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Reliability and Precision of Spike Generation
in Cortical Cells

Jan Clemens

1 Introduction

For cortical cells to take part in a temporal code, they must themselves be able
to transform temporally modulated inputs reliably and precisely into tempo-
rally patterned spike trains. For a long time it has been doubted that cortical
neurons are able to generate such response patterns in a reproducible manner
(see e.g. Softky and Koch (1993)).

Mainen and Sejnowski, in their 1995 paper titled “Reliability of Spike Tim-
ing in Neocortical Neurons”, provided unequivocal evidence that nerve cells
are in principle able to take part in such a temporal coding scheme. Through
current injections into cortical cells, they answered the following questions:
How precisely can cortical cells translate synaptic input into spike trains? To
what degree does precision depend on stimulus parameters?

2 Experiments and Methods

Preparation The temporal precision of pyramidal cells was quantified using
noise current injections. Noise sources extrinsic to the neuron itself were
eliminated by 1. using a slice preparation, and 2. pharmacologically
blocking all remaining synaptic inputs. Current-clamped whole-cell record-
ings were performed.

Stimuli Temporally constant and modulated noise currents where injected
via the recording electrode. Both stimulus types were calibrated as to
evoke comparable mean firing rates between 10 and 25Hz. The dynamic
noise stimulus was generated to mimic the dendritic integration of many
independent excitatory and inhibitory synaptic inputs: Gaussian white
noise was low pass filtered by convolution with an α function α(t, τ) =
t exp(t/τ). The amplitude of stimulus fluctuations was adjusted through
the noise variance σ2; the time scale of the fluctuations was set by the
filter’s width τ.

Measures The noise current injections produced sparse firing events, which
where reproducible across different representations of the same stimulus.
Events were detected by looking for peaks in the PSTH. Reliability was
then quantified as the fraction of trials in which spikes occurred during
such an event. The standard deviation of spike times in an event served
as an estimate of precision. Furthermore, the time course of the average
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current stimulus preceding a spike—the spike-triggered average—was
calculated, to examine whether spikes are able to lock to characteristic
patterns of synaptic input.

3 Results

1. Constant amplitude stimuli evoked responses with reliable average
firing rates but imprecise spike timing. While the CV for both stimu-
lus types was small (0.1 and 0.05 respectively), the spike patterns pro-
duced by the unmodulated stimulus exhibited a desynchronization over
the time course of the stimulation: while the timing of the first few spikes
after stimulus onset was reproducible across trials, a synchronized firing
pattern was barely visible after as few as 5 spikes (see fig. 1 left).

2. Temporally modulated stimuli evoked more reliable spike trains than
unmodulated stimuli. Overall precision of firing events under fluctuat-
ing stimulation ranged from .5-2ms, depending on the stimulus statistics.
Spike time jitter was always much smaller than the average firing rate
(25Hz, ISI 40ms) or the time scale of stimulus fluctuations (τ=3-25ms)
(see fig. 1 right).

3. Faster and more strongly modulated current stimuli evoked more precise
and reliable firing patterns.

4. Action potentials were reproducibly evoked by specific input patterns.
The spike-triggered average stimulus is a positive transient in the in-
put current, corresponding to the synchronous arrival of excitatory post-
synaptic potentials.

4 Conclusions

The present study shows that naturalistic patterns of synaptic input are able to
evoke reliable and precise spike patterns with (sub)millisecond precision when
external noise sources are eliminated. This indicates that:

• Non-synaptic noise sources contribute only minimally to neuronal vari-
ability, rendering spike generation precise and reliable.

• Cortical cells are able to encode temporal patterns of synaptic input in
spike patterns with high precision.

For the observed precision to be relevant for everyday neural computation, it
is necessary for the synaptic input and for synaptic transmission to be reliable
and precise, too. On this matter, there exists contrasting evidence: While some
studies have found a high degree of variability in neurons fully embedded in
a network (Shadlen and Newsome, 1998), there exists evidence that cortical
neurons are able to exploit their potential to generate precise spike patterns
from synaptic input (Fellous et al., 2004; Tiesinga et al., 2008). In addition,
several studies have shown that this precise timing contains indeed stimulus-
specific information (see e.g. Victor (1999)).

2



superimposed
voltage traces

stimulus
amplitude

response
pattern

constant amplitude modulated

Figure 1: Dependence of Neural Precision on Stimulus Type: LEFT: Response patterns
evoked by constant amplitude stimulation exhibit strong desynchronization of spike
timing soon after stimulus onset. RIGHT: In contrast, the precision of spike timing
during temporally modulated stimulation is maintained over the response’s full time
course. (modified after Mainen and Sejnowski (1995))
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Synaptic modifications in cultured hippocampal neurons: Dependence on spike 
timing, synaptic strength, and postsynaptic cell type. 

Guo-quiang Bi and Mu-ming Poo 

 

Recapitulation by Jakob Gutzmann 

 

Synaptic efficacy is a highly dynamic cellular property which can be modified by physiological 
events like learning and memory, or by artificial stimuli. Commonly used protocols for the 
induction of synaptic modifications like Long-Term Potentiation (LTP) or Long-Term 
Depression (LTD) usually involve repetitive presynaptic stimulation and sometimes a 
constitutive postsynaptic polarization.  

Basing their work on studies that had implicated the timing of a back-propagating action 
potential in the postsynaptic neuron with the depolarization elicited by the presynapse, the 
authors of the study presented here, Bi and Poo, attempted to fully characterize the 
dependency of synaptic modifications on the timing of pre- and postsynaptic action 
potentials. The Method and model they chose were Amphotericin B induced perforated patch 
recording on dissociated cultures of rat hippocampal neurons. A pre- and a postsynaptic 
neuron were patched and the nature of their connection was electrophysiologically and 
pharmacologically identified (Fig.1) 

 

Figure 1: Sample recordings for two glutamatergic neurons (1 and 2). Matrices depicting EPSCs 
recorded from either neuron 1 (R1) or neuron 2 (R2), while either neuron 1 was stimulated (S1) or 
neuron 2 (S2). Arrowhead indicates a monosynaptic EPSC, which were focus of the study. Synaptic 
transmission was glutamatergic in nature, because the GABA receptor blocker bicuculline had no 
effect, but the AMPA receptor blocker CNQX inhibited transmission in both directions. 

From each pair of neurons that the authors investigated, the baseline amplitude of 
monosynaptic EPSCs was measured by low frequency test stimuli (0,03 Hz, Clamp Voltage 
Vc = -70mV). Once the baseline was established, the authors switched the patch 
configuration to current clamp to allow both cells to spike and induced a series of 60 pulses 
at 1 Hz. If the EPSP was too weak to elicit an action potential in the postsynaptic neuron 
(subthreshold EPSP), the authors injected a spike inducing current into the postsynaptic 
neuron either after the EPSC (positively correlated postsynaptic spiking) or befor the EPSC 
(negatively correlated postsynaptic spiking). After the repetitive stimulation cells were held in 
voltage clamp again and test stimuli were induced to determine EPSC amplitude. The 
authors could clearly show, that postsynaptic spiking positively correlated with the 
presynaptic stimulation led to an increase in mean EPSC amplidute and, vice versa, 
negatively correlated postsynaptic spiking led to a weakening of synaptic connectivity. 

+ bicuculline + CNQX 



For all further experiments the authors only used subthreshold synaptic connections where 
they could induce a postsynaptic spike at a time of their choosing and thereby investigate the 
dependence of synaptic modification on spike timing. Figure 2 shows the critical time window 
which the authors concluded from their experiments. If the EPSP is elicited up to 20ms 
before the postsynaptic spike, the synaptic connection is strengthened. But is the EPSP 
elicited up to 20ms after the postsynaptic spike, the synaptic connection is weakened. 

 

Figure 2: Critical time window for spike timing dependent plasticity. The percentage change in the 
EPSC amplitude before the correlated stimulation of pre- and postsynaptic neuron was plotted against 
the spike timing of the correlation. The spike timing (or ∆t in the small graphics) is the time between 
the peak of the postsynaptic spike and the onset of the EPSP. Spike timing of -20ms to 0ms leads to 
synaptic depression and spike timing of 0ms to +20ms leads synaptic potentiation. Calibration for the 
small graphics: 50mV, 10ms 

Apart from the major conclusion of this paper, that synaptic modification in cultured 
hippocampal neurons is dependent on the timing of pre- and postsynaptic spikes, the authors 
also investigated, which other factors may contribute to synaptic modifications. An important 
factor was revealed by the observation that the extend of synaptic potentiation, but not 
depression, is negatively correlated to the initial synaptic strength. Mostly synapses with 
initial EPSC amplitudes of 500pA or less could be potentiated by positively correlated spike 
timing. 

Another factor influencing synaptic modification by spike timing is the postsynaptic celltype, 
because glutamatergic connections onto GABAergic neurons could neither be potentiated 
nor depressed by the authors. This may be due to the lack of the Ca2+ dependent enzymes 
CaMKII alpha and the phosphatase calcineurin, which have been shown to be lacking in this 
type of synaptic connections in the cortex and the hippocampus.  

The last very interesting finding by the authors is the fact, that synaptic depression, induced 
by negatively correlated spike timing, is dependent on L-Type voltage gated Ca2+-channels 
(LVGCC). Synaptic potentiation was reduced by the LVGCC-blocker nimodipine, but was not 
completely prevented, as was synaptic depression. 



Summary to the seminar talk

”The tempotron: a neuron that learns spike

timing-based decisions”

Felix Franke, Bernstein Center for Computational Neuroscience Berlin

08.02.2009

1 Introduction

Neurons retrieve spikes as their input. The question how they compute when to fire an
output spike depending on their input, is a key question for computational neuroscience.
Probably the most popular model for this computation is the integrate and fire neuron.
However, one of the most common models for the computation of a neuron in machine
learning is the perceptron which is strikingly different from the integrate and fire neuron.
The paper [1] tries to close this gap and gives a possible learning rule for a classifier based on
the integrate and fire neuron. The remainder of this article is organized as follow. In section
2 the key characteristics of the perceptron are briefly described. Then the integrate and
fire neuron is reviewed in section 3 based on the recent work of [2]. Finally the Tempotron
is introduced (section 4) and some of the interesting results are presented (section 5).

2 The Perceptron

Figure 1: Scetch of the perceptron computation.
a Each affarent of the perceptron receives a binary in-
put (black and grey numbers correspond to a ⊕ and 	
stimulus, respectively). b Vector space representation
of the linear classification as a hyperplane.

Originally published in 1957 by
Frank Rosenblatt [3], the percep-
tron has become one of the most
influential machine learning algo-
rithms. Due to its simplicity - it
is completly linear - it is relatively
easy to analyze and its learning
rule is proven to converge. The
input is a binary vector x, whose
elements xi indicate whether a
spike arrived at the corresponding
synapse i or not. All inputs are
scaled with the respective weight
ωi of every synapse and summed
up (see eq. 1). If this sum is larger
than a fixed threshold b, the neu-
ron fires a spike i.e. the output
f(x) is 1 (see fig. 1 a).
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f(x) =

{
1, if w · x+ b > 0
0, else

(1)

This compuation equals a hyperplane as decision boundary in the input space (see fig.
1 b). Thus, the learning of the perceptron is equal to finding the normal vector of that
plane. The offset is given by b.

3 The Integrate and Fire Neuron

Figure 2: Scetch of the Tempotron com-
putation. a Each affarent of the tem-
potron receives a spike train as its input
(solid bars, black and grey bars corre-
spond to ⊕ and 	 stimuli, respectively).
b Voltage traces for the two input pat-
terns from a. c Voltage trace for one in-
put spike.

The most prominent difference of the integrate
and fire neuron to the perceptron is, that it has
timeseries as its input or in the descrete case, a
series of input vectors x. Here, every input spike
causes a descrete change - the postsynaptic po-
tential - in the intracellular voltage V (t) of the
neuron. The height of this change is different
for every synapse, again scaled by ωi. If the in-
tracellular voltage reaches a threshold Vthr, the
neuron fires a spike and the voltage is reset to
Vrest. This means, the integrate and fire neu-
ron integrates its inputs over time until it fires a
spike. A common modification to the integrate
and fire neuron is a leak. Here, the voltage also
drops over time, depending on its momentary
amplitude. This can easily be modeled by con-
volving the input spike trains with a certain ker-
nel (see fig. 3 c) depending on the decay time of
the membrane τ and the synaptic currents τs.

