

Theoretical Neuroscience and Neuroinformatics Institute of Biology **Bernstein Center for Computational Neuroscience Berlin**

The Myth of Poissonian Spiking

Interval and Count Statistics in Biological Neurons

Martin Paul Nawrot

Workshop on Statistical Aspects of Neural Coding

Kyoto University, Nov 01, 2012

Introduction

- 1 Measures of 2nd order interval and count statistics
- 2 The Poisson model is a bad model for neural spiking
- 3 Neural spike trains violate assumption of a renewal process
- 4 Non-renewal point process models and biophysics
 - Take-home summary

Martin Nawrot \cdot The myth of Poissonian spiking $\cdot\,$ Kyoto University $\cdot\,$ Nov 1 , 2012

"The variability of neuronal responses is proportional to the mean in many brain areas, which **suggests that neural responses might follow a Poisson distribution**."

Averbeck (2009) Neuron 62

Martin Nawrot \cdot The myth of Poissonian spiking \cdot Kyoto University \cdot Nov 1 , 2012

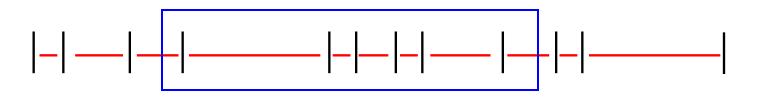
Introduction

1 Measures of 2nd order interval and count statistics

- 2 The Poisson model is a bad model for neural spiking
- 3 Neural spike trains violate assumption of a renewal process
- 4 Non-renewal point process models and biophysics
- Take-home summary

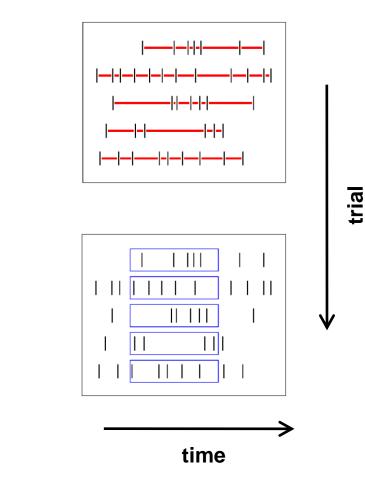
Martin Nawrot \cdot The myth of Poissonian spiking $\cdot\,$ Kyoto University $\cdot\,$ Nov 1 , 2012

- 2 basic random variables
- inter-event intervals X (continuous random variable)
- number of spikes N (discrete random variable) in interval of length T



Any point process definition uniquely determines its interval and count stochastic, and both random variables are related.

Measures of interval and count variability



Coefficient of variation (interval variability)

$$CV^{2} = \frac{Var(ISI)}{mean^{2}(ISI)}$$

Fano factor (count variability)

$$FF = \frac{Var(count)}{mean(count)}$$

Martin Nawrot \cdot The myth of Poissonian spiking $\cdot\,$ Kyoto University $\cdot\,$ Nov 1 , 2012

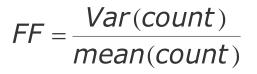
Coefficient of variation

(of inter-spike intervals X)

 $CV^2 = \frac{Var(ISI)}{mean^2(ISI)}$

Fano factor

(of spike count N)





$$\hat{f}(x) = \begin{cases} \eta^{-1}(T-x)f(x) & \text{for } x \in [0, T], \\ 0 & \text{otherwise,} \end{cases}$$

$$\eta = \int_0^T (T-s)f(s)\,ds$$

Nawrot (2010) In: Grün, Rotter (eds.), Springer Series Comp Neurosci 7

Martin Nawrou - The Thyth of Folssonian spiking - Kyoto University - Nov 1, 2012

Outline

Introduction

- 1 Measures of 2nd order interval and count statistics
- 2 The Poisson model is a bad model for neural spiking
- 3 Neural spike trains violate assumption of a renewal process
- 4 Non-renewal point process models and biophysics
- Take-home summary

Martin Nawrot \cdot The myth of Poissonian spiking $\cdot\,$ Kyoto University $\cdot\,$ Nov 1 , 2012

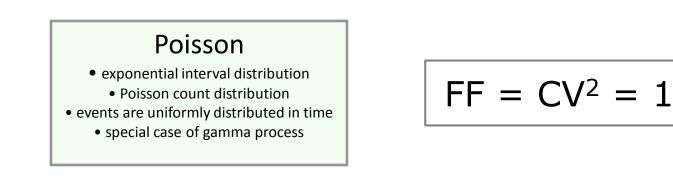
One possibility to define a point process is the **complete intensity function**.

