

Neuroinformatics and Theoretical Neuroscience Institute of Biology – Neurobiology

Bernstein Center for Computational Neuroscience

Stochastic Point Processes

Martin Nawrot

Oct 13, 2011

Teaching Week Computational Neuroscience @ Mind and Brain School

1. Inroduction

- interval and count random variables
- Bernoulli process
- Poisson process
- renewal process
- nonhomogenous Poisson process
- non-renewal processes

computational models

- abstract or biophysical models
- deterministic input/output relation
- Type I / Type II models
- Integrate & Fire
- McCulloch Pitts

- ...

Computer simulations translate synaptic inputs into spike output \Rightarrow spike train

Useful to investigate biophysics and neural networks

stochastic point process models

- abstract mathematical definition
- probabilistic theory ('randomnes')
- no input/output conversion

Numeric simulation generates random point process realization => spike train

Useful to make statistical predictions for spike train analysis

Herz A, Gollisch T, Machens CK, Jaeger D (2006) Modeling Single-Neuron Dynamics and Computations: A Balance of Detail and Abstraction. Science 314, p. 80–84

A **point** is a discrete event that occurs in continuous time (or space). We regard action potentials as point events ignoring their amplitude and duration.

A **point process** is a mathematical description of a process that generates points in time (or space) according to defined stochastic rules (probability distribution).

Only a *finite number of events* are generated within a *finite time observation interval* (true for neural spike train).

In computational neuroscience point processes are used *to simulate* single neuron activity and *to predict* the statistical measures of spiking activity.

' spike train '

discrete time series of events

discrete representation (*list*)

binary representation (array)

2 basic random variables :

- inter-event intervals X (continuous random variable)
- number of spikes N (discrete random variable) in interval of length T

Any point process definition uniquely determines its interval and count stochastic, and both random variables are related.

binary representation

inter-spike intervals continuous data

spike count discrete data

2. Stationary Point Processes

- interval and count random variables
- Bernoulli process
- Poisson process
- renewal process

Freie Universität

A Bernoulli process is *discrete* in time (space). It consists of a finite or infinite sequence of independent random variables X_i , i = 1, 2, ... such that

$$\Pr\{X_i = 1\} = p \text{ and } \Pr\{X_i = 0\} = (1 - p) \quad \forall i$$

A Bernoulli process is a sequence of *independent* trials and thus the Bernoulli process is *memoryless*. The prominant example is repeated coin flipping where p = 0.5. We call trials *i* where $X_i = 1$ a success. The number of successes *m* in *n* trials (equiv. to count distribution) follows the Binomial distribution.

A Bernoulli process is *discrete* in time (space). It consists of a finite or infinite sequence of independent random variables X_i , i = 1, 2, ... such that

$$\Pr\{X_i = 1\} = p \text{ and } \Pr\{X_i = 0\} = (1 - p) \quad \forall i$$

A Bernoulli process is a sequence of *independent* trials and thus the Bernoulli process is *memoryless*. The prominant example is repeated coin flipping where p = 0.5. We call trials *i* where $X_i = 1$ a success. The number of successes *m* in *n* trials (equiv. to count distribution) follows the Binomial distribution.

Freie Universität

Berlin

A Bernoulli process is *discrete* in time (space). It consists of a finite or infinite sequence of independent random variables X_i , i = 1, 2, ... such that

$$\Pr\{X_i = 1\} = p \text{ and } \Pr\{X_i = 0\} = (1 - p) \quad \forall i$$

A Bernoulli process is a sequence of *independent* trials and thus the Bernoulli process is *memoryless*. The prominant example is repeated coin flipping where p = 0.5. We call trials *i* where $X_i = 1$ a success. The number of successes *m* in *n* trials (equiv. to count distribution) follows the Binomial distribution.

Freie Universität

Berlin

What is a good time resolution Δt for simulating a series of action potentials ?

APs have a duration of about 1-2ms; thus as useful time resolution is: $\Delta t \leq 1 \text{ ms}$

What is a good time resolution Δt for simulating a series of action potentials ?

