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1. Inroduction

- interval and count random variables
- Bernoulli process

- Poisson process

- renewal process

- nonhomogenous Poisson process

- non-renewal processes
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Computational versus Stochastic Models
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computational models stochastic point process models
- abstract or biophysical models - abstract mathematical definition
- deterministic input/output relation - probabilistic theory (‘randomnes’)

- NO input/output conversion

- Type | / Type Il models
- Integrate & Fire
- McCulloch Pitts

Computer simulations translate Numeric simulation generates random
synaptic inputs into spike output point process realization

= spike train => spike train

Useful to investigate biophysics Useful to make statistical predictions
and neural networks for spike train analysis
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Level I: Detailed compartmental models

AW A

e
==

YWy

%

Level ll: Reduced compartmental models
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Level lll: Single-compartment models
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Level IV: Cascade models

R
S(t) = Z‘ - l/ - A(t)
t
¥

Linear filter Nonlinearity

Level V: Black-box models

-

p(S) p(R|S) P(R)

Herz A, Gollisch T, Machens CK, Jaeger D (2006)
Modeling Single-Neuron Dynamics and Computations: A Balance of Detail and Abstraction. Science 314, p. 80-84
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Point Processes
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A point is a discrete event that occurs in continuous time (or space). We regard
action potentials as point events ignoring their amplitude and duration.
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Spike Train Representation
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‘ spike train

discrete time series of events
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Spike Train Representation
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discrete representation
(list)

10100001000100000000001010010100000100010100000000001

binary representation
(array)
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Interval and Count | Random variables
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2 basic random variables :

- inter-event intervals X (continuous random variable)
- number of spikes N (discrete random variable) in interval of length T

Any point process definition uniquely determines its interval and count
stochastic, and both random variables are related.

10100001000100000000001010010100000100010100000000001

binary representation
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Inter-spike intervals

Freie Universitat

s

”/:?‘F e Berli
i@ﬂ)ﬁ erlin

inter-spike intervals
continuous data
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Spike count
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spike count
discrete data
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2. Stationary Point Processes

- interval and count random variables
- Bernoulli process

- Poisson process

- renewal process
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Bernoulli process
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A Bernoulli process is discrete in time (space). It consists of a finite or infinite sequence of

independent random variables X;,7 = 1,2, ... such that

Pr{X,=1}=p and Pr{X,=0}=(1—-p) Vi

A Bernoulli process is a sequence of independent trials and thus the Bernoulli process is mem-
oryless. The prominant example is repeated coin flipping where p = 0.5. We call trials 7 where
X; =1 a success. The number of successes m in n trials (equiv. to count distribution) follows

the Binomial distribution.
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Bernoulli process
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A Bernoulli process is discrete in time (space). It consists of a finite or infinite sequence of
independent random variables X;,i = 1,2, ... such that

Pr{X,=1}=p and Pr{X,=0}=(1—-p) Vi

A Bernoulli process is a sequence of independent trials and thus the Bernoulli process is mem-
oryless. The prominant example is repeated coin flipping where p = 0.5. We call trials 7 where
X; =1 a success. The number of successes m in n trials (equiv. to count distribution) follows
the Binomial distribution.
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Bernoulli process

A Bernoulli process is discrete in time (space). It consists of a finite or infinite sequence of
independent random variables X;,7 = 1,2, ... such that

Pr{X,=1}=p and Pr{X,=0}=(1—-p) Vi

A Bernoulli process is a sequence of independent trials and thus the Bernoulli process is mem-
oryless. The prominant example is repeated coin flipping where p = 0.5. We call trials 7 where
X; =1 a success. The number of successes m in n trials (equiv. to count distribution) follows
the Binomial distribution.

03 time resolution: At = 20 ms 0.03 time resolution: At = 2 ms
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Bernoulli process
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What is a good time resolution At for simulating a series of action potentials ?

APs have a duration of about 1-2ms; thus as useful time resolution is: At <1 ms

03r time resolution: At =20 ms 0.03 time resolution: At = 2 ms
_ 02 _ 002
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Bernoulli process
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What is a good time resolution At for simulating a series of action potentials ?

APs have a duration of about 1-2ms; thus as useful time resolution is: At <1 ms

The ratio A =p /At is called the intensity of the process and determines
the rate of point occurrences, identified with the neuronal firing rate. In both
examples below the rate is A = 5/s (expectation: 5 events per second).

03 time resolution: At =20 ms 0.03 time resolution: At = 2 ms
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Poisson process | complete intensity fcn
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One possibility to define a point process is the complete intensity function.

