
Based on these results pairs of similar and dissimilar odor pairs were chosen and

four rats were trained for each set. > 90% accuracy was achieved, with a signi�-
cant correlation between odor similarity and accuracy, as shown in �gure 6. Despite

1for example, see original paper refs.
2three aliphatic acids and four alcohols
3cosine measure and euclidian distance
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our paradigm the odor sampling time was not signi�cantly correlated with odor sim-
ilarity, as well as with movement time and odor similarity. Therefore no additional
time is needed for accurately discriminating odors which activate largely overlapping
glomerular representations.
Since the mono molecular odor trial may not be su�cient enough of a challenge to

the olfactory system, mixtures containing di�erent proportions are introduced to in-
crease di�culty. These results are described by a sigmoidal psychometric performance
function, with discrimination accuracy dropping sharply for mixture ratios near 50/50,
as shown in �gure 6.
To see if this rapid odor discrimination behavior holds to di�ering experimental

manipulations the following were tested.
◦ delivering the single di�cult mixture pairs throughout a session
◦ lowering the odor concentration 100-fold
◦ increasing the variance of the random foreperiod(latency between nose poke and
odor onset)
None of these di�ering conditions increased the absolute odor sampling time. There-

fore a rapid odor sampling strategy for discrimination which is independent of the
di�culty and further experiment parameters is implied.

3 Discrimination accuracy

Using a conditional accuracy analysis4, the discrimination accuracy increased only
over the �rst 200ms. Also, performance could not be positively correlated with the
sampling time beyond 250ms. Therefore, beyond a relatively short time, longer odor
sampling times tended to be associated with degraded rather than improved accuracy.

4 Maximum discrimination

Temperature sensors were implemented to measure the nasal �ow, thus, recording the
odor sampling sni�ng pattern. Linear relationship can be approximated between the
number of sni�s and the odor sampling span. At odor onset, the sni�ng frequency
was highest with a following decline. Usually, one till two sni�s were su�cient to
discriminate and there was no change with di�culty. Repetitive sampling could not
improve odor discrimination.
Novel odors increase the respiration cycle signi�cantly and is termed 'exploratory

sni�ng'. Distinct behavioral responses to novel and learned odorants can emerge in
under 200 ms. Given that the respiration frequency at the time of odor sampling is 1
till 2 Hz, this result implies that novel odors are identi�ed as as such after only one
inhalation.

4makes use of the natural variability in reaction tune within a single condition
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5 Discussion

Only a small trade-o� between the di�culty of discrimination and the required odor
sampling was found during the rat-trials. Independent of the odor mixture, one or two
sni�s were used to perform the discrimination. That less than 200 ms were su�cient
to achieve the maximum accuracy could be deducted by the natural variability in the
odor sampling period. When more sni�s were taken, no improvement of the discrimi-
nation accuracy was measured. Deciding between two odors with largely overlapping
glomerular representations, can be carried out as fast as the limits imposed by the
olfactory sampling process.
Performance of �ne odor discriminations by the rat does not depend on slow tempo-

ral processing, as this would have introduced an obligatory increase in accuracy during
the re�nement of the representation. The data suggests that repeated samples did not
improve the representation of odor identity. This suggest that olfactory information
may be temporally chunked or quantized by the respiration cycle, such that each sni�
constitutes a discrete olfactory sensory image, also referred to as a snapshot. Crucial
for the encoding of olfactory sensory information may be the respiration cycle. The
�ring of olfactory neurons is strongly patterned by the respiratory rhythm, and infor-
mation about odor identity and concentration can be encoded in the phase of spiking
relative to respiration-driven oscillations.

6 Methods

◦ Odor discrimination task: The correlation between odor sampling time and perfor-
mance was calculated on the conditional accuracy function.

◦ Odor delivery: A custom olfactometer was constructed of Te�on tubing, �ttings and
solenoid valves.

◦ Intrinsic signal imaging: Long Evans rats (200 � 250 g) were used for imaging
experiments. Animals were deeply anesthetized with medetomidine, fentanyl and
diazepam and the bone and dura covering the dorsal surface of one olfactory bulb
were removed. A well of dental cement was constructed, �lled with agarose gel, and
sealed with a glass cover slip to reduce brain movement. Anesthesia was maintained
by periodic dosage with medetomidine. Light re�ectance from the olfactory bulb
( 630 nm wavelength illumination from light emitting diodes) was captured using an
analog CCD camera, frame grabber and custom acquisition software written using
MATLAB.

7 Sources

Speed and accuracy of olfactory discrimination in the rat | Naoshige Uchida & Zachary
F Mainen Nature Reviews Neuroscience
Rapid Encoding and Perception of Novel Odors in the Rat Daniel W. Wesson, Rayn
M. Carey, Justus V. Verhagen, Matt Wachowiak PLoS Biology
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Figure 1: (a) Still frame of a rat performing a two-alternative forced-choice odor dis-
crimination task. The rat is shown making a nose poke at the central odor
port to trigger the delivery of an odor. Subsequently, the rat is rewarded for
making a nose poke at the correct choice port (A or B), depending on the
identity of the odor.(b�c) Performance accuracy (b), odor sampling time

Figure 2: Odor sampling times are fast and largely independent of discrimination dif-
�culty. (a) Median odor sampling time. (b) Performance of one rat in
discriminating valeric acid and hexanol
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Perceptual Decision Making In The Human Brain 
A summary by Marcus Schroeder, September 2010 

Each and every day your brain has to process hundreds of impressions you either see, feel, 

touch or smell. More important some of those impressions play a major role in what you are 

going to do next. For example you are in a grocery store and you want to make a nice fruit 

salad for dinner. You have to kinds of strawberries to choose from. One is really red, feels 

firm and smells like strawberries from your croft next door. The other is very soft with pres-

sure marks and even worse you can also spot some mould. Depending on your sensory in-

formation and your experience of life you would probably go and take the first one to the 

cashier. In this summary I describe the process that is going on in the human brain if you 

have to make a decision depending on sensory information. This implies the location of im-

portant regions in the brain and the methods to obtain knowledge about decision making.

What is perceptual decision making? 

The process of choosing one option from a set of 

alternatives based on sensory information is called 

perceptual decision making. Sensory information 

is gathered from lower-level sensory systems in the 

brain and will be combined and later on used by 

higher-level decision areas to compute the decision 

variable and to make a statement which course of 

action seems to be the best one.  

Perceptual decision making is also influenced 

by some other factors like attention, task difficulty, 

prior probability of occurrence of an event and the 

outcome of the decision. If and how perceptual 

decision making influences the valuation of our 

decisions is not yet clear (Rangel, et al., 2008). 
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(Heekeren, et al., 2008) provide a model to sketch 

the neural architecture for the process of decision 

making. This model consists of the following four 

complementary modules that are in parts overlap-

ping (see Figure 1):  

 

(1) Accumulate and compare sensory evidence 

(2) Detects perceptual uncertainty and signals if 

more attentional resources are required 

(3) Represents decision variables and includes 

motor and premotor systems 

(4) Monitors performance (detecting errors and 

signalling to adjust decision strategies) 

 

The process from perception to action is non-linear 

which means that the modules mentioned above 

can be active in parallel. For example while you 

are reading this text you are processing the infor-

mation that is written but for that you don’t have to 

stop reading e.g. this means you continue getting 

visual information to process. 

Although humans have a more abstract deci-

sion making network than monkeys, which allows 

us to establish a better link between decision and 

action, it is very likely that the neuronal architec-

ture for decision making has its roots in the brain 

in a common ancestor of humans and monkeys.  

Based on the assumption that decisions are 

formed by continuously accumulation of sensory 

information the process of perceptual decision 

making can be modelled as a stochastic diffusion 

process. Depending on the strength of the sensory 

signal and the accumulation rate a quantification of 

evidence (e.g. the decision variable) will increase 

faster or slower until one of two criteria is reached 

(See Box 1). With a model like this it is also possi-

ble to predict the decision of an individual with 

neuroimaging techniques (Heekeren, et al., 2008). 

Where is perceptual decision making 

located in our brain? 