V (t) =
∑

i

ωi

∑
ti

K(t− ti) + Vrest (2)

K(t− ti) = V0(e
−(t−ti)

τ − e
−(t−ti)
τs ) (3)

Thus, every spike causes a change of the intra-
cellular voltage depending on the time since the
spike arrived at a synapse. The longer this time
the smaller the influence of the spike. The factor
V0 is needed to normalize the kernel to ampli-
tude 1, so that, again, only the synaptic weight
vector ω influences the height of a postsynaptic
potential.

4 The Tempotron

The task the Tempotron tries to solve is to learn a binary classificator for a given set of
binary labeled input patterns based on the integrate and fire neuron described above. An
input pattern consists of a series of spike times for every synapse. Or in other words,
instead of a certain instantaneous spike configuration like in the case of the perceptron,
the Tempotron receives a series of such configurations. Furthermore, the influece of this
spikes on the intracellular voltage decreases over time. This is the same as convolving the
inputs with a kernel before summing them up. Every pattern is classified as a ⊕ stimulus
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if at any point in a certain time T the intracellular voltage V (t) reaches a threshold Vthr.
The integration of the spikes is given by equations 2 and 3. The update equation for the
synaptic weights can now be found by setting up an error function E. If a spike is elicited
in a 	 pattern, the maximal peak of the intracellular voltage trace at time tmax had to be
above Vthr. Thus the error value is defined as the difference of the maximal peak to the
threshold. Analogously if no spike is elicited for a ⊕ trial then the maximal value of the
voltage trace had to be below Vthr. Here, the error value will be the difference between the
threshold and this maximal peak. This yields the error function

E± = ±(Vthr − V (tmax))Θ(±(Vthr − V (tmax))) (4)

for ⊕ and 	 patterns respectively and Θ beeing the Heavside step function. Differentiation
of E in respect to the synaptic weights yields the update rule

∆ωi = λ
∑

ti<tmax

K(tmax − ti) (5)

with λ > 0 specifying the maximal change of the synaptic weight for every input spike. To
sum up, the weight vector is only adapted if a pattern is erroneously classified. Then every
synapse is updated for every spike it received before tmax. tmax is the time point of the
erroneous output spike (	 patterns) or the maximal value of the voltage trace (⊕ patterns).
The value of the update depends on the time between the input spike and tmax.

5 Results

The main results of the paper presented are:

• The Tempotron is able to successfully learn the weight vector for the binary classifi-
cation task.

• The number of patterns that can be distinguished is approximately 3 per synapse (the
so called load) subject on the exact parameterisation of the Tempotron.

• The load of the Tempotron is larger than that of a perceptron.

• The Tempotron is relatively robust to noise in the input patterns, however this ro-
bustness heavily depends on the load and other parameters.

• The Tempotron can learn to distinguish patterns based on higher order correlations.

• The update rule is not biologically plausible, since the time between every input spike
and tmax has to be stored. However, the authors give a heuristic update rule which is
more biologically plausible. The idea behind this heuristic is to update every synapse
shortly after every input spike.

References
[1] R. Gütig, H. Sompolinsky (2006), The tempotron: a neuron that learns spike timing-based decisions,

Nat Neurosci 9:420-428154 (1-2) (2006) 204–224.

[2] A.N. Burkitt (2006), A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input.
Biol Cybern DOI:10.1007/s00422-006-0068-6

[3] Rosenblatt, Frank (1958), The Perceptron: A Probabilistic Model for Information Storage and Organi-
zation in the Brain, Cornell Aeronautical Laboratory, Psychological Review, v65, No. 6, pp. 386-408.
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Modul II, Learning spike patterns: Spike Timing Dependent 
Plasticity & Tempotron
Vortrag 5, Jan-Ole Christian:
Masquelier T, Guyonneau R, Thorpe S (2008), 'Spike Timing Dependent Plasticity Finds the 
Start of Repeating Patterns in Continiuous Spike Trains', PLoS ONE 3(1): e1377

Zusammenfassung
Masquelier [1] und Kollegen haben in einer Modellstudie gezeigt, dass mit Spike Timing Dependent 
Plasticity (STDP) ausgestattete Modellneuronen in der Lage sind, wiederkehrende Muster von 
Aktionspotentialen (spike patterns) auch ohne explizite Zeitreferenz, also ohne Angabe eines 
Startzeitpunktes, zu erkennen, selbst wenn diese Spike-Muster in einem Rauschen von 
Aktionspotentialen verborgen sind.

Einleitung
Über lange Zeit wurde angenommen, dass Neuronen Informationen ausschließlich durch einen 
Frequenzcode (also die Feuerrate von Aktionspotentialen) übermitteln. In den 1920er Jahren wurde 
in neurophysiologischen Studien von Adrian [3] gezeigt, dass die Feuerrate der Aktionspotentiale 
von Sinneszellen mit der Intensität eines Stimulus zunimmt. 

Auch in künstlichen neuronalen Netzen (artificial neural networks ANN) wird die Feuerrate 
als Kodierungsschema benutzt. Sie gilt dabei als Maß für die Aktivierung eines Neurons. Der 
Aktivierungslevel eines Modellneurons wird den nachfolgenden Neuronen im ANN jedoch direkt 
als Wert übermittelt. Diese Verbindungen stellen das Äquivalent zu den Synapsen dar und sind in 
der Stärke ihres Einflusses (ihres Gewichts) auf das nachfolgende Neuron veränderlich. Die 
Aktivierung eines Modellneurons wird durch eine Funktion (zum Beispiel gewichtete Summe) der 
gemeldeten Eingaben an den Synapsen errechnet. Lernen findet in ANN durch das, nach Regeln 
erfolgende, Verändern der Gewichte statt. 

Biologische Neuronen senden Informationen jedoch nicht als kontinuierlichen Wert, sondern 
als Sequenz von Aktionspotentialen. Für die Bestimmung der Feuerrate benötigt man mehrere 
Aktionspotentiale (also entweder einen längeren Zeitraum oder eine Population von gleichzeitig 
feuernden Neuronen). Werden nun, um der biologischen Realität gerecht zu werden, statt eines 
kontinuierlichen Wertes die tatsächlichen Spikes simuliert, so werden Modelle, welche mit einem 
Frequenzcode arbeiten, sehr langsam und kompliziert. Diese Modelle können die Geschwindigkeit 
und Effizienz mancher beobachteten neuronalen Verarbeitung kaum erklären. 

Dadurch, dass Neuronen Aktionspotentiale ausbilden, ergeben sich jedoch eine ganze Reihe 
von Spike basierten Kodierungsmöglichkeiten. Zum Beispiel, in welcher Reihenfolge Spikes von 
verschiedenen Afferenzen an den Synapsen ankommen. Ein prominentes biologisches Beispiel für 
solches Timing ist das auditorische System, in welchem ein Geräusch die beiden Ohren je nach 
Lage der Geräuschquelle zeitversetzt erreicht, so dass die entsprechenden Neuronen leicht 
zeitversetzt feuern. Und zwar in typischer Weise je nach Lage der Geräuschquelle. Aber auch der 
genaue Zeitpunkt oder die Synchronizität von Spikes eines räumlich-zeitlichen Spike-Musters 
können der Informationsübertragung dienen. 

Elektrophysiologen bestätigen, dass in Neuronenpopulationen komplexe räumlich-zeitliche 
Spike-Muster auftreten, welche sich wiederholen. Diese Spike-Muster konnten sowohl in vivo als 
auch in vitro beobachtet werden.

Thorpe gibt in [4] einen Überblick über Spike basierte Kodierungsschemata und zeigt, dass 
Spike basierte Simulationen von asynchron feuernden Neuronen ausgesprochen anspruchsvolle 
Aufgaben elegant und effizient lösen können.

In biologischen Neuronen kann sich die Stärke der synaptischen Übertragung in 
Abhängigkeit von der Aktivität der Synapse kurzzeitig oder dauerhaft ändern (synaptische 
Plastizität). Es handelt sich um Langzeit-Potenzierung (LTP Long-Term Potentiation), wenn der 



Einfluss der Synapse dauerhaft verstärkt wird und umgekehrt bei einer dauerhaften Abschwächung 
des Einflusses der betroffenen Synapse um Langzeit-Depression (LTD Long-Term Depression).

In experimentellen Studien [2] wurde LTP beobachtet, wenn das präsynaptische Neuron kurz 
vor dem postsynaptischen Neuron gefeuert hatte. LTD konnte beobachtet werden, wenn das 
präsynaptische Neuron kurz nach dem postsynaptischen Neuron gefeuert hatte. Diese Erscheinung 
wird als Spike Timing Dependent Plasticity (STDP) bezeichnet. Dadurch wird das Gewicht jener 
Synapsen, die zu einem Aktionspotential beigetragen haben, verstärkt. Der Einfluss der Synapsen, 
die kurz nach einem ausgelösten Aktionspotential einen Input erhalten haben, wird dagegen 
abgeschwächt.

Diese Veränderung der synaptischen Gewichte ist um so stärker, je geringer der zeitliche 
Abstand des Inputs an der Synapse vom eigenen Aktionspotential ist. In computersimulierten 
Modellstudien kann die Stärke der Veränderung durch eine einfache exponentielle Update-Regel 
beschrieben werden, die gut mit den beobachteten Veränderungen übereinstimmt. 

Wenn ein so modelliertes Neuron nun gleichartigen Salven von Input Spike-Mustern 
ausgesetzt wird, so hat dies zum Ergebnis, dass die synaptischen Gewichte für jene Afferenzen 
verstärkt werden, die in den Salven am frühesten feuern. Dies führt also dazu, dass schon die ersten 
eintreffenden Spikes ein Aktionspotential auslösen und die sich Reaktionszeit des Neurons auf die 
Salve verkürzt. In Messungen am Hippocampus von Ratten konnte in Übereinstimmung mit diesen 
theoretischen Betrachtungen gezeigt werden, das die sogenannten 'place cells' früher feuern, wenn 
das Tier wiederholt ein entsprechendes Areal besucht hat [1].

In vielen Modellen wird jedoch vorausgesetzt, dass die Muster in Wellen auftreten, so dass 
leicht zwischen der Präsenz des Musters und Hintergrundaktivität unterschieden werden kann. Dies 
ist bei vielen biologischen Prozessen wohl tatsächlich der Fall. Zum Beispiel auch im visuellen 
System durch Sakkaden und Mikrosakkaden, im olfaktorischen System durch die Atemzüge 
beziehungsweise durch Schnüffeln. Außerdem verlangen viele Modelle, dass beim Lernen des 
Musters keine Distraktor-Wellen mit anderen Spike-Mustern auftreten. 

Ergebnisse
Masquelier et al.[1] konnten ein Modell entwickeln, welches räumlich-zeitliche Spike-Muster auch 
dann erkennt, wenn diese 

1. zu nicht vorhersagbaren Zeitpunkten auftreten,
2. wenn die Population der afferenten Neuronen mit innerhalb und außerhalb des Musters mit 

einer konstanten (gemittelten) Rate feuert, 
3. wenn nur einige der afferenten Neuronen am Spike-Muster beteiligt sind. 

Wenn sich also das Muster durch keine Charakteristika von der Hintergrundaktivität unterscheidet. 
Weder in der Feuerrate der gesamten Neuronenpopulation, noch in der Feuerrate der am Muster 
beteiligten Neuronen.

In der Computermodellierung wurden 2000 Neuronen über einen Zeitraum von 450 
Sekunden simuliert. Die simulierten Neuronen feuerten nach einer Poisson Verteilung unabhängige 
Spike-Abfolgen (spike trains). Zu zufälligen Zeitpunkten verließen 1000 Neuronen gemeinsam den 
stochastischen Modus und feuerten für 50ms ein präzises Muster mit der gleichen Spike-Dichte. 
Außerdem erhöhten sie die Erkennungsschwierigkeit durch Hinzufügen einer Spontanaktivität zu 
allen Neuronen (auch während des Musters) und durch Hinzufügen einer Schwankung (Jitter) von 
einer Millisekunde, also durch Hinzufügen einer leichten Ungenauigkeit beim Timing. 