Consider a point process as defined on the complete time axis (—o,+x). Let H,
denote the history of the process, i.e. a specification of the position of all
points in (-0, t]. Then a general description of this process maybe formulated
in terms of the probabilities of observing a single event at an arbitrary time t

P(N(t,t+ dt) = 1|H;}



Poisson process | complete intensity fcn
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One possibility to define a point process is the complete intensity function.

Consider a point process as defined on the complete time axis (—o,+x). Let H,
denote the history of the process, i.e. a specification of the position of all
points in (-0, t]. Then a general description of this process maybe formulated
in terms of the probabilities of observing a single event at an arbitrary time t

P(N(t,t+ 6t) = 1|H,}
Definition

The Poisson process of intensity A is defined by the requirements that for all t
and for 5—-0+

PIN(t,t +6t) = 1|H,} = \d + o(9)

- the only process for which all events are completely independent
- ‘simple process’, often used for the description of neural spiking
- the Bernoulli process approximates the Poisson process for At — 0.
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Poisson process | count distribution
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Poisson process | count distribution
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Poisson process

Example 1: radioactive decay of 239Pu (half-life : 4110 years).

- continuous time intervals
- discrete event count

events per year events per 10 years
40 ‘ : ‘ ' i ‘ : ‘
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time (y) time (y)
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Poisson process
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Example 2: rain drops

—
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- continuous space intervals
- discrete event count © ., -

0 .o ..- ..

[
0 total = 97 0 total = 961 1

count per 10cm?
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count per 10cm?
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Poisson process | from count to interval distribution
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Model classes
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constant intensity A

Poisson

* exponential interval distribution
* Poisson count distribution
« events are uniformly distributed in time
* special case of gamma process

Teaching Week Computational Neuroscience | Mind and Brain | M Nawrot

24



Renewal Process | definition
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Definition
inter-event intervals are independent and identically distributed (iid)

Thus

« individual intervals are serially independent

* process history is relevant only up to the previous event

* the intervals between successive points are mutually independent
* the Poisson process is a renewal process

time

t = replacement from a homogeneous population
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anno domino
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Definition
inter-event intervals are independent and identically distributed (iid)
Thus
« individual intervals are serially independent
* process history is relevant only up to the previous event

* the intervals between successive points are mutually independent
» the Poisson process is a renewal process

|
1900 2011
anno domino
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Renewal Process | model distributions
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spon1-chan25-bee30.txt

1s 0 50 100 150 200
ISI (ms)

gamma fit
log-normal fit

p.d.f.

Extracellular single unit recording of spontaneous activity from a so-called extrinsic neuron of the
honeybee mushroom body. The empirical interval distribution is estimated by the gray historgram
from a total of 1530 ISls. The mean interval length is m = 58.7 ms, i.e. the average rate can be
approximated by A =~ 1/m = 17.03/s. The blue curve fits a gamma distribution, the red curve
fits a log-normal distribution. Modified from: [1]

[1] Farkhool, Strube-Bloss, Nawrot (2009) Phys Rev E 79
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Renewal Process | model distributions
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Prominent interval distributions used for renewal models of neural spiking

dead-time Poisson gamma log-normal
A B C
S S e
T T ©
o o o
0 0.5 1 0 0.5 1 0 0.5 1
Time (s) Time (s) Time (s)
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Model classes
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constant intensity A

Poisson

* exponential interval distribution
* Poisson count distribution
« events are uniformly distributed in time
* special case of gamma process

Renewal

¢ jid interval distribution
* FF = CV2

Teaching Week Computational Neuroscience | Mind and Brain | M Nawrot

increasing importance of process history
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3. Non- Stationary Point Processes

- nonhomogenous Poisson process
- non-renewal processes

Teaching Week Computational Neuroscience | Mind and Brain | M Nawrot
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Rate-modulated processes
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Motivation: The concept of a neuron’s 'firing rate’ is empirically
motivated. Experimental repetitions allow to average spike count across
trials. Individual neurons can modulate their firing rate with time.

PS RS
0 20 40 60
' Count
180
{60 €
o
40 S
20
0
0 500 1000 1500
Time [ms]

Single unit activity from primary motor cortex of the monkey during repeated reaching movement
Data Curtsey: Alexa Riehle, CNRS, Marseille
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Non-homogenous Poisson process Y = |
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Definition

We substitute the constant intensity A by the explicitly time-dependent

intensity funtion A(t) and define the nonhomogenous Poisson
process for all t and for 6—>0+

Pr{N(t,t +ot) = 1|H,} = A(t) 0.