Humans usually are able to smell scents, hear 

sounds, see landscapes etc. For each kind of stimu-

lus there exists a specific region in the brain that is 

important for decision making (also for something 

like recognition of faces we have the fusiform-face 

area (see Box 1)). The primary and secondary 

somatosensory cortex can be activated by tactile 

stimuli. Visual stimulation can result in activity in 

the ventral temporal cortex and sounds can stimu-

late the primary auditory cortex. Olfaction can 

activate for example the posterior piriform cortex 

(Uchida, et al., 2006). Depending on the kind of 

stimulus different regions in the brain are activated 

which accumulate and compare the input of spe-

cific sensory neurons. For example for tactile 

stimuli it is the dorsolateral prefrontal cortex 

(DLPFC). For visual stimuli it is the lateral in-

traparietal area. The neural activity increases faster 

on easier tasks than on difficult. Easier tasks are 

processed by lower-level decision areas and harder 

Figure 1| A model for the neuronal architecture of perceptual decision making. 

Sensory information like a picture of a face stimulates the corresponding sensory evidence area in the brain (for example the 

fusiform-face-area (FFA)). The information is accumulated and compared to compute a decision variable (for example in the 

dorsolateral prefrontal cortex). The whole time the module performance monitoring checks for errors in perception and signals if 

adjustment of action or decision has to be made. Another module (uncertainty/difficulty) checks for the task difficulty and if the 

amount of sensory evidence is not sufficient. (Heekeren, et al., 2008) 
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Box 1| Face-house categorization task  

Participants have to decide whether an image presented on a computer screen is a face or a house, 

while in the meantime their brains are observed with fMRI.  The two regions fusiform-face area for 

faces and the parahippocampal place area, both lying in the ventral temporal cortex, showed a great-

er response to faces than to houses and vice versa, while the response was greater on images without 

noise (see Figure 2a). Only correct answers were used to calculate the mean fMRI response. When 

the pictures got more and more degraded two areas – the Frontal Eye Field and parietal regions – 

answered with a higher neural activity. Higher-level decision making areas – like the left posterior 

DLPFC, the posterior cingulated cortex and the superior frontal gyrus – showed a greater response 

(BOLD-activity) for more fuzzy pictures. It is assumed that higher-level regions take the output 

from lower-level regions. The overall response-time gets also slower, if more noise is added to the 

pictures (see Figure 2b). (Heekeren, et al., 2004) 

 

tasks by higher-level decision areas, like the poste-

rior portion of the left DLPFC. Comparison of the 

outputs of selectively tuned lower-level sensory 

neurons may serve as a basis for the computation 

of decisions in higher-level regions. Higher-level 

regions also show a specific behaviour. They have 

the highest activity in tasks that have a large 

amount of perceptual conditions of a specific 

category and their activity is correlated with the 

difference between the output signal of the two 

brain regions containing pools of selectively tuned 

lower-level sensory neurons (Heekeren, et al., 

2004). Regions that are important for selecting and 

planning play an important role in deciding which 

action to execute. Those regions do not just accu-

mulate sensory evidence they also translate the 

evidence into an action independently of response 

modality. Performance monitoring (like checking 

for errors in the perception), and signalling the 

need for adjustment of actions are important tools 

of our behaviour. To date it is not so clear if the 

monitoring systems selectively adjust sensitivity of 

the sensory regions or if they adjust the decision 

criteria. 

How to measure decision making? 

The first steps in analyzing the process of decision 

making were done in neuroimaging experiments 

with monkeys. The monkeys had to solve easy 

problems like which of the buttons has a higher 

vibratory frequency. Therefore the monkeys had to 

Figure 2| Representation of sensory evidence in lower-level regions and perceptual decision making in the posterior DLPFC 

a) If the test person saw a clear picture of a house the fMRI signal in the corresponding region (parahippocampal place 

area, fusiform-face area) was larger and decreased with increasing noise. b) A decision variable (DV) is computed by 

comparison and accumulation of the output of lower-level sensory regions. The DV drifts between two boundaries until it 

reaches a certain threshold and a decision is made (“House!”). The DV is computed in downstream cortical regions like 

the dorsolateral prefrontal cortex (red area). (Heekeren, et al., 2008) 
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touch the buttons to feel the difference and then to 

decide - based on their perception - which button 

they should press. During the performance single 

neurons were observed for example with micro-

electrodes. This procedure is called single-unit-

recording study. 

To research decision making other technical 

methods like functional magnetic resonance imag-

ing (fMRI) and electroencephalography (EEG) 

were used. FMRI measures the change in blood 

flow related to neural activity in the brain or spinal 

cord. FMRI has a high spatial resolution but rela-

tively poor temporal resolution. It can also be used 

to measure the blood-oxygen-level-dependent 

(BOLD) signal. Increases in the bold signal are 

proportional to changes in the neuronal activity in 

given regions. EEG monitors the electrical signals 

from the brain that reach a threshold and measures 

the neural activity this way. It has a good temporal 

resolution and a poor spatial resolution. EEG and 

fMRI are complementary techniques and should be 

used simultaneously. 

Other methods to obtain neuroimages are the 

transcranial magnetic simulation (TMS), magne-

toencephalography (MET) and the positron emis-

sion tomography (PET). 

Tasks like the one just mentioned can be made 

up for humans as well. For different kinds of stim-

uli different types of tasks had to be performed. 

Vibrotactile tasks were used to identify those 

regions that are important for decision making 

based on tactile information. The main area there-

fore is the primary somatosensory cortex. For the 

visual information the test person had to decide if 

they see a face or a house on a given picture. In 

this face/house-task a fusiform-face-area (recog-

nizes faces) and a parahippocampal place area 

(recognizes houses) were identified in the ventral 

temporal cortex. The clearer the image was the 

greater was the response in one of the regions. An 

auditory task revealed information about the proc-

essing of auditory stimulus. Therefore the test 

person had to identify speech sounds which were 

more or less degraded with noise. What we know 

today as the primary auditory cortex seems to 

represent the sensory evidence that is relevant for 

making decisions based on auditory evidence.  

What are the benefits? 

A better understanding in how humans make deci-

sion and where the process of perceptual decision 

making takes place will provide a deeper insight 

about clinical brain disorders like indecisiveness, 

inflexibility, hallucinations, misperceptions and 

schizophrenia. But it helps us also to gain knowl-

edge in the complex decision making processes of 

everyday life. Another field of interest is how the 

brain values different choices and how the percep-

tual decision making system interacts then with 

valuation.  
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1 Introduction

One of the most challenging fields in decision neuroscience is to identify and
understand the neural mechanisms of human decision-making. One aspect of
this research area is the study of value-based decisions which are involved in all
areas of human behavior from watching tv to stock market trading. In most
decision theories it is assumed that subjects condense the various parts of an
option and its outcome (reward) into one subjective value and than choose the
option with the highest value [7].
In their paper ”Overlapping and Distinct Neural Systems Code for Subjective
Value during Intertemporal and Risky Decision Making” the authors Jan Peters
and Christian Büchel used functional magnetic resonance imaging (fMRI) to
investigate the neural systems that are involved in probabilistic and intertem-
poral decision making. The main goal was to find neural systems that code
for subjective value during delayed and probabilistic decision processes involving
monetary rewards.

2 Methods

Two experiments were conducted. The first (Experiment 1) consisted of two
behavioral tests, one behavioral test under fMRI and one behavioral session to
determine long-term stability of discounting.
The second experiment (Experiment 2) consisted of one behavioral test and was
designed to examine if delayed rewards had a higher preference than probabilistic
rewards or vice versa.
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2.1 Risky(probabilisitic) and delayed(temporal) decisions

Temporal decisions Delayed decsisions have a temporal delay between the
decision and the outcome. In the experiments presented in the work of Peters
and Büchel the reward was an amount of money which actual payment was
delayed.

Probabilistic decisions Probabilistic decisions have a certain probability as-
signed to the outcome of an option, e.g. a subject can choose between e 20
with a probability of 1 or e 26 with a probability of 0.8.