In weiteren Simulationen wurden einige Parameter verändert, um deren Einfluss auf das 
Modell zu bestimmen.

Das unüberwachte Lernen des Musters geschah durch ein einziges Leaky Integrate-and-Fire 
(LIF) Neuron, welches von allen 2000 Afferenzen Input erhielt und als Koinzidenzdetektor 
fungierte.

Zu Beginn der Simulation waren alle synaptischen Gewichte gleich. Das LIF-Neuron war 
also nicht selektiv. Das präzise Muster hatte zunächst einen Anteil von etwa 1/4 der Gesamtzeit. 
Wegen der fast konstanten Spike-Dichte (gemittelt über die 2000 Neuronen) feuerte das LIF-



Neuron zu Beginn der Simulation periodisch mit konstanter Frequenz. Die anfängliche Feuerrate 
hängt von den Modellparametern Spike-Dichte, initiales Gewicht und Zeitkonstante der Membran 
ab.

Nach jedem ausgelösten Aktionspotential wurden die synaptischen Gewichte entsprechend 
der exponentiellen Update-Regel aktualisiert. In der Anfangsphase feuert das LIF Neuron sowohl 
innerhalb als auch außerhalb des zu erkennenden Spike-Musters. STDP führt durch Verstärkung und 
Abschwächung der einzelnen Synapsen zu einer Veränderung der synaptischen Gewichte, und zwar 
insgesamt zu einer Verringerung. Von den gewählten Parametern hängt ab, wie stark diese 
allgemeine Verringerung ausfällt. Das LIF-Neuron feuert im Verlaufe einer Simulation also seltener. 
Würde es gar kein sich wiederholendes Muster geben, so würde die Gewichte so weit verringert, 
dass gar kein Aktionspotential mehr ausgelöst werden würde. Da die am Muster beteiligten 
Afferenzen jedoch als einzige mehrmals gemeinsam verstärkt werden (da nur das Muster im 
zufälligen Rauschen mehrmals auftritt), erhöht sich die Wahrscheinlichkeit, dass das LIF Neuron 
innerhalb des Musters feuert. Es wird nach etwa 13,5 Sekunden selektiv für das Muster. Das ist sind 
etwa 70 Wiederholungen des Musters und etwa 700 Aktionspotentiale des LIF-Neurons. 

Das LIF Neuron feuert anfangs zweimal pro Spike-Muster und es ist zufällig, auf welchen 
(zeitlichen und räumlichen) Teil des Musters es selektiv wird, welcher Spike-Anteil des Musters 
also initial verstärkt wird. Die steigende Selektivität führt jedoch schnell dazu, dass sich das LIF-
Neuron lediglich einmal pro Muster entlädt.

Nachdem das LIF-Neuron selektiv geworden ist, führt die STDP dazu, dass jene Synapsen 
verstärkt werden, die kurz vor dem Auslösen des Aktionspotentials des LIF-Neurons einen Input 
erhielten. Dies sind ja nun die früheren Anteile des Musters. Es traversiert also im Verlaufe der 
Simulation durch das Spike-Muster zurück zu den ersten Spikes des Musters und feuert jedes mal 
etwas früher. Dies geschieht so lange, bis alle Synapsen, die an den ersten Spikes des Musters 
beteiligt sind, maximal verstärkt wurden. Die anderen Synapsen werden maximal unterdrückt. Die 
minimale Reaktionszeit tritt nach etwa 2000 Entladungen auf. Die postsynaptische Latenz beträgt 
dann etwa 4 ms. Die Trefferquote ist dann im Mittel 99.1% und es gibt keine Entladungen 
außerhalb des Patterns (keine false alarms). Nachdem das Lernen also stattgefunden hat, wartet das 
LIF-Neuron nur noch auf das gelernte Musters und feuert wenn es auftritt, aber nicht spontan. Es 
vergisst das Gelernte niemals. 

Von den 2000 Synapsen sind in in der ersten Simulation 383 maximal verstärkt und der Rest 
fast vollständig unterdrückt. 

Es wurden viele weitere Simulationen mit unterschiedlichen Mustern und variierten 
Parametern durchgeführt (Figure 7). Zunächst wurde der Anteil des Musters an der Gesamtzeit 
verringert. Dadurch reduzieren sich die Gewichte so weit, dass (bei einem steigenden Anteil der 
Simulationsdurchläufe) keine Entladungen mehr stattfinden, bevor das Muster gelernt werden kann. 
Dies entspricht dem Verhalten bei gar keinem wiederkehrenden Muster. Allerdings muss das Muster 
lediglich in der Lernphase häufig präsentiert werden. Ein gelerntes Muster kann danach sehr selten 
auftreten und führt doch zu einem Aktionspotential, während das LIF-Neuron sonst schweigt.

Ein weiterer Parameter, der variiert wurde, ist der Jitter. Die Performance des Modells ist 
sehr gut für einen Jitter von weniger als 3ms. 

Außerdem wurde der Anteil der am Muster beteiligten Neuronen variiert. Bei einem Anteil 
von nur 1/3 waren die Simulation immer noch in der Hälfte aller Fälle erfolgreich. Die 2/3 nicht am 
Muster beteiligten Synapsen wurden durch die STDP vollständig unterdrückt.

Der vierte variierte Parameter ist das initiale Gewicht. Je größer die initialen Gewichte sind, 
desto besser wird das Muster gelernt, da es in der Anfangsphase mehr Entladungen gibt und es 
seltener vorkommt, dass alle Gewichte so weit verringert werden, bis gar kein Aktionspotential 
mehr auftritt bevor das Muster gelernt wurde.

Ein weiterer variierter Parameter ist der Anteil von fehlenden Spikes im Muster. Die 
Erfolgsquote sinkt bei fehlenden Spikes. Aber selbst bei einer Rate von 10% fehlenden Spikes 
beträgt die Erfolgsquote noch 82%.

Schließlich wurde noch die Zeitkonstante der Membran variiert (10ms im Grundversuch). 



Mit kleinerer Zeitkonstante wurde die Latenzzeit geringer, auf die Erkennungsleistung hatte dieser 
Parameter aber wenig Einfluss. Das LIF-Neuron konnte noch die ersten nahezu zeitgleichen Spikes 
des Musters integrieren und Feuern. Bei längerer Zeitkonstante wurden mehr Spikes des Musters 
integriert und die Latenzzeit wurde länger. 

Diskussion
Das vorgeschlagene Lernschema ist völlig unüberwacht. Das Muster wird ohne eine explizite 
Zeitreferenz gelernt. Die Variation der Parameter des Modells zeigt, dass es erstaunlich robust 
gegenüber Störungen ist. Das Modell wäre mit biologischer Hardware einfach zu implementieren 
und es wäre verwunderlich, wenn dieser Mechanismus nicht auch in der Evolution entstanden sein 
sollte.

Bisherige Modelle funktionierten lediglich mit Wellen von Spike-Mustern. Dieses Modell 
kann auch Muster von einer Hintergrundaktivität unterscheiden, wenn die stochastischen 
Charakteristika von Muster und Hintergrundaktivität gleich sind.

Die Reaktionszeit auf das Muster verringert sich im Verlaufe der Simulation bis es einen 
minimalen stabilen Wert erreicht hat. Dies geschieht durch die Konzentration der Gewichte auf die 
Afferenzen, welche als erste im Muster feuern. 

Eine Limitierung mag sein, dass es nur exzitatorischen Einfluss der Synapsen gibt. Muster in 
denen eine bestimmte Afferenz nicht feuern darf, können vom Modell nicht gelernt werden. Wenn 
mehrere Spike-Patterns präsentiert werden, wird das Modell nur eines davon lernen. Der Zufall 
wird bestimmen welches.

Im Spike-Muster wird das fast zeitgleiche Auftreten von Spikes gelernt. Das gesamte 
räumlich-zeitliche Muster wird nicht einbezogen. Insbesondere das Timing innerhalb des Musters 
ist nicht von Bedeutung. Das Modell wäre nicht in der Lage, Regeln zu lernen, in welchen nur das 
Timing eine Rolle spielt, also zum Beispiel: „Das LIF-Neuron feuert wenn die Afferenzen 1-500 
nacheinander feuern und sonst nicht.“ 

Doch dann gäbe es ja kein festes Muster mehr und es sollte ja zunächst nur gezeigt werden, 
das ein mit STDP ausgestattetes LIF-Neuron sehr zuverlässig ein festes zeitlich-räumliches Muster 
lernen und mit minimaler Latenzzeit reagieren kann.
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nucleus Cross-correlation
For two time-discrete and real-valued func-
tions f and g the cross-correlation is defined
by:

( f ! g)[n] =
∞

∑
m=−∞

f [m]g[n + m] (1)

(adapted from http://en.wikipedia.org/wiki/
Cross-correlation/)

Possible hypotheses

If the correlated firing of neurons is functionally meaningful, then
neurons with similar receptive fields should be stronger correlated
than others.

If correlated thalamic neurons are more effective in driving a
common cortical target than non-correlated neurons, then the
peak of correlations between cortical cells spike trains with ex-
clusively synchronous spikes should be higher than with non-
synchronous spikes.

Methods

Nearby geniculate cells and cortical cells were simultaneously
recorded in anesthezised and paralysed cats. Receptive fields (RF)
were calculated by reverse correlation using white-noise stimuli
and a 52 Hz update rate. Subsequently cells were classified into
on-center and off-center cells. For the first part of the analysis,
cross-correlation analysis was performed on spike trains of LGN
cell pairs.

Figure 1: Upper row: The cross-correlogram
of an off-center and an on-center cell with
different receptive field positions does not
exceed the shuffled correlogram (red line).
Lower row: Two on-center cells with similar
receptive fields show a pronounced peak in
their cross-correlogram.

To investigate the second hypothesis, correlations between two
LGN cells and a cortical simple cell were computed separately for
each LGN cell to indicate monosynaptic connections. In addition,
the spikes of the LGN cells were divided into two classes. The
first class contains spikes of one cell that occurred within a 1 ms
interval of a spike in the second cell. The remaining spikes were
assigned to a second class. Cross-correlations between the cortical
cell and each class were computed. Furthermore, co-stimulation
artifacts between cells were estimated with the shuffled correlo-
gram. Efficacy is calculated as the percentage of thalamic spikes
followed by cortical spike after removing stimulus dependent
correlations.

1



summary 2

Results

Cross-correlation analysis on pairs of geniculate cells showed
trends depending on the receptive field overlap of the cells. LGN
cell pairs with non-overlapping RFs didn’t show positive corre-
lation, while 17 per cent of the pairs with partially overlapping
RFs showed a positive correlation with a modulation strength of
1.9%. A correlation was observed in 48% of pairs with overlap-
ping fields having the same sign with a strength of 10%. 79% of
the pairs that additionally had a similar RF size were correlated
with a strength of 13 %. The maximal strength of 28 % and 100%
positive correlation was observed in cell pairs with overlapping
RF of similar size, timing and sign . Figure 1 shows two examples
of LGN cell pairs and the corresponding cross-correlograms.

Figure 2: Correlation of spikes from cell A
and B (Figure 1, lower row) with a cortical
simple cell only containing simultaneous
spikes (A&B) or non-simultaneous spikes
(A∗ + B∗)

Thirteen cases of geniculate cells pairs projecting to a common
cortical cell were studied. Two cases contained LGN cells with
overlapping RFs showing correlated firing, while no correlations
were found for the LGN cells in the remaining nine cases. In
11 cases the efficacies of simultaneous spikes were significantly
greater than the summed efficacies of non-simultaneous spikes.
Figure 2 shows data from the uncorrelated LGN cell pair in Fig 1
and a cortical cell. The first correlogram contains only simultane-
ous spikes and the second only non-simultaneous spikes.