Consider a point process as defined on the complete time axis $(-\infty, +\infty)$. Let H_t denote the **history of the process**, i.e. a specification of the position of all points in $(-\infty, t]$. Then a general description of this process maybe formulated in terms of the probabilities of observing a single event at an arbitrary time t

$$P(N(t, t + \delta t) = 1 | H_t)$$

The dependence on the process history can be arbitrarily complex

The myth of Poissonian spiking



Martin Nawrot \cdot The myth of Poissonian spiking \cdot Kyoto University \cdot Nov 1 , 2012

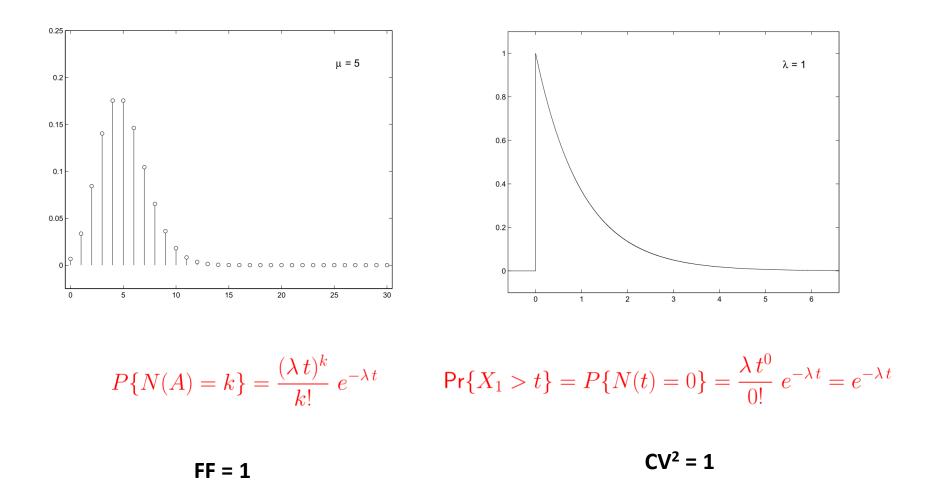
The **Poisson process** of intensity λ is defined by the requirements that for all t and for $\delta \rightarrow 0+$

$$P\{N(t, t + \delta t) = 1 | H_t\} = \lambda \delta + o(\delta)$$

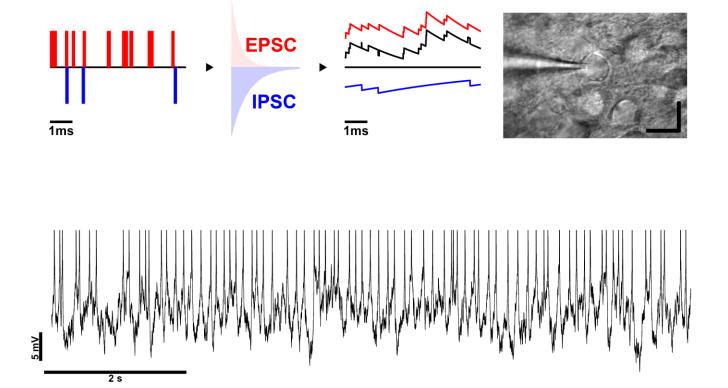
The Poisson process is the only process for which

- all events are completely independent
- the hazard rate is flat (maximizes entropy)

