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Introduction

FIGURE 33.2 Cortical motor areas. Diagrams of a macaque brain show how the motor cortex of the
frontal lobe has been parceled in various cytoarchitectonic studies over the past century. Modified from
Matelli ¢f al.* (A) Brodmann, 1903; (B) Vogt and Vogt, 1919; (C) Von Bonin and Bailey, 1947; (D) Barbas and
Pandya, 1987; (E) Matteli ef al., 1991; (F) general abbreviations.
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Cortical areas are defined as motor, if
1. they project to other motor structure
2. their ablation causes deficits in movement

3. their stimulation causes movement

Separation and further subdevision by means of
1. cytoarchitectonics
2. myeloarchitectonics

3. neurotransmitter receptor ditribution
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FIGURE 33.3 Connections of the cortical motor areas. Most corti-

e M1 neurons have somatosensory receptive fields (pos-
sibly via S1) related to that neuron’s output function

e S1—-M1 may be involved in long loop responses

e PMv neurons have large somatosensory and visual re-
ceptive fields which are related

cocortical connections are reciprocal. Thin lines to the spinal cord
from PMvc, PMdc, SMA, and CGe indicate that corticospinal projec-
tions from these areas are not as strong as that from M1.

Generic Generic
description abbreviation
| Primary motor cortex M1
Premotor cortex, PMdc
dorsal caudal
Supplementary motor SMA
area-proper
Premotor cortex, PMve
ventral, caudal
Premotor cortex, PMvr
ventral, rostral
Pre-SMA Pre-5MA
Premotor cortex, PMdr
dorsal, rostral
Cingulate motor area, Cle
caudal
Cingulate motor area, CGr
rostral
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cytoarchitectonics of motor cortical layers IV and V cortico-spinal tract

A
[ ] Area 4 Cerebral cortex

— giant pyramidal cells of Betz in layer V

— almost no layer 1V neurons (agranular cortex)
e Area 6

— smaler layer V neurons o

Midbrain
— few layer IV neurons (dysgranular cortex)

e Only fibres from layer V leave cortex as a system
(i.e., other efferents connect to intracortical targets)
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Fig. 3-35: Schematic representation of the laminar organization of the cortical efferents. The
localization of the neuron bodies is shown. The predominant recipient lamina of the cortex is
Lamina IV in which the afferent thalamocortical fibers terminate. The apical dendrites extending
through lamina IV from the efferent lamina V (and lamina VI) as well as the basal dendrites of
lamina III pyramidal cells receive excitatory inputs from the thalamocortical terminals in lamina
IV as well as excitatory and inhibitory inputs from stellate cells (cf. Fig. 3-25).
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Encoding of Movement Parameters in the Motor Cortex
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Directional tuning of motor cortical cells

(a) (b)
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Directional tuning of motor cortical cells

EXERCISE 1 : Estimate Tuning Curve
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Directional tuning of motor cortical cells

Cosine tuning:

f.=b+acos (6 -0,

I movement direction
f :discharge rate
0, : preferred direction

Y%

.

How many independently cosine tuned neurons are required to
unambigiously encode movement direction in their firing rate

(noise-free case)?

Direction of movement

Georgopoulos et al. (1982) J. Neuroscience




Directional tuning of motor cortical cells

individual cells show

broad tuning with population vector:
individual preferred direction R R
(assumption: cells are independent) P=X(fi—-b)p

Georgopoulos et al. (1982) J. Neuroscience



Decoding direction and speed with population vector

Directional tuning:

fi(t) = g; + 0 - v(t)

Preferred Directions of 100 Neurons time [s]
C D
Population vector:

0(t) = Y| fi(t) — g4 B

i

Arm Trajectory Integrated Population Vector

Nawrot, Aertsen, Rotter (1999) J. Neurosci. Meth 94.



Bayesian Movement Decoding
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Movement decoding
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Experimental Task : Preparatory Paradigm

Data for EXERCISES 1 + 2
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Rickert, Riehle, Aertsen, Rotter, Nawrot (2009) J Neuroscience 29



Time-resolved directional tuning
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Time-resolved directional tuning

30|,
201"
1007

| |
3 e | |
S 200 50 ' '
104 .07 _,_‘l/\:/\ | | |
0 500 1000 0 1000
Time (ms) Time (ms)

Rickert, Riehle, Aertsen, Rotter, Nawrot (2009) J Neuroscience 29



Time-resolved directional tuning
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Bayesian Decoding (Naive Bayes Classifyer)

Question:

Is it possible to predict the animal’s behavior (e.g. direction of the
upcoming movement) from neuronal activity (e.g. instantaneous firing
rate) in the single trial, despite the high variability?

Information used by an ‘ideal observer’:

d = movement direction
r = firing rate

P(r | d) = directional tuning profile
P(d | r) = 'prediction’ of direction from rate

Bayes’ Rule:

P(d|fr)=P(fr|d)-%



Bayesian Decoding : Firing rate distributions
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Time-resolved decoding from single neurons
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Time-resolved decoding from single neurons
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Time-resolved decoding from single neurons
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Time-resolved decoding from single neurons
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Time-resolved decoding from single neurons
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Time-resolved decoding from single neurons
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Time-resolved decoding from a neuronal population
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Time-resolved decoding from a neuronal population
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Decoding of Time and Direction
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Brain — Machine — Interfacing (BMI)

Brain Machine Interfacing
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Bob Crimi

Fetz (1999) Nature Neuroscience
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Bob Crimi

1. neural interface to non-redundant sources
2. spatio - temporal scale of brain signals
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/
Bob Crimi

1. neural interface to non-redundant sources
2. spatio - temporal scale of brain signals
3. techniques for information read out
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individual paralysed group control group

Left elbow

Figure 1 Cortical and cerebellar activation associated with attempted and executed movements in a paralysed individual (left), paralysed
group (middle) and control group (right). a, b, Scaled integrals of t-test statistics (1.2 cm beneath the cortical surface); black dots indicate
the location of t-value maxima. In a (top view), blue areas of activation are emitted from the left-side panel to avoid overlap; hollow
arrows, putative hand-notches on the precentral gyri; b, mid-sagittal renderings of left-hemisphere activation resulting from attempted
flexion of right toes. Arrows, central sulcus. ¢, Activation maps (SPM{t)) in axial sections through the anterior cerebellum (21 mm inferior
to the anterior—posterior commissural line). Red, abduction-adduction of fingers on the right hand, and purple, left hand; blue, flexion of
right toes, and green, left toes; yellow, lip pursing.