Conclusion

Strong correlations between geniculate cells were only observed
for cells with similar receptive fields with respect to overlap, sign,
size and timing. An increased efficacy of cortical target cells was
observed for simultaneous spikes of correlated input neurons and
for random simultaneous spikes of uncorrelated input neurons.
The authors therefore suggest that the firing of tightly correlated
LGN neurons could strengthen the thalamic input to a cortical
simple cell by increasing the likelihood of synchronous spikes.
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E. Vaadia, I. Haalman, M. Abeles, H. Bergman, Y. Prut ,
H. Slovin, A. Aertsen 2 2 E. Vaadia, I. Haalman, M. Abeles,

H. Bergman, Y. Prut, H. Slovin, and
A. Aertsen. Dynamics of neuronal
interactions in monkey cortex in relation
to havioural events. Nature, 373:515–518,
1995.

Dynamics of neuronal interactions in monkey cortex in rela-
tion to havioural events

Possible hypotheses

If the firing rates of neurons do not vary for different stimulus or
behavioral conditions, then they could code different conditions
by correlating their firing patterns with other neurons.

If neurons are grouped into functional units by correlation,
then neurons from different groups should be less likely to be
correlated than neurons within one group.

Figure 3: Flow diagram of the behavioral taskMethods

Two monkeys were trained to hold a central key. The trial starts
with a ready signal (central red light) followed after 3 to 6 seconds
by one of two spatial cues depicting the future correct response.
The monkey had to postpone the response until a delayed trigger
signal indicated to respond. In "Go" trials the monkey was sup-
posed to touch the correct target. In "No-Go" trials monkeys were
rewarded for not responding to the trigger signal and thus not
releasing the central key.

The activity of 6-16 frontal cortex neurons was recorded si-
multaneously from the behaving monkeys. Additionally eye
movements were monitored. The electrodes’ positions were re-
constructed from histological inspections. Cell pairs were ana-
lyzed using dynamic cross-correlation (joint peri-stimulus time
histogram, JPSTH 3) to reveal the time structure of correlated fir- 3 Kyle Kirkland. URL http://mulab.physiol.

upenn.edu/jpst.html.ing with respect to either the stimulus or movements. All JPSTHs
were corrected for stimulus or motion artifacts. The maximum
of the coincidence-time histogram expressed as percentage of its
expected rate is called the "maximal modulation depth".

Results

Separate JPSTHs for "Go" and "NoGo" trials of two premotor
neurons are reported using a time interval around the ready sig-
nal. Neither the neurons’ firing rates nor the conventional cross-
correlogram differ for the two behavioral paradigms. However,
the coincidence-time histogram shows modulations around the
ready signal. In case of the "Go" task the co-firing is maximal after
the ready signal. In contrary, co-firing drops to zero at about the
same time in the "No-Go" condition (see Figure 4).
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The same analysis was performed for two neighboring neurons
and two distant neurons in relation to saccade onset and discrim-
inating between leftward and rightward saccades. The average
correlation increased (neighbors) or decreased (distant) during the
saccade, whereas the firing rates of all neurons increased regard-
less of saccade direction. For the neighboring pair the coincidence-
time histogram revealed that for a rightward saccade co-firing
increases, while it falls for a leftward saccade. A negative corre-
lation is observed between distant neurons after saccade onset to
the right, whereas correlation is slightly positive after leftward
saccade onset.

Figure 4: JPSTH for two neurons divided into
"Go" and "NoGo" conditions

Correlated activity was found in 499 of 947 neuronal pairs and
61% of those correlated pairs showed fast changes in co-firing
with respect to behavior.Furthermore, 83% of neighboring neurons
(recorded by the same electrode) are positively cross-correlated
around zero and the remaining 17% show a peak and a trough in
the vicinity of zero ("compound correlation "). For distant pairs
(recorded by different electrodes) the interval around zero shows
positive sign in only 44% of the cases, negative sign in 20% and
compound correlations are observed in the remaining 36%.

Conclusion

The authors advocate the following idea based on their results
from dynamic cross-correaltion: "A single neurons can intermit-
tently participate in different computations by rapidly changing
its coupling to other neurons, without associated changes in fir-
ing rate" 4. They also propose that the trend between neighboring 4 E. Vaadia, I. Haalman, M. Abeles,

H. Bergman, Y. Prut, H. Slovin, and A. Aert-
sen. Dynamics of neuronal interactions in
monkey cortex in relation to havioural events.
Nature, 373:515–518, 1995.

neurons to be positively correlated might indicate that the former
tend to be activated collectively forming a temporary functional
group. Negative correlations for distant neurons could denote that
they belong to a different group and are thereby clearly discrim-
inable.
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Abstract

The detection of temporal codes in neuronal populations requires meth-
ods that allow for a reliable identification of synchronous events. In this
report we describe the work of Riehle et al [10] who have invented a
method called Unitary Event Analysis (UEA) which detects epochs of
excessive firing coincidences. We explain the method and its underly-
ing assumptions and describe how Riehle et al applied it to investigate
the functional role of spike synchronization versus rate modulation. We
conclude with brief critical discussion of this method.
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1 Introduction

The question of how information is represented and processed in human or
animal brains lies at the very heart of neuroscience. It seems obvious that
neuronal discharges, or action potentials (APs), play a major role in information
processing. They provide neurons with the means of communication which is an
essential ingredient in any information processing apparatus. However, to the
present day it is an open question how exactly neurons use their spiking ability
to represent information.

Two major theories have been proposed and supported by experimental
evidence which suggest mechanisms of how the brain encodes information: rate
coding and temporal coding. Rate code approaches postulate that the brain uses
the number of APs per unit time to convey information. It has been shown, that
by assuming the brain uses a rate code, it is possible to decode internal states
as well as external stimuli. The rate code hypothesis is, for example, supported
by Georgopoulos et al [6]. They were able to predict the arm movement of a
monkey merely by observing the firing rates of a population of neurons in motor
cortex. Investigating sensory coding in the visual system rather than executive
motor functions, Warland et al [15] were able to decode presented visual input
from the output of retinal ganglion cells by applying a linear operator to an
estimate of the firing rate. This suggests that the firing rate of the ganglion
cells carried the necessary information.

Temporal codes, on the other hand, assume that it is the timing aspects of
APs, e.g. time or phase locking, which convey information and aids in process-
ing. A prominent example of this class of coding strategies is the binding-by-
synchrony hypothesis (see [3] for a review), brought forward by Wolf Singer and
colleagues. This theory tries to explain how spatially segregated computations
can be bound together to cause coherent perceptions or actions, and informa-
tion in a network can be routed. Based on these and other findings, Pascal Fries
more recently put forward the Communication-Through-Coherence hypothesis,
in which he argues that neuronal assemblies use massive synchronous firing to
communicate the results of neuronal computations within these assemblies to
other assemblies, using spatial summation to trigger action potential generation
at the postsynaptic cells [5]. For reviews on other studies that support temporal
coding see [11] and [14].

The debate between supporters of the two coding schemes is a lively one. For
example, see [12] for a rather critical discussion of temporal coding approaches
and their empirical support.

A study by Alexa Riehle et al [10] focuses on the motor domain and inves-
tigates how aspects of both major coding strategies (spike rate modulation and
spike synchrony, specifically coincidental firing of neuron pairs) can be involved
in cortical control of executive motor functions. In this report we will describe
the experimental setup and analysis methods used in the study by Riehle and
co-workers. We will then proceed and report their findings. In the final part we
will discuss possible weaknesses of the method and relate the conclusions they
have drawn from their results to those of other studies.
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2 Methods

2.1 Experimental Setup

In their study, Riehle et al presented their subjects (two macaque monkeys) with
a delayed match to sample task, while recording extra-cellularly from motor
cortex with a multi electrode setting. In each trial, the monkey was shown
two visual stimuli, separated by a waiting period of a certain duration, called
the preparatory period (PP). The first, or preparatory, signal (PS) indicated
a target position to which the monkey was trained to point with a lever once
the second signal (response signal, RS) was shown. A trial was considered to
be performed correctly, if the monkey had waited during the PP for the RS to
appear and then pointed to the location previously indicated by the PS. The
PP was always one of four predefined lengths and was chosen randomly from
that set for each trial. Figure 1 (A) illustrates the possible time courses for a
single trial and the order of the described signals. It is important to note, that
by choosing the length of the PP from four possible durations only, the monkeys
are able to learn these durations and anticipate the occurrence of the RS. This
effect is visualized in figure 1 (B). The response times for trials with a longer
PP are shorter, because the longer it takes for the RS to appear, the more likely
is one of the longer PP.

2.2 Unitary Event Analysis

A key aspect of the analysis is the detection of the so-called unitary events
([7]). The underlying idea is to calculate the probability that the empirically
found number of certain coincidence patterns is caused by chance, given that
the different cells fire independently of each other. To test for this, Grün et al
developed a statistical measure which they call joint surprise. The measure is
calculated like follows: After spike detection and spike sorting, the spike trains
of a certain time interval of length T are binned in a binary vector v(t) with T
bins of length ∆ (see figure 1 (C)) according to

(2.1&2.2)1 v(t) =



v1(t)
...

vi(t)
...

vn(t)

 , vi(t) =
{

1, if spike in [t, t+ ∆)
0, if no spike in [t, t+ ∆)

t = 0, ..., (T − 1) ·∆; i = 1, ..., N ; vi ∈ {0, 1}.

Thus, the resulting vector for the tth bin v(t) contains as elements for each
of the N recording channels either a 0, if no spike was recorded in the time
period for that channel, or a 1, if at least 1 spike (or more) were recorded. As
each vector v(t) is a binary representation of N channels (that is, it contains a
combination of N 0s and 1s, there are m = 2N possible different v(t).

To enumerate all these different combinations, in the following the vector vk

will identify the vector containing the kth pattern (vkN , ..., v
k
1 ), where k is the

1All equations are take from and number as in [7]
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Figure 1: (A) Time course of the experiment. See Section 2.1 for details. (B)
Reaction times of the monkeys plotted against the duration of the preparatory
period (PP). (C-E) Steps of the data analysis. The three raster plots show the
same data (2 neurons, 36 trials with longest PP) after the processing steps of
UEA. (C) Spike train data, with trials on the y axis and time on the x axis.
(D) Same as in (C), with blue dots marking the detected coincident spikes. (E)
Same as in (C), with red dots marking unitary events (UEs), i.e. coincident
spikes in regions where the coincident rate is significantly larger than expected
by chance. These regions are called UE epochs.

binary interpretation of vk + 1, i.e. k = (vkN ...v
k
1 )2 + 1.2 nk will denote the

empirical number of observations for each of these specific patterns vk.
For each vk, the probability P (vk) of observing it under the Null-Hypothesis

that all channels fire independently can be calculated by multiplying the in-
dividual probabilities pi = P (vi = 1), if a spike occurred in channel i, or
1− pi = P (vi = 0), if no spike occurred in channel i:

(2.3)H0 : Pk = P (vk) =
N∏
i=1

P (vki ),with P (vki ) =
{
P (vi = 1), if vki = 1
1− P (vi = 1), if vki = 0

To estimate pi, Grün et al chose the frequency interpretation of firing rates,
according to which number of observed spike events ci occurring during the time
period T is distributed randomly over the T considered time bins, and hence
pi = ci/T .

Using the assumption that each binned recording vector vi describes a Bernoulli
trial (i.e. that the occurrence of a spike in one bin does not depend on a possi-
ble occurrences in the bins before, or more formally p(vi(t)|vi(t−1)) = p(vi(t)),

2For example, v1 = (0, ..., 0, 0) identifies the vector without any spike events, as (0...0)2 +
1 = 1, v2 = (0, ..., 0, 1) the vector for which a spiking event occurred only in channel 1, and
so on.
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[4]), and using limit properties to further transform the resulting Binomial dis-
tribution into a Poisson distribution, Grün et al derive a formula to calculate
the probability ψ(nk;Pk;T ) that a pattern vk with the probability Pk occurs
exactly nk times during T bins, which is given by

(2.8) ψ(nk;Pk;T ) =
(Pk · T )nk

nk!
· exp(−Pk · T ), k = 1, ...,m.