Poisson Count and Interval Distribution

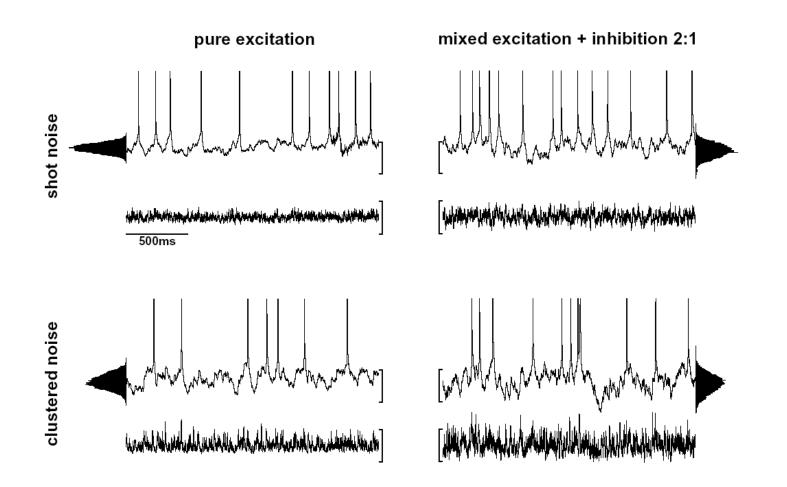


In vitro experiments: Controlled stationary input



Nawrot et al. (2008) J Neurosci Meth

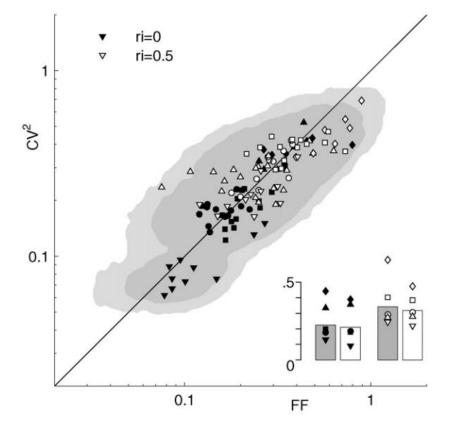
Controlled starionary noise input in vitro



Nawrot et al. (2008) J Neurosci Meth

Variability under controlled stationary input conditions

Cortical neuron in vitro show sub-Poissonian interval and count variability



$FF \approx CV^2 \leq 0.4$

CV - Holt et al. (1996) J Neurophysiol 75; Nowak et al. (1997) Cereb Cortex 7; Stevens & Zador (1998) Nat Neurosci 1; Harsch & Robinson (2000) J Neurosci 20; Badoual et al. (2005) Neurocomp 65; Arsiero et al. (2007) J Neurosci 27; Shinomoto

FF - Stevens & Zador (1998) Nat Neurosci 1; Harsch & Robinson (2000) J Neurosci 20

Outline

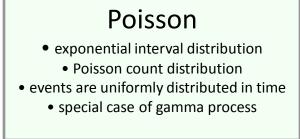
Introduction

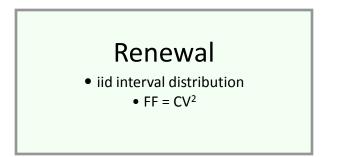
- 1 Measures of 2nd order interval and count statistics
- 2 The Poisson model is a bad model for neural spiking
- 3 Neural spike trains violate assumption of a renewal process
- 4 Non-renewal point process models and biophysics
- Take-home summary

Martin Nawrot \cdot The myth of Poissonian spiking \cdot Kyoto University \cdot Nov 1 , 2012

Renewal model

constant intensity λ





$$FF = CV^2 = 1$$

$$FF = CV^2$$

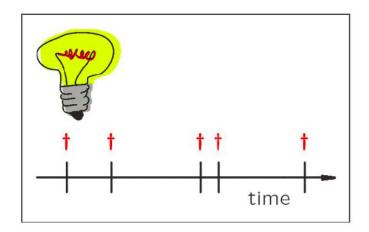
increasing importance of process history

Definition

inter-event intervals are independent and identically distributed (iid)