2.2 Experiment 1

First two behavioral tests In the first behavioral session volunteers made
repeated choices between a immediate monetary reward of e 20 and greater
amounts available at different delays (delay discounting (DD)) or probabilities
(probability discounting (PD)). The algorithm used to generate the choices in-
creased the amount of the delayed/probabilistic option after two successive
choices of the immediate reward. After two successive choices of the de-
layed/probabilistic option, the algorithm decreased the amount of these op-
tions. Decrease and increase where done in a stepwise manner. The algorithm
terminated, as soon as the difference between the accepted/rejected amount
reached a delay/probabilistic-specific threshold. From these results the authors
calculated the ”indifference amounts” by averaging the amounts of the de-
layed/probabilistic option at which the participant’s preference of choice be-
tween the delayed/probabilistic and immediate reward was reversed. These
indifference amounts were converted into proportions of he fixed reward (e 20)
and the following function were fit against them to obtain the discount-rates k
for each participant:

SVDD =
1

1 + k ·D

SVPD =
1

1 + k · θ
where SV is subjective value, D is delay in days and θ is the odds-against-
winning transformation of reward probability P

θ =
1− P

P

. In other words: θ is the odds that the reward is not paid.
For one participant, the best-fitting discount-rate k describes that individ-

ual’s choice behavior. These values were compared between the different be-
havioral sessions to test for long-term and short-term stability in the choice
behavior.
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This behavioral session was repeated after a median time span of 9 days to test
stability of participants choices and to compute adequate delayed/probabilistic
offers for the fMRI test session.

fMRI test During the fMRI test session, the participants made choices be-
tween the immediate reward of e 20 and a delayed or probabilistic reward. The
offered rewards were chosen individually according to the behavioral pretests.
The offers were calculated in such a way that the participants chose the de-
layed/probabilistic offer in ∼50% of trial. The fMRI scan was conducted 4 days
after the second behavioral test.

Behavioral test for long-term stability A third behavioral session was con-
ducted 4 month after the fMRI session to test for long-term stability in choice
preferences. The test itself was similar two the first behavioral tests.

2.3 Experiment 2

To verify the assumption that delayed and probabilistic rewards were equally
valuable, the authors conducted a second behavioral experiment. Here the
participants had to chose between a reward of e 20 with a given probability and
e 20 with a given delay. The probabilities and delays were calculated such that
in half the trials the delayed option had a greater subjective value, in the other
half of the trials the probabilistic option had a greater subjective value. The
calculations were based on behavioral prestests.

2.4 functional magnetic resonance imaging (fMRI)

Functional magnetic resonance imaging is a noninvasive medical imaging tech-
nique and belongs to he class of nuclear magnetic resonance imaging (NMRI)
procedure. These techniques use the fact that hydrogen atoms in the human
body, i.e. the hydrogen nuclei, can be influenced through electromagnetic fields.
In NMRI, electromagnetic signals emitted by the hydrogen nuclei in a strong
magnetic field are detected and used to construct an image. This is possible
because the behavior of the nuclei depend on their molecular embedding which
varies between different tissues. This and the different concentration of water
in the body shows up in the constructed images and is used to differentiate
between anatomical structures.

In functional magnetic resonance imaging, the change between oxyhemoglobin
and deoxyhemoglobin is detected through their different behavior in the mag-
netic field that is applied in fMRI. While the deoxyhemoglobin locally decreases
the field intensities, oxyhemoglobin does not have this effect. Different levels of
capillary oxygenation therefore show in the detected magnetic field intensities.
The underlying assumption is that different levels of neural activity are reflected
by metabolic changes (oxygenation/deoxygenation).
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In the fMRI test session the authors recorded the blood oxygenation level
depend (BOLD) signal while varying the subjective value of the probabilistic and
delayed monetary reward. This allowed the analyses of overlapping and distinct
neural systems involved in subjective valuation during probabilistic and delayed
decision making. The analysis of the fMRI results was done with the General
Linear Model (GML) approach. For details see [3] and [4].

3 Results

3.1 Experiment 1

Long-term and short-term stability of decisions The subset of 13 subjects
who participated in the long-term behavioral experiment showed a high long-
term stability in their choice preferences. A linear regression of the discount
rates k from test and retest gave a p-value of 0.009 (DD) and 0.0026 (PD).
See figure 2(a,c) for details.

The participants showed also stability in their choice preferences between
behavioral test sessions and the fMRI session. See figure 2 (b,d) for details.
The results also showed that the participants discarded delayed/probabilistic

rewards in a hyperbolic manner over time/probability (not shown).

fMRI data The fMRI images were searched for areas of high activity which
correlated with subjective values of delayed or probabilistic rewards. These sub-
jective values were calculated by multiplying the objective amount of a reward
by a subject-specific discount fraction for that delay/probability. This discount
fraction was determined in the behavioral pretests.
Along the regions that showed a high correlation with subjective values of de-
layed rewards were the posterior cingulate cortex, the medial prefrontal
cortex (PFC),bilateral parietal cortex and the left ventral striatum.
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Along the regions that showed a high correlation with subjective values of prob-
abilistic rewards were the right superior/inferior parietal lobule, the left
middle occipital gyrus and the left ventral striatum. The authors looked
also for regions that showed a high activity during probabilistic and delayed dis-
counting. The left ventral striatum and the right central orbifrontal cortex
(OFC) showed a a positive correlation with subjective values during delayed and
probabilistic discounting. For details and a complete list of all regions involved
see [2] and [5].

3.2 Experiment 2

This behavioral experiment showed that there was no general preference to
delayed or probabilistic rewards. For further details see [2] and [5].

4 Conclusion

The behavioral experiments showed short-term and long-term stability in the
subjects choice preferences. Furthermore the participants discounted monetary
rewards in a hyperbolic manner. It was also shown that there was no general
preference towards delayed or probabilistic rewards. Therefore both discount
options seem to have the same intrinsic value.
The fMRI scans showed that the neural systems involved in temporal and prob-
abilistic value-based decisions differ for most regions. This suggests that there
exist distinct neural systems for valuation of risky and temporal decisions.
The fact that the ventral striatum and the right OFC were involved in both de-
cision types suggests that these code for subjective values in a domain-general
manner. Overall the experiments confirm and extend the current results in
decision neuroscience.
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1 Introduction

Decisions must be made in everyday life. It can be especially hard if the
individuals live in the group, as it is the case in many insects. In order
to achieve their goals such as finding resources they must cooperate to
increase individual success. One example of such social animals are cock-
roaches. In case of german cockraoaches (Blatella germanica) it is the
common preference to look for the dark places and to live together which
increases their reproductive opportunities, sharing of resources like shelter
or food, etc.

The interesting questions are: (i) how do they make the decision and (ii)
how do they cope with the crowding effect.

Halloy et al. (2007) studied these questions in a group of custom-
designed robots which by imitating the insects were able to join the group
and change their decision of preferable shelter. Another approach was
used by Ame et al. (2006) who designed the behavioral model describ-
ing how cockroaches optimize group size and then tested it experimentally.
Both contributions try to explain how cockroaches or other social animals
make decisions that do not involve leadership. Both studies will be briefly
reviewed here.

2 Collegial decision making based on social ampli-
fication leads to optimal group formation

Ame et al. (2006) who performed experiments looking at how a group
of cockroaches would split into seperate shelters. Experimenters varied
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the number of shelters, their sizes and darkness. After cockroaches were
placed inside the plate, they first scattered randomly around, arbitrary choos-
ing one of the shelters. At some point, enough of them were under one
patch so that critical mass was reached and this hiding place became more
attractive to the others. If there was any shelter able to house all the in-
sects, all of them chose to hide under it. If, however, there was no such a
shelter present, but still all were of equal quality (the same amount of light
passed through) the cockraoaches divided themselves up perfectly within
the shelters. For example, if there were 50 insects and 3 shelters, each able
to house 40 animals, the group divided itself to two equal (25 cockroaches
each) subgroups, while the third shelter was left empty.