As the expectation of the Poisson formula is well known, if follows that the
number of predicted occurrences npredk for each pattern vk is given by
npredk =< ψ >= Pk · T . In order to calculate the statistical significance of
deviation for a specific pattern vk from H0 (i.e. from independent firing between
channels), the probability Ψ(nempk |npredk ) to find the empirical observed number
of occurrences nempk or more given H0 can be calculated like

(2.9) Ψ(nempk |npredk ) =
T∑

nk=nemp
k

ψ(nk, n
pred
k ) =

T∑
nk=nemp

k

(npredk )nk

nk!
· exp(−npredk ).

Although in their Science paper [10] Riehle et al only consider significantly
large numbers of observations and mainly describe pairs of channels, the de-
scribed test in principle allows to test for simultaneous spike events in multiple
channels (e.g. [7]) or for significantly few observations as well.

As the interesting values for Ψ are all very small, Grün et al. chose to
enhance the visual resolution by applying the following transformation which
they call the joint-surprise measure S(Ψ)

(2.10) S(Ψ) = log
1−Ψ

Ψ
.

Using the joint-surprise measure, all those patterns vk are labeled unitary
events, for which the calculated joint-surprise value Sk is larger than some
predefined threshold Sα (for example Sα=0.01 = 2 for a statistical α = 0.01).
Remember that this test has to be calculated separately for each pattern of
interest vk.

Up to here, it has been assumed that within the time range T the firing
rates would be stationary. However, this is obviously not the case for normal
experiments. In order to overcome this problem, Grün et al suggest to use 2
tricks [8]: First, to use a sliding window of relative short length and then to
calculate the firing rate estimations pi and the joint-surprise value Sk every
time. They argue that during such a short time window the firing rates can
be assumed to be quasi-stationary. This, however, leads to relatively few data.
To compensate for this, the proposed second trick is to pool data over multiple
trials, assuming that the rates are constant if all data is time locked to a certain
event within a trial.

3 Results

After having explained the data acquisition as well as one important data anal-
ysis method (UEA) in the previous section, we will now summarize Riehle et
al’s findings.
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Figure 3 displays the main results of Riehle et al’s study. First of all, the
UE epochs seemed to be aligned with the four possible time points at which the
response signal could appear. Also, the pairs of synchronous firing changed for
different UE epochs, reflecting dynamically changing synchrony networks.

When furthermore comparing the rate of coincident spikes in UE epochs,
the authors found that the coincident rate was larger in epochs associated with
longer PPs. This suggested that UE epochs, i.e. synchronization of firing, co-
vary not only with the timing of an expectation but also with the degree of
certainty (see figure 3 (A, B)). Sorting trials according to behavioral aspects
revealed a correlation with these factors as well. Figure 3 (A) shows that trials
with faster reaction times (RT) exhibit a larger number and more clearly pro-
nounced UE epochs as opposed to trials in which the monkey took longer to
react. The difference in UE abundance is even more obvious when correct trials
are compared to trials in which the monkey did not respond (figure 3 (B)).

In a next step Riehle et al investigated the change, or modulation, of indi-
vidual neuron’s firing rates within Unitary Event epochs. In order to quantify
the rate modulation, they computed the time dependent activity modulation
index (AMI) within UE epochs. Figure 3 (C) depicts AMI histograms of trials
in which visual signals (PS or RS) are actually shown and of trials in which the
signals are merely expected. In the signal-occurred conditions the distributions
have more mass for larger values of the AMI. A threshold on AMI value scale
was determined to classify pairs of neurons as either exhibiting rate modulation
or not exhibiting rate modulation in the respective UE epoch. Figure 3 (D) de-
picts the total number of UE pairs sorted according to stimulus-expected versus
stimulus-occurred condition. This plot also shows how many of the pairs ex-
hibit rate modulation (yellow part of the bar). The total number of UE pairs is
moderately larger in the stimulus-occurred condition. However, there are much
more pairs which show rate modulation in the stimulus-occurred condition.

4 Discussion

In this section, we briefly discuss a few of the assumptions that underly the
method of unitary event analysis and also relate the findings of Riehle et al to
those of other studies.

Unitary Events are defined as the coincidental firing of two or more neurons.
However, the term coincidental is not to be taken literally, as the coincidence
time window used by Riehle et al was 5 ms long. Considering that a single
action potential lasts between 2 and 3 ms [2], a 5 ms time window allows spike
pairs to become marked coincident although the individual spikes were actually
successive. Riehle et al could argue, that for neurons with large dendritic arbors,
action potentials arriving in succession of a few milliseconds at distant dendrites
may lead to postsynaptic potentials which reach the soma in shorter succession
or even at the same time. Then the postsynaptic currents would reach the soma
simultaneously and have an additive effect. So for the postsynaptic cell these
successively arriving APs would appear to be coincident. In that situation, a
longer time window than action potential duration would indeed be justified.
However, there will always be false positives 3 among the coincident events, and

3Successive spikes that get marked as coincident spikes.
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the number of those increases with time window width. For a detailed analysis
of the effects of time window length see [7].

In order to deal with rates that are non-stationary within trials, the algo-
rithm assumes that the rate of neural responses to the same stimulus conditions
are stationary within a small time window over trials. However, the authors of [1]
report considerable variability of neural as well as behavioral responses the same
stimuli over trials, which casts doubt on the stationarity-over-trials assumption,
especially if the time window is very small. Another important assumption of
the algorithm is that the neuron’s response follows a Poisson distribution. The
Poisson model for spike trains seems to be well accepted in the theoretical neu-
roscience community [2], but there are also studies which question its validity
[13]. Since the UE algorithm is based on assumptions about neural firing whose
validity is not entirely established and a larger coincident time window is more
susceptible to false positives, the results of the algorithm have to be considered
with some caution. In order to increase the trustworthiness of the results, we
suggest to test the mentioned assumptions (stationarity-over-trials and Poisson-
distributed-response) in ones data before applying the UE algorithm and to use
a time window which is more in the range of action potential duration.

What should one make of the UEs after they have been identified? Riele et al
concluded that they play a functional role in planning and execution of voluntary
movements, suggesting that they carry a considerable amount of information.
Here it interesting to point out a study by Nirenberg and others [9], in which the
authors investigated the information theoretic aspects of a time code mechanism.
In their study they used the ganglion cells from the mouse retina and stimulated
it with natural movies. In a first step they also identified neuron pairs with
a correlation above chance. Then they measured the amount of information
that these pairs carried about the presented stimulus given a specific encoding
scheme. The interesting result was, that when a decoding strategy was employed
that took correlations between cells into account, decoding performance was
only 10% better than a decoding strategy that treated the cells as independent
encoders. Hence, their results suggest that UE events (at least in the early
visual system) may not play a great role in information processing.

As for the debate between temporal and rate coding approaches, the study of
Riehle et al identified important roles for both mechanisms. They were able to
show that for the processing of external stimuli neurons synchronize their firing
as well as modulate their firing rates, whereas for processing of internal events
synchronization (without rate modulation) seems to be the preferred mecha-
nism. Their findings suggest that the brain employs both coding mechanism
but uses them for different, possible distinct, purposes.
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Figure 2: Unitary Event Analysis Processing Steps. (A) Spike event representa-
tion after binary binning. Each row is the binned representation of one channel.
The recordings are aligned in time, each column is one v(t), i.e. one of the T
bins. Firing probabilities pi are calculated separately for each channel, using
all spike occurrences. (B) Spike rate estimation for two recorded neurons over
time. (C) Expected and measured coincidence rate over time. (D) Statistical
significance with which the expected and the measured coincidence rate from
(C) diverge.
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Figure 3: The main findings of Riehle et al [10]. (A, B) Relation between UEs
and behavioral aspects. Occurrence of UE epochs is roughly aligned to expected
stimulus time points (ES) and the coincident rate is larger for UE epochs as-
sociated with later ESs. (A) Trials with slow RTs exhibit fewer and less well
clustered UE epochs. (B) Trials with correct responses from the monkeys con-
tain clearly discernible UE epochs, whereas there are no UEs in trials in which
the monkeys did not respond. Relation between stimulus occurrence and firing
rate modulation in UE epochs. (C) Histogram of activity modulation index
values (indicator of firing-rate modulation) in UE epochs in which a stimulus
occurred (bottom two histograms) or epochs in which it was merely expected
(top two histograms). The histograms were computed for the neuron in each UE
pair with the strongest rate modulation. (D) Number of UEs sorted according
to epochs in which the expected stimulus actually occurred and where it did
not. The ratio of pairs with strong rate modulation versus without strong rate
modulation is much higher in those epochs with actual stimulus occurrence.

10



Based on MALDONADO ET AL. 2008. 

Prepared by Chris Häusler, BCCN Berlin; for ‘Coding with Action Potentials’ – Seminar/Workshop | WS 08/09  

 

SYNCHRONISATION OF NEURAL RESPONSES IN PRIMARY 

VISUAL CORTEX OF MONKEYS VIEWING NATURAL IMAGES 
Pedro Maldonado, Cecilia Babul, Wolf Singer, Eugenio Rodriguez, Denise Berger and Sonja Grün first published in J Neurophysiol 100:1523-1532, 2008. 

 

Summary Prepared by Chris Häusler (BCCN) for ‘Coding with Action Potentials’ – Seminar/Workshop | WS 08/09  

INTRODUCTION 

Many studies of the V1 visual cortex in primates have focused on neuronal responses to orientation bars 

and other highly controlled, somewhat unnatural stimuli. However, little is known about the processing 

characteristics of V1 when the subject is allowed free viewing of natural images.  

In primates, on average 4 saccades are performed per second suggesting that V1 tasks such as feature 

extraction and scene segmentation etc. should be completed in less than 200ms. Furthermore, it has been 

proposed that neurons involved in early visual processing exchange only a few spikes each during analysis 

(GUYONNEAU ET AL. 2004 ). This assumption severely limits the volume of information that could be 

transmitted through rate coding alone and it has therefore been suggested that the early visual cortex may 

also employ a temporal code, encoding information in the precise timing of action potentials (FRIES ET AL. 

2001,  2007; GRÜN ET AL. 2002A; HOPFIELD 2004). To date, there is no available data on the precise timing 

relationships between multiple spiking neurons during early visual processing. 

To address this issue, this study investigates the hypothesis  

 

“that information is encoded not only in discharge rates but also in timing relations among the spikes of 

individual neurons; thus we should find indications of precise timing, e.g. synchronization of discharges in 

these data” (MALDONADO ET AL. 2008) 

METHODS 

The research was performed with 2 adult male Capuchin monkey subjects. Eye coils used magnetic 

induction to track the precise positions of the monkeys gaze during recording sessions. A recording 

chamber containing 8 independently moveable tetrodes was mounted directly above V1. The tetrodes could 

be lowered up to 4mm into the cortex, allowing recordings at various depths and were used to perform 

extracellular unit recordings. All recording made while the tetrodes remained in one place were considered 

a recording session.  

During each recording session the subjects were shown a sequence of natural images, blank images and 

images with a fixation cue (to ensure the subjects remained focused on the stimuli). Each eye movement 

event was classified as either a saccade or a fixation and considered a ‘trial’. Saccades were defined as 

eye movements with an angular velocity greater than 100°/sec that lasted for ≥5ms. Additionally, saccades 

were required to have an angular acceleration greater than or equal to 170°/sec2. Fixations were defined as 

periods where the gaze remained within 1° of the position reached at the end of the last saccade for a 

period ≥ 100ms. Trials were then further grouped by the viewing condition (image, blank) and the session in 

which they were recorded. 
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A total of 80 sessions were recorded resulting in 4852 trials with images and 383 trials in the blank 

condition. After recording was completed, offline spike sorting was used to recreate the spike trains and 418 

single units were identified. An automated offline algorithm was also used to determine and categorise the 

different states of eye movements (saccade, fixation) from the eye coil data. 

ANALYSIS 

 

 

To identify the rate of synchronous neuronal firing, Unitary Event (UE) Analysis (GRÜN ET AL. 2002A, 

2002B) was applied to the recorded data. Due to non-stationary firing rates within trials, sliding window 

analysis (GRÜN ET AL. 2002B) with a 50ms duration and 0.1ms resolution was used. In addition, a multiple 

shift approach (GRÜN ET AL 1999) with up to a 5ms shift was utilised to allow for small amounts of temporal 

jitter in synchronous spiking. Again due to the non-stationary nature of firing rates between trials, analysis 

was performed on individual trials and subsequently summed and averaged across all trials to get the final 

results. Spike trains of neurons recorded simultaneously from the same trial were aligned and analysed in 

pairs against all other neurons for that particular trial. Data recorded for fixations was taken from -25ms 

before until 325ms after onset of the event whilst data for saccades was taken from -25ms before until 

75ms after onset. Analysis of data starting at -25ms before onset was used so that the centre of the first 

50ms sliding window would be aligned to time 0ms. 