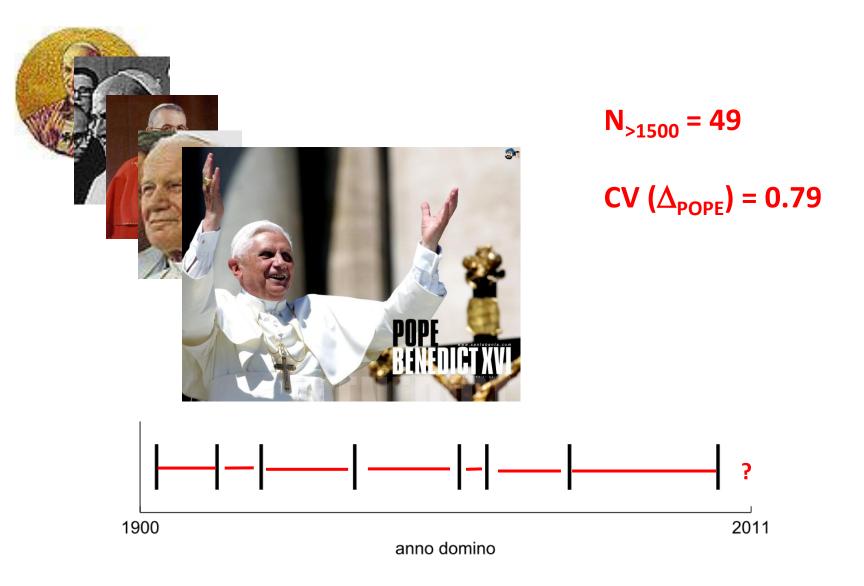
Thus

- individual intervals are serially independent
- process history is relevant only up to the previous event
- the intervals between successive points are mutually independent
- the Poisson process is a renewal process

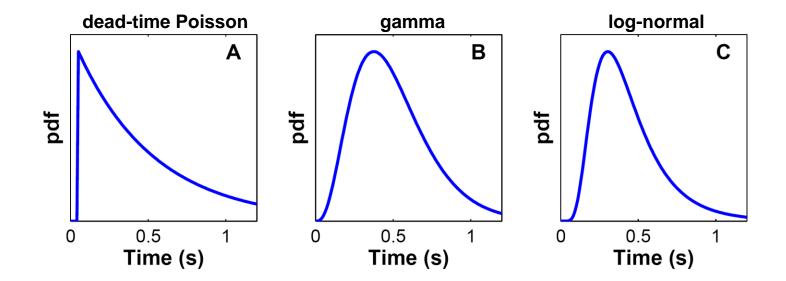


t = replacement from a homogeneous population

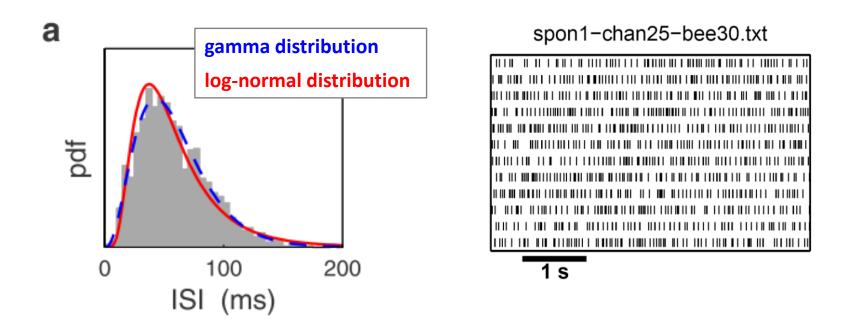
The Catholic Renewal Process



Prominent interval distributions used for renewal models of neural spiking



Martin Nawrot \cdot The myth of Poissonian spiking $\cdot\,$ Kyoto University $\cdot\,$ Nov 1 , 2012

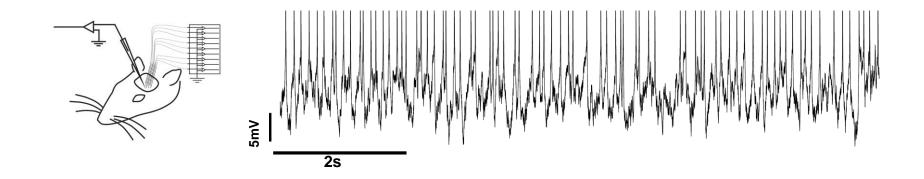


Extracellular recordings of spontaneous activity from mushroom body extrinsic neurons in the Honeybee