Shoham (2001) Nature 413
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Decoding of instantaneous movement trajectory

Directional tuning:

fi(t) = g; + 0 - v(t)

Preferred Directions of 100 Neurons time [s]
C D
Population vector:

0(t) = Y| fi(t) — g4 B

i

Arm Trajectory Integrated Population Vector

Nawrot, Aertsen, Rotter (1999) J. Neurosci. Meth 94.
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Schwartz, Moran, Reina (2004) Science



Schwartz, Moran, Reina (2004) Science
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Decoding Population and Mass Signals
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Brain Signals at Different Scales

Single cell signals Population signals Mass signals

+ i

Wessberg et al (2000) Mehring et al. (2003) Leuthardt et al. (2004) Birbaumer et al. (1999)
Taylor et al. (2002) Rickert et al. (2005) Mehring et al. (2005)  Pfurtscheller et al. (2001)

Serruya et al. (2002) Mehring et al. (2005) Wolpaw et al. (2004)
Carmena et al. (2003)

Schwartz et al (2004)
Rickert et al (2009)
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Movement Information in Local Field Potentials (LFP)
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Figure4. (Characteristics of the LFP amplitude spectrum. Plots show averages across all electrodes and trials. @, Time-resolved
amplitude spectrum (arbitrary units). The 50 Hz noise was removed by applying a notch filter centered at 50 Hz. b, Time-resolved
amplitude spectrum as in a, each frequency bin normalized by its baseline amplitude (see Materials and Methods). ¢, Changes in
amplitude exhibited by four different frequency bands (=4, 6 —13, 16 —42, and 63—200 Hz) during the task.

Rickert et al. (2005) J Neuroscience 25



Movement Information in Local Field Potentials (LFP)
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Movement Information in Local Field Potentials (LFP)
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Movement Information in Epicortical Field Potentials (EFP)

=" Dura
L3 matar
3| “Arachnoid
| '\ - Suzarachnud
'-‘--_\ suace
" Pin mater

- Eflerem
AxaN

Photo: J Honegger, University Hospital Freiburg

Mehring et al. (2004) J Physiol Paris 98



Movement Information in Epicortical Field Potentials (EFP)
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Movement Information in Epicortical Field Potentials (EFP)

Movement Related Potential
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Mehring et al. (2004) J Physiol Paris 98
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Movement Information in Epicortical Field Potentials (EFP)

human EFP monkey LFP
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Fig. 5. Directional modulation of movement related potentials (MRPs) in single channel human EFP (a) and monkey LFP (b). The dashed lines denote
the time of movement onset and the times of movement end. All examples were recorded from the hand/arm area of the motor cortex of the precentral
gyrus. Trial-averaged potentials were calculated separately for the four movement directions from 1 s before to 1.5 s after movement onset (a), resp. from
0.5 s before to 1s after movement onset (b). Direction of movement ¢ in degrees is assigned to the left ordinate, ¢ = 0° corresponds to rightward
movement; ¢ increases counter-clockwise, i.e., 90° correspends to forward movement. White curves show the time course of the signal-to-noise ratio
(SNR, see Methods). EFP examples represent channels with high SNR from all three subjects (S1, §2, 83 from top to bottom). LFP examples represent
channels with peak SNR from the upper third of the peak SNR distribution. For a comparison of the complete distributions of the peak SNR of EFPs and

LFPs see Fig. 6.
Mehring et al (2004) J. Physiol Paris



Movement Information in Epicortical Field Potentials (EFP)

MRP
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Movement Information in Epicortical Field Potentials (EFP)
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Figure 4. ECoG correlations with joystick movement direction before and during movement for patient D. At —400 ms the target appeared,
and at 0 ms the cursor appeared and began to move controlled by the joystick. The patient’s task was to move the cursor to a target at one of
4 or 8§ locations (i.e., center-out task). (Figures (a)—(¢) are based on the 8-location data set and are calculated for the left-most and right-most
target; (d) is based on the 4-location data set.) (a) Left and center panels: time courses for left and right movements, respectively, of the
amplitudes from 0-200 Hz of the difference between two adjacent electrodes. Right panel: the absolute value of the difference between left
and right time courses. Movement direction is reflected in ECoG across a wide frequency range, including frequencies far above the EEG
frequency range. In general, amplitudes at frequencies below and above 50 Hz change in opposite directions. () The correlation between
the signal shown in (@) and movement direction over the period of movement execution. Correlation is much higher at higher frequencies
not discernible in scalp EEG. (c¢) Correlation (for a single electrode location versus the remote reference electrode) with movement direction
for the 400 ms prior to cursor movement. g rhythm activity predicts movement direction. (In (b) and (¢), — and — indicate negative
correlation and positive correlation, respectively, with the amplitude of left movement minus right movement; and dashed lines indicate the
value of r? that is significant at the 0.01 level.) () Average final cursor positions (@) predicted by a neural network from ECoG activity are
close to the actual average final cursor positions (4) (see text). (Error bars indicate the standard error of the mean.)
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