  

  

Fig 1. 

A. The spike trains of 2 neurons are aligned 

for the subsequent trials of the same event 

type (EV, show here for fixations) 

B. Sliding window analysis is performed 

between 2 neurons across a number of 

trials. 

C. Empirical number of synchronous spikes is 

determined by counting the number of 

times that both neurons have a spike in the 

same bin.  

D. To account for temporal jitter, one spike 

train is moved against the other in units of 

bin size up to ± the maximal jitter time. For 

each shift the empirical number of spikes is 

counted. The total empirical number of 

spikes for the window is then given as the 

sum of synchronous spikes across all shifts 

Figure modified from MALDONADO ET AL. 2008 

F 
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RESULTS 

 

 

The results (Fig 2.) clearly show a substantial increase in synchronous firing (unitary events) during image 

fixations, beginning at ≅ 30ms after onset and peaking at ≅ 50ms. The peak in synchronous firing occurs 

well before the rise in mean firing rate which does not start until ≅ 60ms after onset and peaks at ≅ 90ms. It 

is also important to note that there is no significant increase in the unitary event rate during saccades, cue 

fixations or fixations on blank images. These results strongly suggest that an active synchronisation of spike 

timings takes place shortly after fixation begins, supporting the theorem that a temperal code is employed in 

early visual processing of natural images.  

CRITICISMS AND CONTROLS 

It has been suggested by some critics that the increase in unitary events found during image fixation is a 

by-product of the rise in firing rate. The first point to make in response to this claim is that it is clear from the 

results (Fig 2.) that the rise and peak of the unitary event rate occurs well before any increase in mean firing 

rate takes place. This issue was further examined using two analytical approaches to show that the 

increase in unitary events is not correlated with an increased firing rate.  

The first approach was to apply dithering to the recorded spike trains. The exact timing of a spike is 

removed by ‘dithering’ the spike within a dithering window whilst keeping the firing rate profile of the spike 

train approximately the same. That is, when dithering for ±5ms, all spikes in the spike train are moved to a 

random new time point within ±5ms from their original location. After dithering was applied, the data was re-

analysed using the same procedure as the initial experiment. As dithering was increased from ±0ms to 

±50ms, the unitary event rate shown after re-analysis rapidly decayed (≅25% at ±5ms, 50% at ±10ms) to a 

point where there was no noticeable increase in the UE rate at ±40ms. These results indicate that the 

increase in UE rate observed in the experimental results is independent of, and unrelated to, the observed 

increase in mean firing rate, thus suggesting that the increase in UE’s is a result of an active 

synchronisation process. 

To further substantiate this point, a second type of analysis using simulated datasets was performed. Two 

datasets containing spike trains for 100 neuron pairs with 100 trials per pair were generated based on the 

firing rate profile of the recorded experimental data. Into one of these data sets, a number of coincidences 

were manually injected without changing the overall firing rate of the spike train. The 2 datasets were then 

re-analysed using the same method as the initial experiment. The resulting analysis showed no significant 

  

Fig 2. Results 

The results show a significant increase 

in Unitary Events shortly after fixation 

onset for images. This suggests that 

V1 employs a temporal code as part of 

early scene analysis. 

Figure from MALDONADO ET AL. 2008 
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change in the UE rate during fixation for the data set with no injected synchronous spikes, whilst the dataset 

containing injected synchrony displayed a peak UE rate almost identical to that of the original experiment. 

These results further support the notion that the increase in UE rate seen shortly after onset of image 

fixation is the result of an active synchronisation process and independent of the later increase in firing rate. 

CONCLUSIONS AND FURTHER DISCUSSION 

A side-effect of the spike sorting approach used in this experiment to identify single-units is that it is likely to 

have underestimated both the mean firing rate and UE rate. When cells being recorded by the same tetrode 

fire at exactly the same time, the superposition of the resulting spikes mean that the correct unit source 

cannot be identified and the spike must be disregarded. As a result, it is possible to have underestimated 

the incidence of synchronous firing by ≳ 20% (MALDONADO ET AL. 2008). 

 

In conclusion, the experimental results have shown that there is a definite and significant increase in 

synchronous spiking shortly after the onset of fixation when viewing a natural image. The increased 

synchrony is then followed by a significant increase in mean firing rate. This response pattern is unique to 

image fixation and is not evident during saccades, cue fixations or fixations on blank images. These results 

support the initial hypothesis by showing indications of an active synchronisation of spike timings. It is 

therefore likely that information coding during V1 scene analysis of natural images is initially handled 

primarily through a temporal code, with rate coding following a short time later. 
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The human visual system is able to characterize images in a tremendously short time period ranging 

from 100-150ms. To elucidate how this short period is sufficient to process 3D images in higher cortical 

visual neurons Thorpe and colleagues (Thorpe et al., 2001) compared different coding strategies that 

could underlie this mechanism and that can be implemented in computer algorithm for visual processing 

like face tracking.  

At first to reveal these short time periods Thorpe and colleagues (Thorpe et al., 1996) analyzed test 

persons that had to distinguish images showing animals from images with natural scenes. In this so 

called go/no-go characterization task they showed that a precise (94% in average) decision-making of the 

probands on ‘go’ trials (i.e. animal) was achieved after 445ms, meaning the test person pressed the right 

button 445ms after stimulus onset. But to crystallize the visual decoding process from decision making 

and motor control they recorded evoked potentials extracellularly from the head of the test persons 

(EEG). Already 100-150ms after the stimulus emerged on a small computer screen event-related 

potentials could be measured.  Also in other go/no-go characterization tasks such as distinguishing faces 

from natural scenes higher cortical neurons in the human visual system were recorded and showed 

event-related potentials again 100-150ms after stimulus onset (Antal et al., 2000; Thorpe et al., 1983). 

This so called Ultra-Rapid Visual Characterization (URVC) has certain distinct features: 1. URVC works 

colorblind, i.e. monochromatic images are processed very efficiently (Delorme et al., 2000), 2. there is no 

difference in the characterization task whether the images are familiar or totally novel, indicating that 

contextual information is largely unnecessary(Fabre-Thorpe et al., 2001), 3. it is unaffected by 

biologically relevant images (VanRullen and Thorpe, 2001) and finally, it does not require direct fixation 

on the object, since it works well in parafovea vision (Fabre-Thorpe et al., 1998). 

After Thorpe and colleagues (1996) defined the URVC in humans they were interested how the visual 

system is able to convey neuronal excitation in less than 150ms from the photoreceptors of the retina to 

the higher cortical areas that are LGN, V1, V2, V4 and finally to the infero-temporal cortex that is 

responsible for identifying objects (Mishkin et al., 1983); especially considering that this certain 

anatomical pathway needs at least 10 synaptic stages (Thorpe & Imbert 1989) (Thorpe and Imbert, 

1989). Taking the overall time of 100-150ms and the ten stages in mind it results in remaining 10ms to 

encode stimulus information (Gautrais and Thorpe, 1998). 

First of all Poisson-like rate codes that are typically used to analyze neuronal processes were 

considered as approximations to neuronal decoding and whether it might be sufficient in URVC tasks 

processing (Gautrais and Thorpe, 1998), although a Poisson process is just a simplification and even 



ignores known intrinsic neuronal properties e.g. refraction time (Thorpe et al., 2001). The firing rite that 

underlies the assumed time period of ten ms that remains for each neuronal level, with a confidence 

interval of 90%, lies at 5-472 Hz(Gautrais and Thorpe, 1998). To increase this obviously insufficient 

knowledge about the firing rate there remain two possibilities namely increasing the processing time of 

each neuron, which apparently does not work, or to increase the amount of neurons per level. Following 

on from this, to obtain a precision of up to 100±10Hz firing rate one would require 281 neurons. Taking 

into account the optical nerve only resembles 1Mio neurons and is subdivided in neurons that code e.g. 

for on- or off- responses, the retina would convey the information of an image to higher brain regions 

with just 30 x 30 points resolution. Obviously rate coding does not seem to be convenient to be the 

underlying mechanism for rapid visual processing. Therefore alternative coding schemas were 

considered likely to be responsible for URVC. 

One option would be to just count the number of neurons that have spiked during a particular time 

window. According to the example shown in Fig. 1 nine out of ten neurons fired during a ten ms interval 

or 90 spikes per s. With such a coding scheme the maximum amount of information that can be 

transmitted during 10ms would be equal to log2 (N + 1) bits, where N is the number of neurons, since 

there are only N + 1 possible states of the system. The upper limit of the system by using ten neurons 

would be 3.46 bits (Thorpe et al., 2001).  

 

 

 Fig. 1: Comparison between three coding schemes 

 that can  operate in a short time period, here 

 10ms.  The 10 Neurons  A-J spike with different  times. By 

 using a count code, corresponding to a  population rate 

 code, there are only 10+1 states of  the system. If the 

 latency of each spike can be  determined with ms 

 precision, there are 10
10 

possible  states. Finally, 

 with rank code, there are 10! possible  states. (adapted 

 from Thorpe et al. 2001) 

 

 

Another more efficient possibility to encode ten neurons during a 10ms time window would be a bit-

like counting of neuronal responses. Each neuron that has spiked would get a count 1, each that does 

not gets a 0. By using the example introduced in Fig. 1 i.e. 1111111101, that would be one of 1024 

possibilities.  The maximum amount of information with N neurons would be log2 (2
N) = 10 bits. The 

increase in information compared to the rate is compensated by considering that the binary code is 

strongly time dependent. 

The most precise decoding algorithm would be to determine the precise timing of the spike, or 

latency respectively. Therefore the decoding scheme is restricted to the resolution in time, the higher 

the temporal resolution gets the higher the amount of information becomes. Regarding the example and 

applying a temporal resolution of 1ms one would get a maximum amount of information in t ms of 

N * log2 (t) bits = 33 bits. This powerful encoding mechanism has the disadvantage of high energy 

consumption to implement such a precise neuronal architecture.  

A less powerful but compared to the timing code less energy consuming coding mechanism would be 

to analyze the order of incoming spikes. Regarding the example in Fig. 1 the first spike that comes from 



neuron ‘C’ would get the order of 1 the second neuron, neuron ‘B’, would get the order of 2 and so on. 

The output order of the example then would be C>B>D>A>E>F>G>J>H>I. Rank order coding would 

implement a maximum amount of information of 10! that would be 3.6Mio possibilities with 10 neurons. 

The transmitting rate would be Log2 (N!) bits of information, regarding the experiment which would be 

20 bits. 

A final conceivable coding scheme resembles the synchrony coding. Therefore groups of neurons that 

are timely linked together are handled in groups. In respect to the grouping size, the amount of 

information increases. If there were three different timely linked spiking groups they could transmit 410 

patterns. The maximal amount of information would be Log2 (4
10) bits that equals 20 bit. 

In Summary the best coding mechanism seems to be the rank order coding because compared to the 

other schemes it is less complex but still in a high range of information transmission. 

 

But not only the transmission and decoding of information from the retina to higher cortical 

processing stages should be taken into account if analyzing rapid visual processing. Also the input site of 

the retina should be discussed. The authors (Thorpe et al., 2001) argue stimulus processing is most 

suitable if considering the correlation of stimulus intensity and latency. That means strong stimuli will 

generate high EPSPs in the retinal ganglion cells and consequently generate spikes earlier whereas low 

intensity stimuli will generate weaker EPSPs and spike generation will be delayed, respectively.  