Farkhooi, Strube-Bloss, Nawrot (2009) Phys Rev E

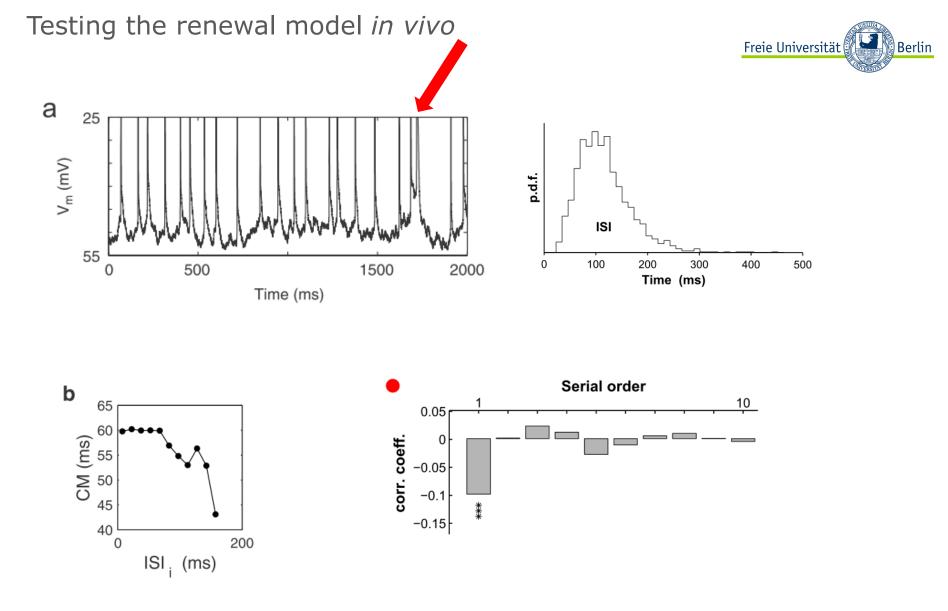
Testing the renewal model in vivo

Intracellular recordings form cortical neurons in the somatosensory cortex of the anaesthetized rat

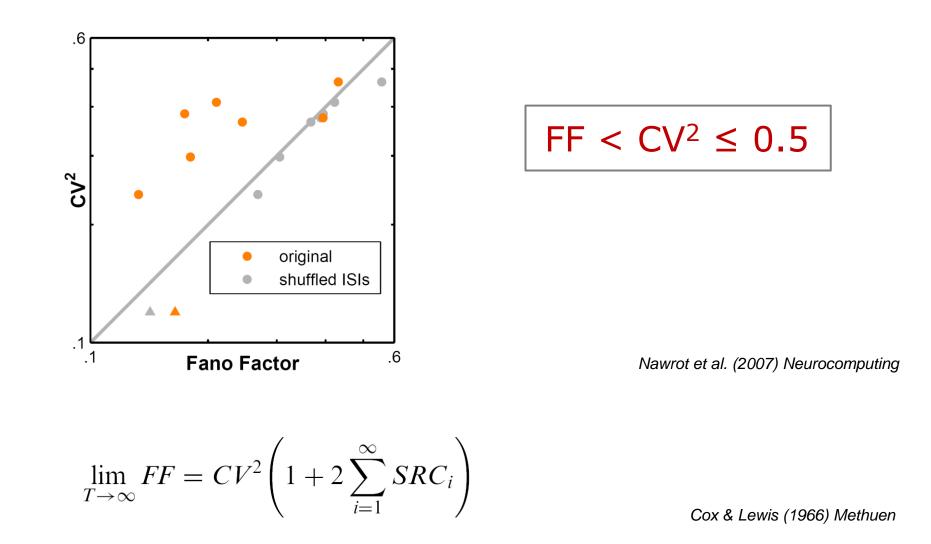


Experiments by Clemens Boucsein & Dymphie Suchanek

University of Freiburg, Germany



▶ negative serial correlations reduce the Fano factor (FF < CV²)



Martin Nawrot . The myth of Poissonian spikingeri Kyoto Whitesity . Neural 3012 Trains