The above findings were used to design a simple model of cockroach
social behaviour. The model assumed that the cockroaches use only two
pieces of information in deciding where to go: darkness of the place and
the number of individuals occupying it. The more insects are under the
shelter, the greater probability that none of them leaves, but also the lower
probability for any other insect to enter it. The system stays dynamic at all
times. Any cockroach can change the decision at random of leaving the
group and explore again.

3 Social Integration of Robots into Groups of Cock-
roaches to Control Self-Organized Choices

Cockroaches recognize each other using antennas (which are very sensi-
tive olfactory organs). They are not very discriminative, therefore, the ex-
perimental group of cockroaches accepted the robots which had the same
smell and roughly the same size. To ensure that the robots are truly ac-
cepted, they were programmed to act similarly to their natural brothers
that is to prefer the crowds and darkness (in experimental conditions cock-
roaches chosen darker shelter in 73% of the trials; Figure 1) [2]. Since
the gathering behaviour did not change after the robots were introduced
to a group of cockroaches it was concluded that the robots were treated
as equals. Then, to check if cockroaches’ decisions can be altered, re-
searchers preprogrammed the robots so they preferred the lighter shelters
but they still preserved their strong need for being with others. The results
showed (Figure 1) that even if there were less robots, in many cases, the
machines were still able to encourage the others to come under the lighter
patch which was not observed in their absence (in 61% in comparison to
27 % when robots were not present). Because of their social behavior,
however, in 39% robots were driven by the insects under the darker shelter.
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Figure 1: Experimental collective choice between dark and light shelters.
Groups of cockroaches without robots (brown bars) selected the dark shel-
ter in 73% and the light shelter in 27% of the trials. Mixed groups with
robots programmed to prefer the light shelter (yellow bars) selected it in
62% of the trials. Figure adapted from Halloy et al. (2007)

.

4 Conclusions

Results of both studies allowed the researchers to develop a mathematical
model of cockroach group behaviour. Additionally, it was shown that there
is no leader in the group of insects. However, an introduction of artificial
agents can make the group follow them to arbitrary shelters. An open ques-
tion remains if also other animals, such as goats, could be led by artificial
agents to some predefined places.
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Introduction 
Reputation and trust are two fundamental elements in human society which are believed to 
have influenced the cognitive evolution of Homo sapiens (Tomasello et al. 2005) as well as 
given rise to complex cultural institutions such as trade. In everyday life they alter our 
behaviour towards fellow beings, for example in competitive or cooperative situations, by 
means of evaluation and prediction. From a neurobiological point of view the question arises 
how these decision are achieved by our brain respectively how and where they are encoded. 
The given article tries to shed some light on this issue by providing a series of results 
obtained in an economical game. 
Decision making is a highly complex process involving many variables which have to be 
taken into account so in order to assess it scientifically experiments are commonly carried 
out in an artificial situation with set conditions incorporating elaborate social circumstances 
into more or less sophisticated games derived from game theory (Neumann & Morgenstern, 
1994). These games may serve as a model for a wide variety of competitive or cooperative 
social interactions between the players when they are faced with the decision how to 
maximise their payoffs. Consequently, game strategies and leaning processes can be 
examined for example at the neural level via neuroimaging. 
 
Methods 
In the given study investigators were specifically interested in the effects of trust and 
reputation on social behaviour and the corresponding neural responses. Therefore they 
instructed two persons to play an economic exchange game. Each round of the game started 
with the first player (investor) investing any amount of his credits (starting with 20$) with the 
other player (trustee). The invested amount was then tripled and the trustee could decide 
which fraction he wanted to return. Concerning validity the game was played for ten 
consecutive rounds so that players could adapt to each ohers behaviour. Player identities 
were not revealed in order to minimise unwanted influences on trust. As for the neural 
analysis event-related hyperscan-fMRI was used to monitor brain activity which was 
converted into a blood oxygenation dependant (BOLD) signal. Scanning was done 
simultaneously allowing a direct comparison of the trust and reputation model and their 
corellations between both participants. 
 
Results 
48 pairs of subjects were analysed. Data revealed that reciprocity provided the best results 
for future predictions concerning trust changes which was mirrored in decreased or 
increased payments. These deviations were the reaction of one player to his partners 
behaviour in previous rounds. It turned out that the deviations from the investor’s point of 
view were the most accurate predicting future changes in payment by the trustee so this was 
put into the center of attention. Three variations of reciprocity were identified. Benevolent 
reciprocity meant that the investor reacted to a previous decline in trustee payments by 
increasing the amount sent whereas malevolent reciprocity led to a decreased amount 
invested because the trustee returned more. In a neutral condition payments from both 
parties stayed the same. 
Using the BOLD signal four regions (inferior frontal sulcus, superior frontal sulcus, thalamus 
and inferior/superior colliculli) were identified in the trustee’s brain to be highly responsive to 
benevolent or malevolent changes in the investor’s behaviour. Especially the head of the 



caudate nucleus (located aside the thalamus) turned out to be highly sensitive to benevolent 
reciprocity expressed by the investor. 
 

 
Figure 1:  
 
A: Depicting the 
three different types 
of investor 
reciprocity 
 
 
B: Depicting the 
response level of the 
trustee’s head of 
caudate to different 
investor reciprocity. 
Signal is highest for 
benevolent 
reciprocity. 
 
 

 
 
 
The head of the caudate was then subjected to a region-of-interest analysis (ROI) and the 
signal was termed the “intention to trust” signal. The expectation was that the caudate 
encoded future trust changes in the trustee’s brain and that these trust signals should be 
represented in the investor’s brain as well since he must be aware of the consequences of 
his behaviour. Correlations could be observed between the investor’s MCC (middle cingulate 
cortex), the trustee’s ACC (anterior cingulate cortex) and the trustee’s caudate. Interestingly, 
the designated “intention to trust” signal in the caudate received a time shift of approximately 
14 seconds forward during later rounds of the game. 
 
 

 
Figure 2: 
 
A/B: Depicting the 
temporal shift of the 
caudate signal as a 
function of reputation 
building and learning. 
During later rounds 
the trustee seems to 
have evolved a model 
on the basis of the 
previous exchanges 
which enables him to 
anticipate the next 
investment. 
 
 
 
 
 



This seemingly supports the idea that the player is building a model of his partner based on 
the previous rounds reflecting the investor’s reputation, thus enabling the trustee to anticipate 
the next moves before the investment has been revealed. It is noteworthy that the caudate 
response only shifted in the case of benevolent reciprocity by the investor. To further 
evaluate this assumption a variation of the game was played where the trustee was 
instructed to guess the next investment. Guesses were most accurate during middle and late 
rounds of the game. 
 
Discussion 
On a whole the results suggest that reputation and trust during social decision making are 
taken into account and computed in different regions of the brain with the caudate involved in 
assessing the fairness of the situation and affecting the future decisions based on this 
evaluation through the “intention to trust” signal which is mainly connected to positive trust 
changes. The role of the caudate is reminiscent of observations found in reinforcement 
learning processes which involve dopaminergic neurons. In these kind of experiments a 
neutral stimulus is combined with a delayed sudden reward which evokes a strong reaction 
in dopaminergic neurons. Through repetition the burst reaction from the reward diminishes 
but instead the earlier neutral stimulus now triggers the response. The authors suggest that 
in this case the revelation of the increased investment would serve as the sudden reward 
evoking the “intention to trust” signal because it is not predicted early on in the game. Later 
on the increased investment is not surprising anymore shifting the signal forth in time. 
However it is unclear why based on this explanation the signal would alway occur just before 
the revealing of the investment. 
Considering the accuracy of the study it should be remarked that the spatial and temporal 
resolution of the fMRI-(BOLD)-signal is only moderate, better serving as a means to highlight 
input to specific areas than their output (Logothetis & Wandall, 2004). Therefore it could be 
questioned whether the head of the caudate is indeed involved in the encoding of the 
“intention to trust” signal or if it simply functions as some sort of relay receiving information 
from different regions of the brain, maybe even as some kind of motor information since the 
striatum is also engaged in motor behaviour. As the authors pointed out there are at least 
four different regions active during decision making (their focus being the head of the 
caudate). Furthermore, the players had to press a button in order to confirm their decision, so 
consequently the question arises if the “intention to trust” signal could be substituted by 
“intention to act (press)” with the computed information coming from somewhere else and 
converging in the caudate/striatum region. 
Finally, it is worth mentioning that the complexity of social decision making modelled into an 
artificial game automatically alters the neural basis. Previous studies have shown that moral 
instances modulate trust significantly impairing the neural responses (Delgado et al. 2005). 
Moral among others is likely to factor into many decisions made in real social interactions. 
Further influences would include cultural or genetic differences which on their hand affect 
personality (Penke et al. 2009). This said, investigators should consider the validity of results 
obtained under idealised conditions in regard to reality. 
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1. Introduction 