Regarding the integrate and fire properties of retinal ganglion cells, in response to a flashed stimulus, 

the neuron will tend to fire in an order that reflects the spatial characteristics of the image. Thus, the 

order of firing in the optic nerve could be used to encode the image. The rank order coding scheme 

therefore resembles a highly sufficient way to decode the stimulus intensity. This can even be  

implemented in computer software like SpikeNet (VanRullen et al., 1998), giving each neuron a 

weighting regarding its order, i.e. those cells that fire first are given a high weighting, whereas those that 

fire later are given less and less importance. For instance already after 1-2% of all cells have fired an 

almost finely structured image can be resolved (Thorpe et al., 2001; VanRullen et al., 1998).  

 

 Fig. 2: A simple circuit showing shunting inhibition for rank 

 order coding. A pyramidal neuron (triangle cell) receives 

 excitatory input from the afferents unit through synapses 

 with variable weights regarding their intensity they code 

 for. Neuron “I” gets excitatory input from the same units 

 but with equal weight. This inhibitory cell generates 

 shunting inhibition that progressively  desentizises the 

 pyramidal cell as more and more the input fires. First inputs 

 are effective while later ones are attenuated.

 (Guyonneau et al., 2004) 

 

 

A more biologically relevant example for implementing the rank order algorithm resembles a feed-

forward network with shunting inhibition seen in Fig. 2 (Gautrais and Thorpe, 1998; Guyonneau et al., 

2004). In this model the output neuron that resembles the next processing stage in the visual cortex gets 

rank order input of neurons weighted regarding their stimulus input. Also the input neurons excite a 

local interneuron with equal weight. This inhibitory neuron provides shunting inhibition. As a result 



leading spikes will be transmitted to the next neuronal stage without attenuation whereas the other are 

attenuated regarding their rank order. This model has been even been tested in the visual system 

(Callaway, 1998; Delorme, 2003).  Regarding the rank order coding together with this model it is a 

powerful schematic to decode rapid visual stimuli and it even is able to implement learning models 

(Guyonneau et al., 2004) for example, introducing synaptic plasticity or certain thresholds in the target 

cells at the next processing stages. Therefore based on this rank order shunting inhibition model face 

recognition algorithm applied in software is working sufficiently well (Delorme and Thorpe, 2001). 

These analyzed underlying mechanism of rank order coding and shunting inhibition seem to be a 

powerful model for rapid visual processing. 
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The capacity of the brain to process information is limited by the number of neurons in the 
corresponding neuropil. If a neuron is able to carry more than one signal simultaneously, it 
would increase the total information processing potential of the neuropil. So far, the data 
indicates that this could be realized by two parameters: first the spike count and second the 
precise times of spikes relative to stimulus onset (response latency) (Oram et al. 2002).  
The present research of Wesson et al. is addressing the question what parameters of activity 
are important for shaping the perception of unlearned odours in rats. To do so they combined 
a behavioural measure of odour perception with the optical imaging of olfactory receptor 
neurons (ORN) input onto the olfactory bulb (OB) of rats (Figure 1).    

 
Figure 1: Schematic of the head-fixed behavioural apparatus. Shown is a rat in an acrylic chamber 
with its head bolt (pink) clamped to a steel tab. In front of the animal are a lick spout and odour tube, 
and above the olfactory bulb window (green) is the objective. Sniffing is measured via an intranasal 
cannula (pink) communicating with a pressure sensor. This setup is enclosed in a black box with a fan 
for odorant removal (Verhagen 2007, Supplementary Fig.1). 
 
They analysed the timing of an ethologically natural odour discrimination behaviour: the 
exploratory sniffing to a novel odorant. This allows the authors to measure the time course 
with which rats can perform odour discrimination. They confirm previous findings that rats 
can identify an odour as novel rapidly (< 200ms) after the first inhalation (Behavioural 
response in Figure 2). Concurrently to the behavioural performance Wesson and his 
colleagues were measuring the ORN input to the dorsal OB via Ca2+ -imaging. These data 
show that the receptor input arrives at the OB 100 -150ms after the first inhalation (tonset in 

Figure 2). They likewise show that the maximal signal amplitude of the whole neuropil is 
reached after the behavioural response occurs (t90 in Figure 2).       



 
Figure 2:Schematic summarizing the dynamics of neural activity and behavioural responses after the 
first inhalation of a novel odorant: tonset, time to the earliest arrival of receptor input at the olfactory 
bulb; t90, time to 90% signal amplitude for the optical signal in all glomeruli; behavioural response, time 
to the next inhalation for novel-odorant trials. Solid bars are representations of the probability of 
occurrence for each parameter. Darker colour indicates increased probability. The median is indicated 
by the white line in the centre of each bar (present Publication, Wesson et al. 2008).  
 
These time course leaves as few as 50-100ms for central processing and response initiation. 
On the basis of these results the authors discuss different existing models of odour identity 
encoding. They argue that there results suggest, that the encoding by activity maps focused 
on the peak or time-integrated activity, may be unreliable representatives of the patterns of 
neural activity occurring at the time of odour discrimination. Beyond they state that the little 
span left for central processing sharply limits the role that coding strategies based on 
changes in firing rate can play in odour discrimination. In contrast Wessons results support 
models in which the relative timing of activation of glomeruli (e.g. sequence) or only the 
earliest-activated glomeruli encodes the odour identity.   
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1 Introduction

The text at hand presents a paper by medicine grad student Steven M. Chase and professor Eric D. Young,
originally a biomedical engineer, both at Johns Hopkins University, Baltimore, entitled "Spike-Timing Codes
Enhance the Representation of Multiple Simultaneous Sound-Localization Cues in the Inferior Colliculus" [2].

They consider the question how multiple stimulus features are represented in individual neurons using the
example of auditory localisation by loudness cues (ILD), temporal cues (ITD), spectral cues (SN="spectral
notch"). They analyse a brain structure in the auditory pathway, where these three cues converge: the
central nucleus of the inferior colliculus (ICC). The study considers the coding of these cues by both spike
rate and spike timing in individual neurons as well as interactions/independence of these representa-
tions.

2 Concepts and Theoretical Methods

Chase and Young use a recent spike distance metric (SDM) [5] to estimate the mutual information between
the temporal structure of spike trains and particular sound features.

Spike Distance Metric

The similarity of or distance between spike trains in the SDM framework is measured as the number of
three elementary steps to generate one spike train from another: addition and elimination, as well as
temporal shifting of individual spikes.

A single trade-off parameter q determines the relative cost of shifting vs. elimination&addition of a spike:
spikes at a distance below 2/q are shifted into alignment, while higher delays result in spike removal and
introduction of a new spike.

At q = 0, when shifting spikes has no costs, SDM equals a rate code since costs only arise from a different
total number of spikes. At the other extreme end, at high q’s, shifting spikes is very costly – the distance
metric acts as a coincidence detector, for spikes that don’t exactly coincide, are not associated.

Note that the absolute temporal alignment of spike trains is critical with this measure: the exact same spike
train, shifted only for a fraction of a microsecond may result in higher costs than missing or additional
spikes. If spike train alignment within fractions of milliseconds is not guaranteed, this may be considered a
weak point of the distance metric. In this study, spike trains are aligned according to stimulus onset.
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the actual stimulus. That is, the spike train i is estimated to have come
from stimulus j when j satisfies

!d"i, j#$ ! !d"i, k#$ " k # j. (1)

After repeating this process for every spike train, a confusion matrix N is
created where N(i,j) represents the number of times a spike train from

stimulus i is classified as being closest to spike trains from stimulus j (Fig.
1C). The confusion matrix, when normalized by the total number of
stimulus presentations, defines the joint stimulus/response probability
on which MI (defined below) is calculated. As a stimulus estimation
technique, the SDM allows the computation of a lower bound on the MI
between stimuli and responses in a way analogous to other decoding
techniques (Kjaer et al., 1994; Rolls et al., 1997; Furukawa and Middle-
brooks, 2002).

Because the distance metric is a function of q, the MI calculated with
this method is also a function of q. In addition to the q % 0 case, q was set
to range from 10 to 15,850 s &1 (100 – 0.063 ms), sampled logarithmically
at 5 costs per decade. These costs were found empirically to cover the
relevant range of timing resolutions of the ICC neurons studied.

Spike trains beginning at stimulus onset and extending 20 ms past
stimulus offset were used in this analysis. However, when comparing MI
results across neurons with different BFs, the analysis window was trun-
cated at 200 ms to eliminate differences in stimulus length.

Mutual information. Responses were analyzed by computing the MI
between stimulus and response. The response was defined either as the
discharge rate or as the result of the SDM calculation. The stimulus could
either be the full 25 stimulus set containing variation of two stimulus
parameters or a reduced set in which the variation of one stimulus pa-
rameter was ignored so that a five stimulus set was defined by combining
the stimuli across the other parameter.

The MI between the response of a neuron, R, and the stimulus, S, is
defined as follows (Cover and Thomas, 1991):

MI"S; R# $ !
s!S

!
r!R

p"s, r#log2" p"s, r#

p"s#p"r##. (2)

When the response is discharge rate, the MI is computed directly from
empirical distributions of spike counts; that is, p(s,r) is the probability of
getting a certain spike count r for a stimulus s. This method, including the
debiasing methods, has been fully explained previously (Chase and
Young, 2005).

For the SDM method, MI was calculated from the confusion matrix
described above, in which s is the actual stimulus presented and r is the
estimated stimulus from the cluster analysis. The probabilities were cal-
culated from the counts in the confusion matrix, such that p(s,r) is the
ratio of the counts in a particular bin to the total count summed over the
whole matrix, and p(s) and p(r) are the ratios of the marginal counts to
the total count. The MI for the full stimulus set (25 stimuli) was com-
puted from the full confusion matrix. The MIs for the two independently
varying cues were computed by combining the rows in the confusion
matrix having the same value of the parameter of interest.

For notational convenience, the information between the response
and the full stimulus set, MI(S;R), will be referred to as MIFULL, and the
information between the response and an individual localization cue (X
or Y ) will be referred to as MIX or MIY. Mutual information calculated
from discharge rate is called rMI. The full information can be broken
down into the contributions from each localization cue as follows:

MIFULL $ MIX % MIY % MI"X; Y$R#. (3)

A derivation of this equation is provided by Chase and Young (2005).
Essentially, this equation emphasizes that the MI between the response
and the full stimulus set is always greater than or equal to the sum of the
MIs about each of the individual cues, because the last term cannot be
negative. MI(X;Y$R) is also known as the confounded information (Reich
et al., 2001) and is related to the (lack of) independence in the neural
response. For example, when the spike count in response to parameter X
depends on the value of parameter Y, the confounded information in the
spike-rate code will be non-zero. More importantly, non-zero con-
founded information means that the cues cannot be decoded
independently.

For this study, the maximum value of MIFULL is determined by the
number of stimuli in the set. Because each of the stimulus sets in this
study consists of 25 stimuli presented with equal probability, MIFULL &

Figure 1. MI calculation using the spike distance metric. A, Spike distance calculation exam-
ples. Left, To turn the top spike train into the bottom spike train, three spikes must be deleted.
Right, To turn the top spike train into the bottom spike train, one spike must be deleted and two
spikes shifted. This is the minimum-cost solution for all cost parameters q such that q'i ' 2 @
i. When this condition is not met, the spike is deleted from its position in the top train and added
to the corresponding spot in the bottom train, adding a distance of 2. B, Stimulus clustering with
the SDM method. Each dot represents a spike train whose color denotes the stimulus played
when the train was recorded. For each train, the average distance !d(i,j)$ to each group of spike
trains is calculated. The spike train is estimated to have come from the stimulus group to which
the average distance is smallest. C, A confusion matrix counts the number of spike trains as-
signed to each stimulus class. When normalized by the total number of spike trains, this is the
joint stimulus response matrix used to calculate the MI.
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Figure 1: Characterisation of spike trains according to the SDM distance: Left Each dot represents a
spike train, the lines spike train distances, colour depicts different stimuli. Right The corresponding
confusion matrix describes stimulus specificity of the spike trains, P (act) and P (est) represent the marginal
probabilities.

Mutual Information

As the name implies, mutual information (MI) measures the mutual dependance of two random variables,
"how much knowing one of these variables reduces our uncertainty about the other" [wikipedia].