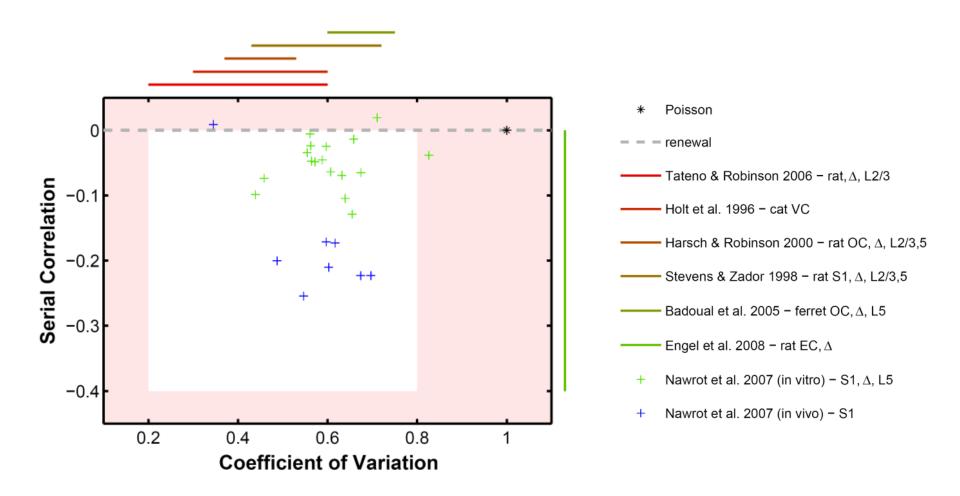
Experimental evidence for serial ISI correlation

Reference	Model System & Neuron Type	SC	
Ratnam and Nelson (2000)	Weak electric fish, isolated	-0.52	
	P-type Receptors afferent		_
Chacron et al. (2000)	Weak electric fish, isolated	-0.35	RA
	P-type Receptors afferent		뽀
Neiman and Russell (2004)	Paddle fish, sensory Ganglion	\sim -0.4	PERIPHERA
Floyd et al. (1982)	Cat splanchnic and hypogastric	-0.3	Ë
	nerves <i>in vivo</i>		ш
Levine (1996)	Goldfish retina, Ganglion cells in vivo	-0.13	
Rodieck (1967)	Cat Retina, Ganglion cells in vivo	-0.06	
Kuffler et al. (1957)	Cat Retina, Ganglion cells in vivo	-0.17	
Tsuchitani and Johnson (1985)	Cat Lateral Superior Olive in vivo	-0.2	_
Nawrot et al. (2007)	Rat Somatosensory Cortex (S1)	-0.21	
	in vivo, regular spiking cells		
Nawrot et al. (2007)	Rat Somatosensory Cortex (S1)	-0.07	
	in vitro, pyramidal cells		
Engel et al. (2008)	Rat medial entorhinal cortex in vitro	[-0.1,-0.4]	AL
	Layer II stellate and Layer III		TR
	pyramidal neurons		CENTRAL
Farkhooi et al. (2008)	Honeybee central brain in vivo	-0.15	0
	Mushroom body extrinsic neurons		

Table 1: Negative 1st order serial interval correlation in different preparations and cell types.

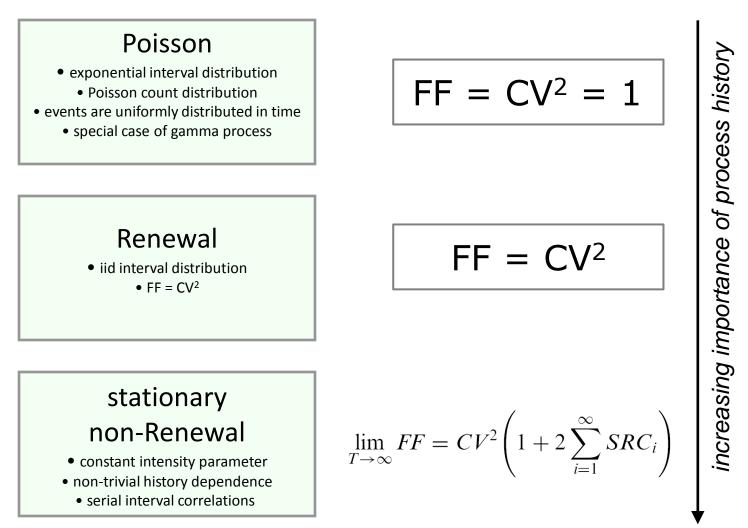
Farkhooi, Strube-Bloss, Nawrot (2009) Phys Rev E