 
In their publication Briggman et al. investigate the question whether a decision is triggered by single 
neurons alone or if rather the dynamic interactions of many neurons are responsible for the decision-
making process. To resolve this question they used the isolated nervous system of the medicinical leech 
(Hirudo medicinalis), which consists of 21 segmental ganglia, a head and a tail brain. By applying 
identical stimuli to peripheral nerves of the nervous system, two characteristic motor patterns, generated 
by central pattern generators can be evoked at about the same probability. These patterns are consistent 
with swimming and crawling behaviour in the intact animal. The stimulation of the nerves in the isolated 
nervous system mimics touching the leeches skin, so that swimming and crawling are two possible ways 
for the leech to escape from this stimulus. 
 

2. Methods 
 
For electrical stimulation and recording of the peripheral nerves (located dorsally between ganglia G13 
and G16) two suction electrodes were used. The nerves were stimulated with electrical train pulses for 60s 
with an intertrial interval of three minutes. Simultaneously about 130-150 ventral neurons of a midbody 
ganglion (located between ganglia G7 and G10) were imaged using FRET (fluorescence resonance energy 
transfer)-based voltage sensitive dye imaging during the first 10s of each trial. FRET- imaging enables to 
record from many neurons at the same time and is based on a physical process by which energy is 
transfered nonradiatively, thus without the emission of photons. This can only occur in between small 
distances like the neuronal cell membrane.Using FRET- imaging Briggman et al. stained their neurons of 
interest with the membrane-bound dyes oxonol and coumarin. Energy can be  transfered from the donor 
molecule (coumarin) to the acceptor molecule (oxonol) through dipole-dipole interactions. When the cell 
is in a resting state the two molecules are associated. When the cell is depolarized they dissociate, which 
leads to a change in fluorescence which can then be measured. FRET- imaging has a very high resolution 
so that changes of less than 5mV are still detectable. 
The characteristic crawling or swimming motor patterns usually started at about 4 s after the electrical 
stimulus, so the decision-making process is expected to happen in between this time. 
 

3. Results 
 
“Discrimination by single cells” 
Due to differences in their membrane potential, single neurons that were able to discriminate swimming 
from crawling trials could be observed before either motor pattern was accomplished. As a result of the 
optical data from the FRET- imaging neurons that showed a response towards the stimulus could be 
classified as nondiscriminating cells, early, late and transiently discriminating cells. The earliest 
discrimination time of each single cell (tSC) was determined by a sliding window analysis (ANOVA). The 
discrimination time based on motor neuron activity (tNERVE) was also determined by performing an 
ANOVA. 17 cells that discriminated before tNERVE could be observed. These cells are possible decision 
making neurons. 
 
“Discrimination by populations of neurons” 
To check whether populations of neurons still can discriminate before early discriminating single cells 
Briggman et al. performed a principal component analysis (PCA). The PCA transforms a number of 



possibly correlated variables into a smaller number of principal components that account for most of the 
overall variance and resemble linear combinations of neurons in this experiment. The goal was to find a 
linear combination of neurons that discriminates earlier than any single cell. They performed the analysis 
on 143 neurons and considered the first three components. The data was plotted three-dimensionally, 
using the principal components as axes in the coordinate plane (Fig. 1). Each line in this system resembles 
one trial (blue = swimming, red = crawling). The decision making process must occur before or at the time 
when the curves of the trials significantly separate and neurons that are most responsible for this 
separation are possible decision-making candidates. 
To find out the time at which these two paths come apart and to find out what neurons are most 
responsible for this divergence a linear discriminant analysis (LDA) was performed. LDA is a 
classification method that projects grouped data points onto a line (the linear discriminant), so that they 
are maximally separated. Using this method tLDA (the time at which the curves of swimming and crawling 
significantly diverge) could be determined. Neurons contributing most to the linear discriminant, are the 
ones that are most important for the discrimination between swimming and crawling. Therefore these 
neurons were visualised by projecting a color-coded map of their contribution to the linear discriminant 
onto a spatial map of the ganglion cells (Fig. 2). Early single-cell discrimination times (tESC) were then 
compared to tLDA. Interestingly, tLDA always occured before tESC. Remarkably the single cells that 
discriminated early were not the same cells that highly contributed to the linear discriminant.   

 
 

Figure 1: The contribution to the three 
principal components of each cell 
projected into a 3-dimensional space. 
Each curve resembles one trial (red = 
crawling, blue = swimming). The 
average of all swimming and crawling 
trials are shown in bold. Dots show 1s 
intervals. The arrow shows the linear 
discriminat for one time bin. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 2: Color-coded map of the 
mid-body ganglion from a single 
experiment. (B) The contributions to 
the linear discriminant are color-coded 
(whereas red means high contribution 
and blue low contribution) and is 
mapped on the cells of the midbody 
ganglion. The arrow marks cell 
208.(C) Color-coded earliest 
discrimination times [s] of the single 
cells (whereas yellow is very early and 
red is less early) 

 
 
 
“Cell 208 biases decision” 
To check whether single cells can influence decision-making, possible candidates were then depolarized 
and hyperpolarized before, during and after the electrical stimulus.  



Only one cell, cell 208 (Fig. 2A) that highly contributed to the linear discriminant was able to bias the 
decision but only when it was stimulated during the nerve shock. A depolarization lead to a crawling 
motor pattern, whereas hyperpolarization led to a swimming motor pattern in most cases. 
 

4. Discussion 
 
The co-varying activity of a population of neurons can discriminate between crawling and swimming 
earlier than discriminating single cells. The individual discriminating cells are not consistent with the 
group discriminating cells thereby. One cell belonging to the discriminating population of neurons is cell 
208, which can bias the decision when depolarized or hyperpolarized during the stimulus.  
To test whether populations of neurons really bias the decision the result needs to be verified by 
manipulating these neurons during decision making. Therefore hundreds of neurons would have to be 
stimulated at the same time, which is technically not possible yet.  
Even though the leech nervous system is relatively simple and the decision whether to crawl or to swim 
seems to be of equal value to the animal it is not possible to predict the choice. This might be due to two 
reasons: 1.) The choice depends on the resting state before the choice or 2.) The system is reset each time 
and the two behaviours have equal probability and diverge statistically due to noise. Further investigations 
may provide the answer. 
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Outline of concept

The investigation of how sensory information is integrated in the brain to
guide behavior is in recent progress. Kim et al. have tried to elucidate the
elements of decision making during a visual motion-discrimination task by
recording neurons in the brain of rhesus monkeys. The hypothesis is that
sensory information from direction-selective neurons in the extrastriate vis-
ual cortex (areas MT and MST) is integrated over time by neurons in the
dorsolateral prefrontal cortex (PFC). The neural correlates of these neu-
rons can be used to predict into which direction the monkey will move its
eyes.

First of all, the theoretical terms of “evidence” and “decision variable” have
to be introduced referring to the signal detection theory (STD).
Evidence can be a spike count of a neuron or the difference of spike counts
between pools of neurons. It represents a variable that contains relevant
information dependent on the stimulus which is given by the experimenter.
Evidence is momentary and its integration over time can be described by a
decision variable. The behavioral outcome depends on the accumulation of
information within this variable until a certain threshold is exceeded, which,
in this case, leads to a categorical choice of eye movement.