APs have a duration of about 1-2ms; thus as useful time resolution is: $\Delta t \leq 1 \text{ ms}$

The ratio $\lambda = p / \Delta t$ is called the **intensity** of the process and determines the rate of point occurrences, identified with the neuronal firing rate. In both examples below the rate is $\lambda = 5/s$ (expectation: 5 events per second).

Freie Universität

One possibility to define a point process is the **complete intensity function**.

Consider a point process as defined on the complete time axis $(-\infty, +\infty)$. Let H_t denote the **history of the process**, i.e. a specification of the position of all points in $(-\infty, t]$. Then a general description of this process maybe formulated in terms of the probabilities of observing a single event at an arbitrary time t

 $P(N(t, t + \delta t) = 1 | H_t)$

Freie Universität

One possibility to define a point process is the **complete intensity function**.

Consider a point process as defined on the complete time axis $(-\infty, +\infty)$. Let H_t denote the **history of the process**, i.e. a specification of the position of all points in $(-\infty, t]$. Then a general description of this process maybe formulated in terms of the probabilities of observing a single event at an arbitrary time t

$$P(N(t, t + \delta t) = 1 | H_t)$$

Definition

The **Poisson process** of intensity λ is defined by the requirements that for all t and for $\delta \rightarrow 0+$

$$P\{N(t, t + \delta t) = 1 | H_t\} = \lambda \delta + o(\delta)$$

- the only process for which all events are completely independent
- 'simple process', often used for the description of neural spiking
- the Bernoulli process approximates the Poisson process for $\Delta t \rightarrow 0.$

$$P\{N(A)=k\}=\frac{\mu^k}{k!}\;e^{-\mu}$$

$$A = (0, t]; \qquad \mu = \lambda \cdot t$$

$$P\{N(A) = k\} = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

Freie Universität

Example 1: radioactive decay of 239Pu (half-life : 4110 years).

- continuous time intervals
- discrete event count

Example 2: rain drops

- continuous space intervals
- discrete event count

Poisson process | from **count** to **interval** distribution

$$P\{N(A) = k\} = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

$$P\{X_k > t\} = Pr\{N(t) < k\}$$

$$\Pr\{X_1 > t\} = P\{N(t) = 0\} = \frac{\lambda t^0}{0!} e^{-\lambda t} = e^{-\lambda t}$$

Teaching

constant intensity λ

Poisson

exponential interval distribution
Poisson count distribution
events are uniformly distributed in time
special case of gamma process

Definition

inter-event intervals are independent and identically distributed (iid)

Thus

- individual intervals are serially independent
- process history is relevant only up to the previous event
- the intervals between successive points are mutually independent
- the Poisson process is a renewal process

t = replacement from a homogeneous population

Definition

inter-event intervals are independent and identically distributed (iid)

Thus

- individual intervals are serially independent
- process history is relevant only up to the previous event
- the intervals between successive points are mutually independent
- the Poisson process is a renewal process

Extracellular single unit recording of spontaneous activity from a so-called extrinsic neuron of the honeybee mushroom body. The empirical interval distribution is estimated by the gray historgram from a total of 1530 ISIs. The mean interval length is m = 58.7 ms, i.e. the average rate can be approximated by $\lambda \approx 1/m = 17.03/\text{s}$. The blue curve fits a gamma distribution, the red curve fits a log-normal distribution. Modified from: [1]

[1] Farkhooi, Strube-Bloss, Nawrot (2009) Phys Rev E 79

Prominent interval distributions used for renewal models of neural spiking

constant intensity λ

Poisson

exponential interval distribution
Poisson count distribution
events are uniformly distributed in time
special case of gamma process

Renewal

• iid interval distribution • FF = CV² increasing importance of process history

3. Non- Stationary Point Processes

- nonhomogenous Poisson process
- non-renewal processes

Motivation: The concept of a neuron's 'firing rate' is empirically motivated. Experimental repetitions allow to average spike count across trials. Individual neurons can **modulate their firing rate** with time.