Estimated parameters in the literature (neocortex)



Non-renewal models

constant intensity λ



Autoregressive model approach

The autoregressive process in the general linear for up to lag p reads

$$X_s = \beta_1 X_{s-1} + \beta_2 X_{s-2} + \dots + \beta_p X_{s-p} + \varepsilon_s$$

where

- ε_s i.i.d. with specific mean and finite variance.
- β_i correlation coefficient for lag *i* and $|\beta| < 1$

We propose the following process to model inter-event intervals

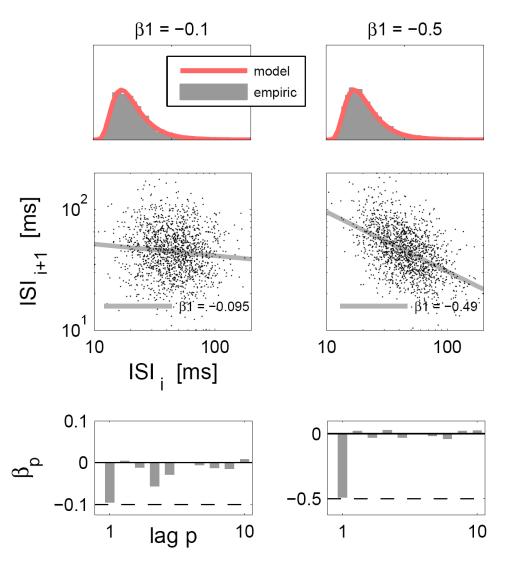
$$\Delta_s = \exp(X_s) = \exp(\beta X_{s-1} + \varepsilon_s) \qquad (|\beta| < 1)$$

When we choose ε_s normal distributed with mean μ and variance σ^2 then Δ_s is log-normal distributed.

Farkhooi, Strube-Bloss & Nawrot (2009) Phys Rev E

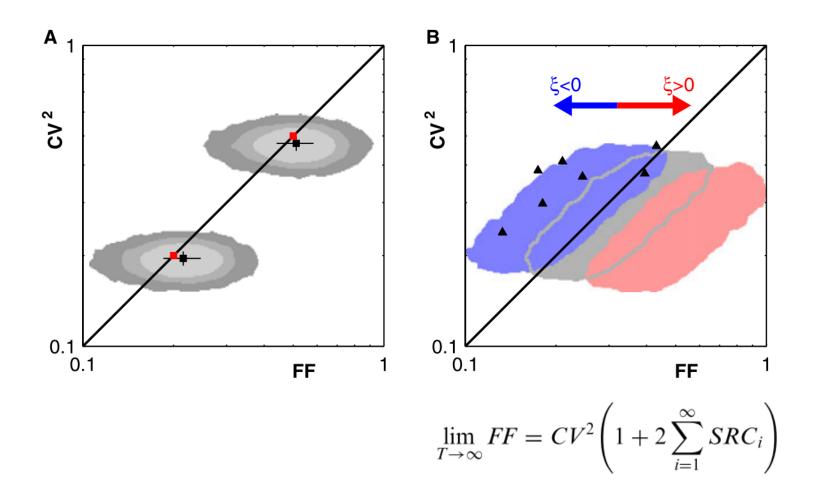
Non-renewal autoregressive point process

- Numeric Simulation
- log-normal
- CV = 0.5



Farkhooi, Strube-Bloss & Nawrot (2009) Phys Rev E

Martin Nawrot \cdot The myth of Poissonian spiking \cdot Kyoto University \cdot Nov 1 , 2012