The instantaneous probability is still independent of the process history!
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Non-homogenous Poisson process
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Bernoulli approximation:
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Model classes
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constant intensity A

dynamic intensity A(t)

Poisson

* exponential interval distribution
* Poisson count distribution
« events are uniformly distributed in time
* special case of gamma process

non-homogenous
Poisson

Renewal

¢ jid interval distribution
* FF = CV2
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Rate-modulated renewal process | time rescaling
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Simulation with time rescaling:

» simulate renewal process in ‘operational time’ (with unit rate)
» transform to ‘real time’ using your intensity function A(t)

gze_’\;l\/‘\;
D 10 ‘
©
o . . . .
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0 % 151 — )
s |= t
S 10t —
o p—
O e
5t —
A B c —
— t
i i i 0—
LT e B WETTETE T 1 T 1
Time (s) Time (s) Time (s)
0 0.5 1 1.5 2 2.5
Real time (s)
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Model classes

constant intensity A

dynamic intensity A(t)

Poisson

* exponential interval distribution
* Poisson count distribution
« events are uniformly distributed in time
* special case of gamma process

non-homogenous
Poisson

Renewal

¢ jid interval distribution
* FF = CV2

rate-modulated
Renewal
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increasing importance of process history
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4. Non - Renewal Point Processes

- modeling serial interval correlation
- modeling spike-frequency adaptation
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Non-renewal spike trains | experimental evidence
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2s Experiments by Clemens Boucsein & Dymphie Suchanek

University of Freiburg, Germany

- In vivo intracellular recordings, somatosensory cortex
in the anesthetized rat

- spontaneous activity (no stimulation)
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Non-renewal spike trains | experimental evidence
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2s Experiments by Clemens Boucsein & Dymphie Suchanek
University of Freiburg, Germany
d Neuron index
01 | 8
o Al — A —— - %)%
~ 0.1 [ XZ X3
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» significant negative serial correlation of intervals in 7 of 8 cortical cells

» spiking process is not renewal

Nawrot et al. (2007) Neurocomputing 70: 1717-1722
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Reference Model System & Neuron Type SC

Ratnam and Nelson (2000) Weak electric fish, isolated -0.52
P-type Receptors afferent

Chacron et al. (2000) Weak electric fish, isolated -0.35
P-type Receptors afferent

Neiman and Russell (2004) Paddle fish, sensory Ganglion ~ -0.4

Floyd et al. (1982) Cat splanchnic and hypogastric -0.3
nerves in vivo

Levine (1996) Goldfish retina, Ganglion cells in vivo -0.13

Rodieck (1967) Cat Retina, Ganglion cells in vivo -0.06

Kuffler et al. (1957) Cat Retina, Ganglion cells in vivo -0.17

Tsuchitani and Johnson (1985) | Cat Lateral Superior Olive in vivo -0.2

Nawrot et al. (2007) Rat Somatosensory Cortex (S1) -0.21
in vivo, regular spiking cells

Nawrot et al. (2007) Rat Somatosensory Cortex (S1) -0.07
in vitro, pyramidal cells

Engel et al. (2008) Rat medial entorhinal cortex in vitro | [-0.1,-0.4]
Layer Il stellate and Layer Il
pyramidal neurons

Farkhooi et al. (2008) Honeybee central brain in vivo -0.15

Mushroom body extrinsic neurons

Table 1: Negative 1st order serial interval correlation in different preparations and cell types.
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Non-renewal point process model
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An autoregressive process in its general linear form up to lag p reads

Xs — ﬁle—l + BQXS—Q + ...+ Bst—p + €5

where

g, i.i.d. with specific mean and finite variance.
S; correlation coefficient forlagiand |g] < 1

We propose the following process to model inter-event intervals
A = eXp(Xs) — eXp(BXs—l =+ 55) (| 3 |< 1)

When we choose g, normal distributed with mean p and variance
02 then A, is log-normal distributed.

Farkhooi, Strube-Bloss, Nawrot (2009) Phys Rev E 79
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Model classes
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constant intensity A

dynamic intensity A(t)

® I

Poisson

* exponential interval distribution
* Poisson count distribution
« events are uniformly distributed in time
* special case of gamma process

non-homogenous
Poisson

Renewal rate modulated
¢ jid interval distribution
ey Renewal
stationary

non-Renewal

* constant intensity parameter
* non-trivial history dependence
* serial interval correlations
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Measures of interval and count variability s i '
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Coefficient of variation (interval variability) T

| el e——
CV? = Var(fSI) -
mean-(ISI)
8
Fano factor (count variability) )
NI
| B
FF — Var(count) | |
mean(count) | |_| |
>
time

theoretic relation for renewal process

FF=CV?
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