Single unit activity from primary motor cortex of the monkey during repeated reaching movement Data Curtsey: Alexa Riehle, CNRS, Marseille

Teaching Week Computational Neuroscience | Mind and Brain | M Nawrot

Freie Universität

Berlin

Definition

We substitute the constant intensity λ by the explicitly time-dependent intensity function $\lambda(t)$ and define the **nonhomogenous Poisson** process for all t and for $\delta \rightarrow 0+$

$$\Pr\{N(t, t + \delta t) = 1 | H_t\} = \lambda(t) \,\delta.$$

The instantaneous probability is still independent of the process history!

Bernoulli approximation:

Freie Universität

Berlin

constant intensity λ

dynamic intensity $\lambda(t)$

Poisson

• exponential interval distribution Poisson count distribution • events are uniformly distributed in time special case of gamma process

Renewal

 iid interval distribution • $FF = CV^2$

non-homogenous Poisson

increasing importance of process history

Simulation with time rescaling:

- ► simulate renewal process in '**operational time**' (with unit rate)
- transform to 'real time' using your **intensity function** $\lambda(t)$

Freie Universität

Berlin

increasing importance of process history

4. Non - Renewal Point Processes

- modeling serial interval correlation

- modeling spike-frequency adaptation

- *In vivo* **intracellular** recordings, somatosensory cortex in the anesthetized rat
- **spontaneous activity** (no stimulation)

- significant negative serial correlation of intervals in 7 of 8 cortical cells
- spiking process is not renewal

Freie Universität

Reference	Model System & Neuron Type	SC
Ratnam and Nelson (2000)	Weak electric fish, isolated	-0.52
	P-type Receptors afferent	
Chacron et al. (2000)	Weak electric fish, isolated	-0.35
	P-type Receptors afferent	
Neiman and Russell (2004)	Paddle fish, sensory Ganglion	\sim -0.4
Floyd et al. (1982)	Cat splanchnic and hypogastric	-0.3
	nerves <i>in vivo</i>	
Levine (1996)	Goldfish retina, Ganglion cells in vivo	-0.13
Rodieck (1967)	Cat Retina, Ganglion cells in vivo	-0.06
Kuffler et al. (1957)	Cat Retina, Ganglion cells in vivo	-0.17
Tsuchitani and Johnson (1985)	Cat Lateral Superior Olive in vivo	-0.2
Nawrot et al. (2007)	Rat Somatosensory Cortex (S1)	-0.21
	in vivo, regular spiking cells	
Nawrot et al. (2007)	Rat Somatosensory Cortex (S1)	-0.07
	in vitro, pyramidal cells	
Engel et al. (2008)	Rat medial entorhinal cortex in vitro	[-0.1,-0.4]
	Layer II stellate and Layer III	
	pyramidal neurons	
Farkhooi et al. (2008)	Honeybee central brain <i>in vivo</i>	-0.15
	Mushroom body extrinsic neurons	

Table 1: Negative 1st order serial interval correlation in different preparations and cell types.

Farkhooi, Strube-Bloss, Nawrot (2009) Phys Rev E 79

An **autoregressive process** in its general linear form up to **lag** *p* reads

$$X_s = \beta_1 X_{s-1} + \beta_2 X_{s-2} + \dots + \beta_p X_{s-p} + \varepsilon_s$$

where

- ε_s i.i.d. with specific mean and finite variance.
- β_i correlation coefficient for lag *i* and $|\beta| < 1$

We propose the following process to model inter-event intervals

$$\Delta_s = \exp(X_s) = \exp(\beta X_{s-1} + \varepsilon_s) \qquad (|\beta| < 1)$$

When we choose ε_s **normal distributed** with mean μ and variance σ^2 then Δ_s **is log-normal** distributed.

Farkhooi, Strube-Bloss, Nawrot (2009) Phys Rev E 79

Freie Universität

increasing importance of process history

trial

Coefficient of variation (interval variability)

$$CV^2 = \frac{Var(ISI)}{mean^2(ISI)}$$

Fano factor (count variability)

$$FF = \frac{Var(count)}{mean(count)}$$

theoretic relation for **renewal process**

$$FF = CV^2$$