Nawrot (2010) In: Grün, Rotter (eds.), Springer Series Comp Neurosci 7



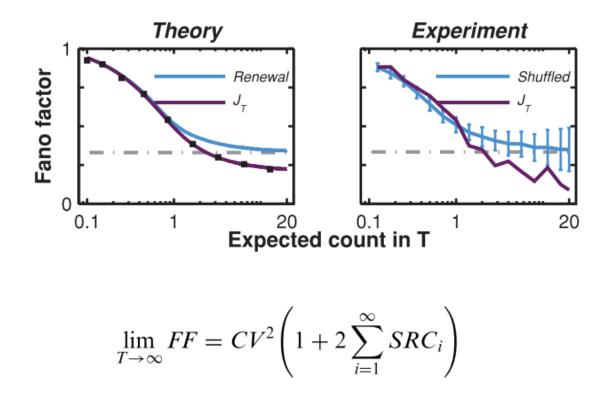
Thought experiment:

Superimpose N realizations of a gamma renewal processes of identical intensity and shape parameter. What happens to the CV², what happens to FF of the *superimosed* process ?

Martin Nawrot \cdot The myth of Poissonian spiking $\cdot\,$ Kyoto University $\cdot\,$ Nov 1 , 2012

Superposition of non-renewal processes

- ► superposition retains Fano factor, but increases CV and adjusts SRCs accordingly
- superposition of renewal processes results in a non-renewal process (exception: Poisson)

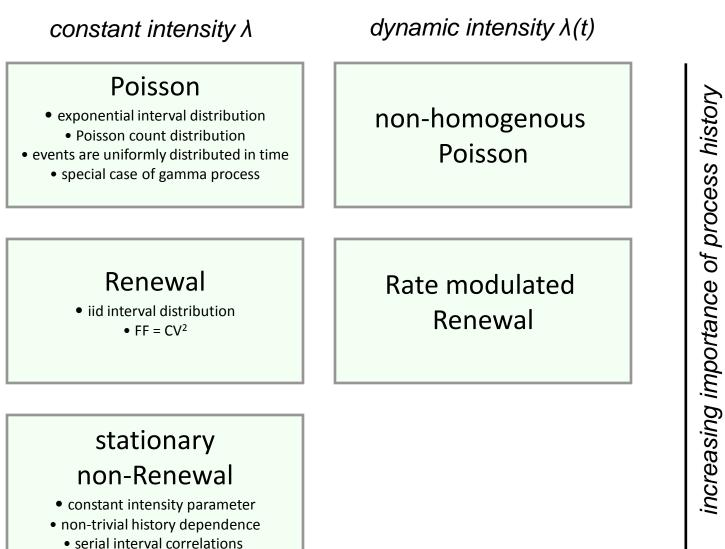


Farkhooi, Müller & Nawrot (2011) Phys Rev E

Freie Universität

Berlin

Freie Universität



- The Poisson model is a deficient model for neural spiking
- Short-lived negative serial interval correlations exist in stationary cortical spike trains. Neuronal spiking is generally non-renewal
- Negative serial correlations reduce variability in single neuron and population activity. This benefits reliable population coding
- Biophysical mechanisms of self-inhibition such as spike-frequency adaptation provide a likely explanation for the negative ISI correlations (see also my talk tomorrow)

Averbeck BB (2009) Poisson or Not Poisson: Differences in Spike Train Statistics between Parietal Cortical Areas. Neuron 62: 310-11

Cox DR, Lewis PAW. The statistical analysis of series of events Methuen's monographs on applied probability and statistics. London: Methuen; 1966.

Farkhooi F, Müller E, Nawrot MP (2011) Adaptation reduces variability of the neuronal population code. Physical Review E 83: 050905

Farkhooi F, Strube M, Nawrot MP (2009) Serial correlation in neural spike trains: experimental evidence, stochastic modelling, and single neuron variability. Physical Review E 79: 021905

Nawrot MP (2010) Analysis and Interpretation of Interval and Count Variability in Neural Spike Trains. In: Analysis of Parallel Spike Trains, Grün S, Rotter S (Eds.), Springer, New York, August 2010

Nawrot MP, Boucsein C, Rodriguez-Molina V, Riehle A, Aertsen A, Rotter S (2008) Measurement of variability dynamics in cortical spike trains. J Neurosci Meth 169: 374-390

Nawrot MP, Boucsein C, Rodriguez-Molina V, Aertsen A, Grün S, Rotter S (2007) Serial interval statistics of spontaneous activity in cortical neurons in vivo and in vitro. Neurocomputing 70: 1717-1722