Figure 1: Sketch of the direction-discrimination task [1, p.178]
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The sequence of experimental steps, the monkey had to perform to get a
reward, is given in figure 1. The macaque was trained to gaze at a certain
fixation point for around 2.5 s. After the first 350 ms, two target points were
presented for about 200-300 ms, one of which lying in the neural response
field (RF, shaded). After that, a random dot kinematogram appeared be-
tween the targets for 1 s, consisting of a certain percentage of coherently
moving dots either to the RF side or the other direction. Finally, the dots
disappeared and the monkey had to wait until the fixation point was turned
off. That was the moment, the monkey should shift its eyes to the target
point that was indicated by the motion of dots. The delay until this saccade
was initiated took 0.5-1.5 s. The animal was rewarded for choosing the right
direction, independent of the degree of difficulty.

For the selection of neurons in the PFC, that do respond to the presentation
of the target point in the RF, a shortly flashed target was presented to the
monkey. After a delay of 0.5-1.5 s, the animal had to remember this target
by shifting its eyes to that region. Thereby, 88 neurons were screened for
the experiment shown in figure 1.

Results

The neuron’s response in the prefrontal cortex predicted the monkey’s deci-
sion. In general, its response was modulated larger for a saccade towards
the RF and attenuated for the opposite direction.
One important thing, referring to figure 1, is that evidence must be inter-
preted to reach a decision. Therefore the delay in turning off the fixation
point, after the kinematogram disappeared, is important to distinguish be-
tween sensory evidence and integration to decide for motor action.
For the whole time of dot motion, the responding direction-selective MT
neurons fired at a nearly constand rate, directly initiated by a short rise in
discharge. This recording represents the evidence for the model.
While the direction-selective neurons stop responding when the motion
stimulus is absent, the PFC neurons maintain there activity until the sac-
cade is done.
That means, the evidence of the MT neurons is accumulated in the decision
variable of the PFC neurons until a certain threshold is reached. Thereby,
the starting point of integration began 200-300 ms after turning on the dot
motion. The time, until the macaque shifted its eyes towards the target
point, varied with the percentage of moving dots. For a strong stimulus with
51.2% coherently moving dots (orange curve), the reaction-time was about
400 ms, for 0% it took up to 900 ms (blue curve), shown in figure 2. The
onset of the kinematogram is represented by the different starting points of
the curves, clearly showing the short delay of evidence integration by the
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rising firing rate of the recorded neuron.

Figure 2: Choice-reaction time for different levels of stimuli, orange curve -
51.2% coherently moving dots, blue curve - 0% [2, p.548]

These responding curves indicate another finding - for any stimulus strength,
there is an equal starting point of accumulation. In contrast, the recorded
firing rate is strongly dependent on how many dots are coherently moving,
meaning for strong stimuli, the monkey’s decision is generated really fast.
That means that even noise is integrated somehow over time such that the
saccade to the target is initiated. In figure 2, it is shown, that this threshold
is a spike rate of 60-70 Hz stereotyped for about 70 ms (indicated by an
arrow) before saccade initiation (t = 0).
Therefore it is negligible how much time is needed for reaching this thresh-
old - if it is reached, it takes always the same duration to initiate the saccade
independent of the stimulus strength.
The psychophysical threshold was about 12.9% coherently moving dots,
declaring the minimum amount of dot motion for a statistically significant
correct saccade initiation.
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Conclusion

By analyzing the error trials, in which the monkey chose the wrong direc-
tion, Kim et al. infers that the response was dominated by the judgment
of direction, meaning what the monkey planned to do, rather than what it
saw. The argumentation is that within the erroneous trials towards the RF,
the firing rate was always higher than within the ones choosing the tar-
get opposing the RF. Those erroneous trials towards the RF were slightly
attenuated, saying the response cannot be described completely by the be-
havioral outcome.
The model suggests that a PFC neuron, which responds with a high spike
rate to dot motion towards the RF, compares the rightward cumulant to the
leftward cumulant of the sensory MT neurons. If the difference of ”right”
and ”left” is positive, the monkey will choose the right target, otherwise it
will shift its eyes towards the left target.
Thereby, the recordings of the MT neurons show quite differing spike rates,
depending on the stimulus strength. Finally, the computation of the spike
rate in the PFC remains unclear, as the only indication for rightward choice
is a higher firing rate.
The model shows quite good theoretical approaches from decision theory,
consisting of evidence, a decision variable and a resulting categorical bi-
nary choice, but the moment the monkey decides the direction of motion
cannot be described exactly, if there is such a discrete moment. Because
of the delay, the sustaining response of the PFC neurons can be interpreted
as a neural correlate of short-term memory for spatial location.
As a consequence, there are still a lot of experiments that have to be done
for the whole region of sensory integrating neurons that prepare motor ac-
tion to elucidate further complexity of decision making processes.
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Katharina Grauel 
 
The flutter discrimination pathway 
 

Recently,  a  combination  of  neurophysiological  and  psychophysical  methods  has  led  to  major  
progress  in  elucidating  the  neural  dynamics  underlying  decision  making  in  the  somatosensory 
system. In these studies monkeys are trained to perform a vibrotactile discrimination task while the 
activities of single neurons are  recorded  in different cortical areas  thought  to be  implicated  in  the 
cognitive  process.  Relating  neural  activity  to  the  psychophysical  performance  of  the  animal  then 
allows for a better understanding of the function of those areas. 

A  very  commonly  used  task  is  the  so‐called  flutter  discrimination  task  in which  successively  two 
stimuli  with  different  frequencies  are  presented  (Figure  1).  The monkeys  then  have  to  indicate 
whether  the  frequency  of  the  second  (comparison)  stimulus  (f2)  is  higher  or  lower  than  the 
frequency of  the  first  (base) stimulus  (f1). This  task can be subdivided  into several cognitive steps: 
the base  frequency  f1 needs  to be encoded and maintained  in  the short‐term or working memory 
during the delay period, the comparison frequency f2 needs to be encoded, f2 has to be compared to 
the memory trace of f1 and finally the comparison result has to be transmitted to the motor system.  

 

 

 

 

 

 

 

 

 

 

Experimental results indicate that several areas, including the primary and secondary somatosensory 
cortices (S1 and S2), the prefrontal cortex (PFC) as well as the medial and ventral premotor cortices 
(MPC and VPC), are involved in the flutter discrimination pathway. No single area can be assigned to 
one of the above mentioned steps of the decision process.  Instead encoding, working memory and 
comparison tasks seem to be spread over several cortical areas with different temporal patterns.  

Even  though  primary  afferents  and  S1  neurons  show  a  certain  periodicity  in  their  activity  that  is 
dependent on  flutter  frequencies, evidence  suggests  that  it  is not  this periodicity  that  carries  the 
frequency  information.  Instead,  the  firing  rate seems  to be  the  important parameter. As  the  firing 
rates of the primary afferents do not depend on the flutter frequency, the S1 neurons must extract 
this information from the time intervals between afferent spikes.  

Figure  1  Flutter  discrimination  task  ‐  sequence  of  events:  KD:  monkey  places  hand  on  an
immovable key; f1: base simulus presentation via a mechanical stimulator; f2: after a delay period,
presentation of a second mechanical vibration; KU: mokney releases key; PB: monkey presses one 
of two buttons indicating its decision. From Romo and Salinas, 2003 



As  they are only active during  stimulus presentation, S1 neurons  seem  to be  involved only  in  the 
encoding  of  flutter  frequencies. With  few  exceptions,  their  firing  rates  depend  on  the  stimulus 
frequency  in  such  a  manner,  that  higher  frequencies  result  in  higher  rates.  However,  there  is 
contradictory evidence for some mnemonic activity as well. 
 
S2  neurons  do  not  show  periodic  activity.  Their  firing  rates  during  f1  presentation  increase  or 
decrease as a  function of  f1.  It  is not clear whether S1 and S2 are organized  in parallel or serially. 
About  one  third  of  the  S2  neurons  are  also  active  during  the  delay  period  indicating  their 

participation in the mnemonic process.  