The definition of MI [3]

MI(x; y) =
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)

results in a measure ranging from 0 for independent variables [p(x, y) = p(x)p(y) -> MI(x; y) = 0, "one vari-
able doesn’t provide any information about the other"] to the entropy H (the measure of uncertainty of one
variable) in case of "super-dependent" variables [x=y -> p(x,y)=p(x)=p(y) -> MI(x; y) = −

∑
x p(x) log p(x) =

H(x), "one variable tells everything there is to know about the other"].

Chase and Young first calculate MI between spike trains and stimuli assuming a rate code: p(x,y) is then
simply the probability of getting a rate count x given stimulus y, p(x) the probability of getting rate count x
disregarding the stimulus, and p(y) the probability (or relative frequency) of stimulus presentation y.

Confusion Matrix

Using SDM, the specificity of spike trains to particular stimuli is calculated. Therefor, spike trains are
recorded during the presentation of different stimuli. Thus, each spike train has an actual stimulus, it was
elicited by.

Inversely, given the spike train, one can estimate what the corresponding stimulus was: For each spike train
i the average distance to all spike trains elicited by the stimulus j is calculated (< d(i, j) > according to
SDM). The spike train is then estimated to result from that stimulus that generated on average the nearest
spike trains, as sketched in figure 1 (left).

Hence, as similar stimuli commonly result in similar spike trains, most spike trains will finally have the
same actual and estimated stimulus, but a few will be assigned to a different stimulus. Actual and estimated
stimulus will be "confused", e.g. the two upper left yellow spike trains in figure 1 will be assigned to the
red stimulus. The results are expressed in a confusion matrix as depicted in figure 1 (right). The larger
the values on the matrix diagonal, the more specificly are spike trains associated with their eliciting
stimulus.

Integrating Confusion Matrix and Mutual Information

Young and Chase finally employed the matrix to calculate MI between stimuli and spike trains assuming a
temporal spike code: With s the actual and r the estimated stimulus, MI(s, r) is calculated using the entries
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p(s, r) and marginals p(r), p(s) of the confusion matrix. Notice that the SDM and thus the confusion
matrix as well as MI are all a function of the SDM cost variable q!

There are three assumptions in this method: 1) Information is carried by the absolute timing of spikes
with whatever temporal reference one chooses. 2) Every spike carries (more or less) the same amount
of information, since all receive equal weight in SDM. 3) Information is carried in the spiking pattern of
single neurons. These assumptions may or may not hold for information processing in the brain.

3 Experiments and Results
During the electrophysiological experiment, artificially generated sounds, that vary in two of the above
mentioned localisation cues, are presented to decerebrated adult cat. Single neurons are recorded in ICC,
the stimulus length ranges between 200-400 ms. First, the stimuli are generated as frozen noise, i.e. the
exact same noise sample (with different localisation cues) is repeatedly presented in all trials.

The paper presents the results for different combinations of the localisation stimulus features: ITD, ILD and
SN. Assuming either a rate code or a temporal code, the MI between individual and combined cues and
the spike trains are then estimated. Second, the study addresses the question whether different stimulus
features are independently represented. Here, the results will be discussed for one example depicted in
figure 2 with stimuli varying in both ILD and ITD cues.

Rate code MI

The surface plot in A shows the spike rate dependence from both cues. The surface is relatively flat, thus
spike rate alone does not provide much information about the stimulus, only 0.3 bits. However, using the
SDM metric, up to 1.6 bits of mutual information with both localisation cues (plot C) can be extracted,
depending on the cost parameter q. Note that, for q = 0, the SDM degenerates to a rate code-distance and,
indeed, MI reaches the same value (0.3 bits) as for the rate code analysis above.

Temporal Code MI

The mutual information of spike train and the individual stimulus cues (plots D, E) is generally smaller then
for both features combined (which is a theoretical fact, as Chase and Young prove in an earlier paper [1]).
Specifically, there is very little mutual information between the ITD cue and the spikes. This corresponds
well with the observations in the raw spike trains presented in figure 2B: a consistent activation of the
first and a continuous shift of the following spike burst for increasing ILD values, while there are no such
obvious differences, for different ITDs. Even with SDM, not much spike train information about ITD can
be extracted.

The study also presents neurons, where spike timing does not add much to the information provided by
spike rate. In general, neurons show a behaviour between these extremes, while specific neuron types
receive higher gains than others. In all cases, ITD cues are poorly reconstructed from temporal spike
information just as in the example in figure 2E. Consequently, the authors suggest that ITD is carried in a
rate code at the level of the ICC. On the other hand, ILD and particularly spectral cues are significantly
better represented in temporal than in rate codes in many neurons.

Temporal precision of spike trains

Considering the value of q that produces the peak MI and given that q determines the delay between
spikes when they are aligned or replaced, the authors estimate the temporal precision of the spike code:
For all measured neurons the median value (ignoring q = 0 values) is about 80/s, which corresponds to
roughly 12 ms in temporal resolution. This only shows that the combination of MI and SDM is best at
extracting information at this temporal scale. That is not a proof, though, that the neural system operates
at this time resolution.

Frozen vs. Random noise

These results should also not mislead the reader into thinking that information about the specific localisa-
tion cues in the stimuli is actively encoded in complicated firing patterns. Remember that, so far, all data
resulted from frozen noise stimuli, thus not only the localisation cues are constant for different presentation
epochs, but the entire sound pattern of the stimulus.
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log2(25) ! 4.6 bits. Similarly, MIX is bound from above by log2(5) ! 2.3
bits.

Estimates of MI based on finite datasets are subject to bias (Treves and
Panzeri, 1995; Panzeri and Treves 1996; Paninski, 2003). For both the
rate and SDM methods, MI estimates were bias corrected with a boot-
strap procedure (Efron and Tibshirani, 1998). In the rate case, 500 boot-
strap datasets for each stimulus were derived by randomly drawing (with
replacement) M spike counts from the recorded set of spike counts for
that stimulus, where M is the number of stimulus repetitions. For the
SDM case, 500 bootstrap confusion matrices were generated by ran-
domly drawing (with replacement) from the counts of the confusion
matrix. That is, each row of the bootstrapped confusion matrix was gen-
erated by selecting counts from the corresponding row of the original
matrix, keeping the total count in each row fixed. In simulations, this
procedure was found to converge to the true MI value faster than other
debiasing methods, such as randomly reassigning stimuli and responses
(data not shown). Data from neurons for which fewer than 20 repetitions
of each stimulus were gathered were not included in this analysis. Be-
cause of the high number of stimulus repetitions typically achieved (me-
dian of 70 repetitions), the estimated bias for MIFULL was quite low (rate,
median of 0.11 bits; SDM peak, median of 0.08 bits). All values of MI
presented in this paper are bias corrected.

Results
Figure 2 shows an example of a neuron studied with the ITD/ILD
stimulus set presented at a high sound level. As often happens at

high levels, the rate response is saturated (Fig. 2A), so the rate
information about the full stimulus set (rMIFULL) is only 0.3 bits.
Although there is little consistent change in the spike count
among stimuli, a close-up view of the spike rasters (Fig. 2B)
shows considerable variation in individual spike times with ILD.
In particular, whereas the first burst is either on or off depending
on the ILD, the second, third, and fourth bursts are progressively
delayed with increases in ILD. Figure 2C shows the results of the
SDM analysis on these spike trains. For a spike-shift cost of 1000
s!1, 1.6 bits of information is recovered about the stimulus iden-
tity. This maximum is called MIpeak, and the cost at which it
occurs is called the peak cost. The cost " 0 case, which represents
a rate code, is called MI0. Finally, the largest cost at which the MI
decays to half of its peak value is known as the cutoff cost, which
is #4000 s!1 for the neuron in Figure 2C. The MIs to the indi-
vidual location cues are shown in Figure 2, D and E. As expected
from the raster plot, most of the information in MIFULL is about
ILD.

Figure 3 shows another example; in this case, there is little
extra information available in spike timing that is not available in
rate. The rate surface of Figure 3A shows considerable variation
in response to both stimulus parameters, and indeed rMIFULL is
quite high at 2.3 bits. The MI(cost) curve from the SDM analysis
shows a nearly low-pass behavior (Fig. 3C), with only a small peak
that would indicate extra information available in spike timing.
Note that this is not because this neuron does not exhibit stimu-
lus locking, as shown in the raster plot (Fig. 3B). Rather, the
variation in spike timing across stimuli is not significant com-
pared with the rate differences.

The results in Figures 2 and 3 exemplify the range of behavior
shown by the population; typically, responses lie between these
two extremes. The information carried in spike patterns about
the full stimulus set, as assessed with the SDM method, is shown
as a function of BF in Figure 4A for all neurons in this study. To
assess possible differences across groups, we used an ANOVA
calculation with a significance criterion of p " 0.05 corrected for
multiple comparisons. Frequency was divided into three equally
populated groups (low, middle, and high) to assess the effects of
BF as an independent variable. There are no differences in the

Figure 2. Responses of one neuron to the ITD/ILD stimulus set. A, Surface plot of the mean
spike rate as a function of ITD and ILD. The rMI is shown above the plot, with the bias value in
parentheses. (The surface was smoothed with cubic-spline interpolation.) B, Spike rasters to all
25 stimuli showing the first six spike bursts. Thick black lines divide different ITD parameters,
shown at right; thin black lines divide different ILD parameters, shown at left. A total of 110
repetitions of each stimulus were collected. C, MI measured with the SDM method as a function
of the spike-shift cost parameter for the full stimulus set. Note that 0 cost has been put at the 1
s !1 position. D, MIILD versus cost. E, MIITD versus cost.

Figure 3. Another example of information extraction with the SDM method. The format is as
in Figure 2, with the exception that the three MI(cost) curves have been condensed to a single
plot.
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Figure 2: A spike rate as a function of ILD and ITD localisation cue and extracted mutual information
between spike rate and both cues, B raw spike trains aligned to stimulus onset for different ITD/ILD
combinations, C MI between both stimulus cues and SDM (temporal spike code) as a function of the cost
parameter q, D&E MI between SDM and the individual localisation features as function of q
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To address this issue, the authors introduce a different condition: the noise stimuli were varied by ran-
domizing fourier phases (but not amplitudes), thus randomising temporal (but not spectral) structure, the
localisation cues are not altered by this manipulation. While the randomisation results in very little dif-
ference in the average rate response, the stable temporal structure of the spike trains across different
presentations (as observed in figure 2B) is completely broken, apart from first spike latencies.

It is obvious, that the neurons responded to specific temporal events in the stimuli in the frozen noise
condition. Thus, the gain of information about the localisation features by considering spike timing
is mainly attributable to the differences in temporal waveforms. After removal of temporal waveform
information, the SDM method fails to extract localisation features from the spikes.

Independent representation of stimulus information

Finally, by introducing the notion of confounded information, the authors consider the interaction of
different cues in the spike trains. Confounded information is defined as the difference between the MI
for all cues combined and the MI for each individual cue MIconf = MIfull −MIcue1 −MIcue2. It was
shown [4; 1], that if MIconf = 0, all stimulus cues can be decoded independently from the spike train.

As expected, with a uni-dimensional rate code, multi-dimensional cues do show a confounded representa-
tion in the spike train. Adding spike timing information, multiple cues can however be represented (and
decoded) more independently. The authors find that for for q = 50/s and above, MIconf vanishes, thus SN
and ILD cues are coded independently, at larger q’s information about both cues decreases gradually.

4 Conclusions

The present study demonstrates, how temporal codes are able to transmit independent and more infor-
mative stimulus data as compared to rate codes. The random noise results suggest, that differences in the
temporal spike train representation of stimulus features is mainly attributable to temporal changes in the
stimuli, not to active encoding of stimulus information by neural processing. It remains unclear, whether
neurons indeed use timing information independent of the temporal structure of the stimuli, to transmit
stimulus features.

The authors acknowledge, that the SDM method is largely insensitive to first spike latencies, although
they may contain more critical information. The reason is, that all spikes are weighted equally. The case,
where some spikes may be more informative than others, is ignored in the present metric.

Finally, the employed methods are limited to absolute spike timing/coincidence and rate code, but e.g.
not to the relative position of spikes, or spiking patterns of multiple neurons. The authors consider their
results mainly as a lower bound on information available in single spike trains. Whether the neural system
relies on the same (temporal and rate) cues, that were considered in this study, remains open.
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