The main structure involved in the short‐term storage 
of  information  about  f1,  though,  appears  to  be  the 
prefrontal  cortex  (PFC) which has been  implicated  in 
working  memory  before.  A  neuronal  cluster  in  the 
inferior convexity has been  found  to  show  significant 
f1  dependent  activity  not  only  during  the  stimulus 
presentation but also during  the entire delay period. 
This  activity  resembles  the  activity  in  S2  during 
stimulation. The PFC neurons display a preference for 
high or low frequencies and can be further subdivided 
into subpopulations active mainly during the stimulus 
presentation  and  the  beginning  of  the  delay  period 
(early neurons), activated only towards the end of the 
delay  period  (late  neurons)  or  firing  throughout  the 
entire delay period (persistent neurons).  

Since other neuron populations  in  the VPC  and MPC 
are also active during the delay period, these probably 
also participate in the working memory. 

The  actual  comparison  is  the  core  of  the  flutter 
discrimination  task.  It  can  be  viewed  as  the 
computation  of  the  sign  of  the  frequency  difference 
and  takes  place  upon  f2  presentation.  As  for  the 
working memory, results indicate that the comparison 

takes place  in  a distributed  fashion.  It  can be observed  in  all  implicated  areas  apart  from  S1.  For 
example, upon  f2 presentation S2 neuron  firing  rates are  largely dependent on  f2  frequency. With 
time, this dependency changes and a few hundred milliseconds after stimulus onset the firing rates 
become  a  function  of  the  difference  between  f2  and  f1  (f2‐f1).  This  comparison  signal  can  then 
further evolve into a signal that is consistent with motor choice. 

The premotor cortex is another area majorly implicated in the flutter discrimination task.  

In  the ventral premotor cortex  (VPC) different neuron subpopulations exist whose activities  reflect 
the whole  sequence  of  processing  steps.  For  example,  one  group  of  VPC  neurons  only  responds 
during stimulus presentation as for S1 neurons and their firing rates only depend on the frequency of 
the current stimulus. Another group shows significant activity only during the delay period and the 
comparison stimulus presentation. While the firing rates during the delay are a function of f1, they 

Figure  2 Number  of  neurons  active  about  the  base
stimulus  in  different  cortical  areas  as  a  function  of
time.  grey  area:  base  stimulus  presentation;  time
point  0:  beginning  of  delay  period;  S1:  primary
somatosensory cortex; S2: secondary somatosensory
cortex,  PFC:  prefrontal  cortex;  MPC:  medial
premotor cortex. From: Romo and Salinas, 2003 



transform  into a function of f2‐f1 during the second stimulus presentation. This also resembles the 
activity of a subpopulation of neurons in the medial premotor cortex (MPC). The shift in firing rates 
might reflect the actual comparison process.  

 There are also other neuron populations  in  the MPC as well as  in  the VPC  involved  in  the  flutter 
discrimination task but not active during the delay period. They also develop differential activity and 
are most  active  during  the  comparison  or  reaction  time.  It  is  speculated  that  their  activity might 
either reflect the results of the frequency comparison or the actual motor plan.        
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Decision-making and Weber’s law: a neurophysiological model 

Gustavo Deco and Edmund T. Rolls, European Journal of Neuroscience, Vol. 24, pp. 901–916, 2006 

In this paper, authors describe an integrate-and-fire attractor model of the decision related 
activity of neurons in the ventral premotor cortex (VPC) during a vibrotactile frequency 
comparison task. This model is based on the neurodynamical model first introduced by 
Brunel & Wang (2001). One of the important findings the authors made was the 
understanding that the Weber’s Law is implemented not through the firing rate of the decision 
units presented in the network, but through shunting effects acting on pyramidal cells that are 
produced by inhibitory neuron inputs. The structure of the model and these findings are 
described later in this abstract. 

Structure of the underlying experiment 

The experiment of the vibrotactile frequency comparison task was performed and 
investigated by Romo and colleagues. In this experiment a trained monkey (Macaca mulatta) 
has to decide and report (through pushing one of two buttons), which of two mechanical 
vibrations applied sequentially to their fingertips has the higher frequency of vibration. It was 
shown (Romo et al., 2004), that the behavior of VPC neurons reflects the remembering of the 
first applied mechanical vibration frequency (f1), the encoding of the second applied 
mechanical frequency (f2) and of the comparison step of two frequencies as well as the 
encoding of the motor response. That describes the actual process of decision making and 
this is the reason, why the dynamic behavior of the VPC neurons was of particular interest 
for the authors and was used for creating this model. 

Model 

The probabilistic decision-making is modeled by a network of interacting neurons organized 
into a set of populations. Population of neurons is a group of excitatory (pyramidal cells) or 
inhibitory (interneurons) neurons sharing the same inputs and connectivity. Specific 
populations in the model encode the categorical result of the comparison between the two 
sequentially applied vibrotactile simulations f1 and f2. These populations are (f1>f2) and 
(f1<f2). There is also a non-specific population named “Non-Specific”, which includes all the 
other excitatory neurons in the modeled brain area not involved in the current task. The 
inhibitory neurons of the local brain area are grouped into the “Inhibitory” population. The 
conductance values for the synapses between pairs of neurons are modeled with weights, 
which can be 1, W+ (e.g. between the neurons of one population) or W- (e.g. between 
neurons of populations which are likely to have anti-correlated activity). The weight WI 
denotes for inhibitory-to-excitatory connection. The values λ1 and λ2 encode the two 
vibrotactile stimuli to be compared and thus increase the rate of Poisson train to the neurons 
of the specific populations (f1>f2) and (f1<f2), respectively. The presented model is a single 
attractor network with the two populations (f1>f2) and (f1<f2) which represent the decision 
states. One of these populations becomes active when a decision is made. The design of the 
model is shown in the Figure 1. 

 

Figure 1: The architecture of the neurodynamical model for a probabilistic decision-making network 
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Results and conclusions 

After the model was implemented, a series of experiment simulation was performed on the 
model. Applying mean-field analysis to the stationary phase of the model led to the 
conclusion, that the network behavior is quite robust. 

In another experiment the probability of correct discrimination was linked to the difference 
between the two presented vibrotactile frequencies to be compared. The threshold of correct 
classification of the difference between f1 and f2 was set on 85%. The results showed that 
with increasing frequency f2 the difference between the two frequencies had to increase as 
well in order to reach the threshold of 85%. So the difference threshold increases linearly as 
a function of the base frequency (f2). This corresponds to the Weber’s law, which states that 
the ratio of the difference threshold to the background intensity is a constant. 

In the further experiment the difference in frequencies was linked to the firing rate of a 
specific population and it was observed, that the firing rate of the population encoding the 
result of the comparison does not encode Weber’s law. Thus the conclusion was made, that 
the dynamics of which state (attractor) is reached probabilistically represent the origin of 
Weber’s law. 

It was also shown, that the average firing rate of the population (f1<f2) is only dependant on 
the sign of f2 - f1 and is not dependant on the f1, f2 or on the absolute value of the difference 
between the two frequencies. This observation confirms again, that Weber’s law cannot be 
encoded in the firing rate, but only in the probability with which that firing rate can be 
reached. 

Further simulation experiments showed the fact, that the larger the probability of correct 
classification, the faster is the decision making. By investigating the probability of incorrect 
classification, a converse behavior was observed: a low probability of incorrect discrimination 
implies also shorted reaction times. 

Another important conclusion was made by observing the behavior of inhibitory interneurons 
as the base frequency increases. As the base frequency increases, more excitation will be 
provided to the specific populations (f1>f2) and (f1<f2) by λ1 and λ2, respectively. This in turn 
will increase the firing rate of pyramidal cells, which will provide larger excitatory input to the 
inhibitory interneurons. Thus the inhibitory 
neurons will fire faster and the inhibitory 
connection to the specific states will be 
more active. The inhibitory input to the 
specific states acts divisively upon the 
excitatory inputs from λ1 and λ2. To 
compensate for this effect, f1 and f2 will 
need to increase in proportion to the base 
frequency. In the simulation was shown, 
that the firing rate of inhibitory neurons 
increases linearly with the base 
frequency, as can be seen in the Figure 2. 
Therefore the authors proposed that 
Weber’s law is implemented by shunting 
effects on the specific states produced by 

inhibitory neuron inputs, which increases 
linearly as the base frequency increases. 

Figure 2: The conductance produced by GABA inputs to specific 
states as a function of the base frequency 



Summary of “Synaptic dynamics and decision making (Deco et al.)” 

To make a decision we have to remember and compare stimuli that occur at slightly 

different times. As it is well known the comparison of 2 vibrotactile stimuli applied 

sequentially are qualified for such studies for decision making. The next step for the 

study would be to use an attractor network that has 2 inputs for the 2 evidences 

which would be applied as bias λ1 and λ2. The 2 population would encode decision 

through interconnected neurons. After that there would be a competition between 

these 2 populations of neurons via inhibitory interneurons. The final decision between 

these 2 evidences depends on the population which is enhanced nonlinearly by the 

positive feedback which is the winning one. This common model is not usable for the 

ventral premotor cortex (VPC), because in the VPC the inputs λ1 and λ2 are encoded 

by the same type of neurons (the partial differential neurons) according to 

experimental data. The task in the experiments that the network based on is to 

decide which of the 2 mechanical vibrations applied sequentially to the fingertips of 

the subjects is the higher one. The experiments have the following process: (i) 

perception of the first stimulus f1 a vibration for 500 ms; (ii) a delay of 3s to store of a 

trace of f1; (iii) perception of the second stimulus f2 for 500 ms; (iv) report the decision 

between the 2 stimuli. Deco et al. model the partial differential neurons with a 

network using integrate and fire neurons that are able to memory the first stimulus 

under some conditions. In this model a single population of neurons receives inputs 

from the vibrotactile stimuli. These neurons have excitatory interconnections that use 

short term synaptic facilitation. To implement the short term synaptic facilitation is 

more suitable. On the one hand the short term memorize f1 during the delay period 

and on the other hand the comparison in the decision period can be done. Some 

characteristics which are in that network modeled are following: (i) spiking dynamics; 

(ii) facilitating synapses; (iii) synaptic utilization.  

For a better understanding of the behavior of the firing rate of f1 and f2 during 

decision making are simulations for two different set of pairs of stimulus combinations 

f1 and f2 performed. The one type is f2>f1 (f2=f1+8Hz) and the other type is f2<f1 (f2=f1–

8Hz). These differences are based on experimentally measurements. The neuronal 

responses in the simulations are analyzed as functions of f1 and f2. The results of the 

simulations reproduce the 4 phases that are in the experiments described before. For 

each of the phases the firing rate is calculated. The easiest way to qualify the 

dependence of the selective neurons and f1 respectively the firing rate is to describe 

the population rate r(t) by an arbitrary linear function of f1 and f2 

(r(t)=a1(t)f1+a2(t)f2+a3(t); in which a1(t) and a2(t) serve as direct measurements of the 

firing rate dependence on f1 and f2). But in this arbitrary linear equation does not 

reflect the memory behavior of f1 really and does not show clearly the sensitivity of 

the differences between f1 and f2 for a given frequency f2. To achieve this the linear 

correlation method can be used for the analysis of the neurophysiological 

experiments and simulations. Therefore the function of the firing rate can be rewritten 

as r(t)= a’(f1-f2)+b’f2+c’. The simulations and calculations for the new equation are in 

Deco et al. also done. The comparison between these two equations shows that the 
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results of the simulations of the second equation reflect clearly the behavior of 

memorizing f1. The simulation of synaptic utilization from the second equation 

supports the experimental data too. That improvement in the equation of the firing 

rate enables the comparison between the memorized frequency f1 with the second 

frequency f2 during the comparison phase. This accurate comparison enables the 

correct decision. This is a further step for a realistic biological model. 
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Introduction

Analog to the superordinate title, this part deals with models for decision making simulated by com-

puters. If one breaks down the subordinate heading, the basic principle and goals are there: For real

neural networks in decision making, computational models should be developed. In general, most

approaches exhibit a similar structure: Real data is gained from biological experiments and arti�cal

networks are tried to be created accordingly. Thereby models serve in two ways. Either one has an

idea of the neural network setup and designs adequately, or development is done until the network

output �ts with real data. In the end, both ways try to establish a reasonable image of reality, with

which one can work with.

In particular, the study mentioned in the second title deals with neural networks responsible for

processing visual information and sending movement signals back to the eyes themselves. Studies were

conducted on non-human primates (monkeys) but the results should represent primates in general; if

not not other biological orders too.

More speci�c primates are instructed to register a certain visual stimulus and react with eye move-

ment, according to their decision. By recording single neuronal �ring at the same time, one can make

quantitative and qualitative predictions about the decision making process. After that, real work is

done by building a model in the computer. When the network is at hand, one is able to run diverse

simulations without doing the actual experiments.

Experiment setup

The experiments for this work can be splitted in two parts. First real tests on monkeys. Monkeys were

trained to sit in a straight position and �xate a computer screen. Next a yellow square in the middle

of the screen was presented to them. After �xation the experiment started and dots showed up on the

screen as well as to identical green dots at left and right side. The dots on the screen started to move

in either direction, towards the green dots or moved randomly without destination. This is were one

imporant word comes into play, namley the coherence level in percent: The fraction of dots moving

into the same direction, taken from all moving dots, is called the coherence level, since they move a

certain direction.
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Anatomy

Figure 1: Neural network setup with visual information input going into the cortex. Information pro-

cessing happening in the cortex. Information forwarding through the basal ganglia which is serving as

a �lter until the �ring from cortex reaches a certain threshold. And the superior colliculus as informa-

tion receiver. The network consist of an excitatory and inhibitory balance of neurons. Simultaneously

in every compartment neurons for left and right eye motion compete against each other.

The network analysed and reconstructed in the computer is shown in �gure 1. The network is

responsible for receiving visual input, processing information by taking knowledge into account, and

deciding by sending motor information back to eyes. Sensory input from the eyes goes into diverse

cortical structures. As in every follwing compartment, neural pools for left and right eye movement

compete against each other throught inhibition. Depending on the neural pool that �rst inhibits the

other, information is sent forth areas in the striatum (CD). Striatum regions are the �executor� of

cortical decisions. Since the structure after CD, the substania nigra (SNr) continuously inhibits burst

�ring neurons in the superior colliculus, SNr neurons are inhibit by CD �ring. Through this action,

burst �ring neurons in the superior colliculus are free to �re. Those neurons are sending movement

signals eye motor neurons according to the direction that dominates.

Methods

The actual work was conducted in the computer by modeling the neural network. The network's outline

is descibed in the �Anatomy� section. Similar to the real network outlook, the arti�cal system consisted

of three independent parts: Cortex, basal ganglia and superior colliculus. Neurons in the computational

model used the �Integrate-and-Fire� model as basis. This model takes membrane time constants into

account and works with an input-output function, depending on an excitatory or inhibitory nature.

Furthermore the information integration in the cortex was modeled with a so called �Attractor-Network-

Model�. This model consists of excitatory neural pools that stimulate each other, whereas pools of

di�erent interest (left, right) inhibit each other. Communication among each other was simulated by

synpases that can be tuned with a weight factor. More weight means the strength on the neural signal

across this synpase is increased.
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Results

Figure 2: Arti�cal network tuning with increasing the synpase e�ciency of the cortex-striatum pathway

(black dashed line) and cortex-superior colliculus pathway. Cortex-striatum tuning shows to be the

reasonable one, since the point of information forwarding (black dot) is improved.

In general the results of the network simulation showed, that the real network could be tuned by

improving the work of cortico-striatal synpases. One good representation is pictured in �gure 2: The

point of neural �ring in the superior colliculus, the network's output structure, is increased, when

the Cortex-Striatum pathway is improved. This is because the faster neurons in the striatum reach

a certain threshold of incoming �ring form the cortex, the faster they inhibit areas in the substantia

nigra, so that output neurons in the superior colliculus are able to �re.
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