

Neuroinformatics and Theoretical Neuroscience Institute of Biology – Neurobiology Bernstein Center for Computational Neuroscience

Introduction to Computationa Neuroscience Neural Coding

Martin Nawrot

Oct 12, 2011

Teaching Week Computational Neuroscience @ Mind and Brain School

Time table

	Mon	Tue	Wed	Thu	Fri
	10 Oct.	11 Oct	12 Oct	13 Oct.	14 Oct
Course Organizer		M. Voelkle	M. Nawrot	M. Nawrot / S. Schreiber	S. Kiebel / M. Nawrot
9.15– 10.45	no lectures	The General Linear Model I (Correlation and Regression Analysis) - Correlation Analysis - Hypothesis Testing - Effect Sizes - Power Chapter 2, 3, 4.3., 4.4	Lecture Introduction to Computational Neuroscience 1: Data, Analyses, Modeling.	Lecture Modelling single neurons: The Hodkin-Huxley Model	
Break					
11.00– 12.30	no lectures	The General Linear Model II (Regression Analysis "vs." ANOVA) - Multiple Regression - ANOVA - Dummy / Effects Coding - Hierarchical <i>F</i> -Test Chapter 4,8	Lecture Introduction to Computational Neuroscience 2: Neural Coding	Exercises (Matlab) Hodkin-Huxley Model	Lecture Cognitive Neuroscience I
Break					
13.30– 15.00	no lectures	Path Analysis and "Causal" Models - Path Analysis and Path Coefficients - Direct, Indirect, Total, Zero- Order, & Spurious Effects Chapter 12	Exercises (Matlab) Rate Coding, Tuning Curves	Lecture Probabilistic modelling of spike trains: Point process theory and application (neural variability)	Lecture Cognitive Neuroscience II
Break					After last session: Multiple Choice
15.15– 16.45	no lectures	Advanced Methods (Structural Equation Models and Multilevel Models) - Structural Equation Models - Hierarchical Linear Models Chapter 12, 14	Exercises (Matlab) Bayesian decoding of movement parameters from neural spike trains.	Exercises (Matlab) Simulation of point processes / Variability of spike trains	Test, 30 questions

Exercises: Computer Pool, Room 224

Biology | Biophysics | Bioinformatics | Computational Biology Computational Neuroscience | Computer Science | Econometrics Engineering | Information Technology | Physics | Mathematics

Outline

Introduction Spatial and Temporal Scales of Brain Signals Neural Coding

Introduction

Electrophysiology Imaging Data Behavioral Experiments (Insects and Primates) Cortical Slice Recordings

Experimental Design Model Design Grant Proposals

Neuromorphic Harware Neuromorphic Robots Statistics of Animal Behavior Spike Train Statistics Machine Learning Linear Systems Analysis Dynamical Systems Analysis GLM

Point Process Theory Dynamical System Theory Machine Learning Spiking Neural Networks

Electrophysiology Imaging Data Behavioral Experiments (Insects and Primates) Cortical Slice Recordings

Experimental Design Model Design Grant Proposals

Neuromorphic Harware Neuromorphic Robots Statistics of Animal Behavior Spike Train Statistics Machine Learning Linear Systems Analysis Dynamical Systems Analysis GLM

Point Process Theory Dynamical System Theory Machine Learning Spiking Neural Networks Models in computational neuroscience ...

phenomenological model

functional model

biophysical model

abstract model

statistical model

stochastic model

mechanistic model

mathematical model

Artificial Neural Network

computational model

connectionist model

neural network model

bottom – up

BEHAVIOR and COGNITION

Spatial and Temporal Scales of Brain Signals

- Measurement techniques
- Neural output: spike train recordings

Spatial Scales

Resolution in Space and Time

(adapted from Matt Fellows)

BEHAVIOR and COGNITION

behavioral (psychophysics, language, ...)

> EEG / MEG fMRI PET NIRS

local field potentials multi-unit-activity

intracellular measurements Ca imaging

spike train recordings

bottom – up

top

down

MOLECULES

Direct vs. Indirect Measures of Neuronal Signals

electrophysiology

direct measurement of neuronal signals

intracellular recording from - single neurons / dendrites

- extracellular recording of
 - action potentials (SUA/MUA) and
 - local field potential (LFP, indirect)
- measurement of electric mass signals

electrocorticography (ECoG) - epicortical field potentials

electroencephalography (EEG)

functional magnetic resonance imaging (fMRI)

positron emission tomography (PET)

magnetoencephalography (MEG)

Teaching Week Computational Neuroscience | Mind and Brain | M Nawrot

imaging

visualization of single neuron activity

- optical imaging of intracellular Ca activity - *in vitro / in vivo* - 2D / 3D
- visualization of average activity

optical imaging with voltage sensitive dyes

Figure 1. Permanent background input *in vivo* causes dynamic fluctuations of the membrane potential and drives the neuron to spontaneous spiking activity. (A) Membrane potential recorded intracellularly in the frontal cortex of the anesthetized rat. Presynaptic inputs from several hundreds or thousand of presynaptic neurons cause depolarization of the cell to a resting potential of about -50 mV and salient fluctuations of the membrane potential. (B) The enlarged cut-out from A reveals the fine structure of the signal that results form the superposition of many single EPSPs and IPSPs and gives an impression of the time scale on which these fluctuations take place. Data by courtesy of Detlef Heck (Léger, Stern, Aertsen, & Heck, 2003).

Cortex

Valentino Braitenberg & Almut Schuz Cortex: Statistics and Geometry of Neuronal Connectivity Springer, Berlin, 1998 (Second Edition)

The Mouse Cortex

Cortex

Total volume	$2 \times 87 \mathrm{mm^3}$	
Total number of neurons	16 000 000	
Number of sensory input fibres	< 1 000 000	
Length of axonal tree	10-40 mm	
	Undersampli	ng !
	90 000 / mm ³	
Density of dendrites	0.4 km/mm ³	CARLEN AND AND AND AND AND AND AND AND AND AN
Density of synapses	700 000 000 /mm ³	
Synapses per neuron	8 000	
Probability of synaptic contact	0.1	
Relative density of axons	$10^{-5}/10^{-3}$	
Relative density of dendrites	10 ⁻³	Valentino Brait
fie	eld potential spikes	Cortex: Statisti Springer, Berli

State of the art : 100 channels in parallel (Utah Array)

Pneumatic insertion

recordings

Thomas Brochier, Alexa Riehle, CNRS, Marseille.

Positioning the array

State of the art : 100 channels in parallel (Utah Array)

Thomas Brochier, Alexa Riehle, CNRS, Marseille.

Extracellular recording: spikes

Extrazelluläre Aufnahmen im somatosensorischen Kortex der Ratte. Spontanaktivität unter Anästhesie. Data Curtsey: Clemens Boucsein und Dymphie Suchanek, Neurobiologie & Biophysik, Universität Freiburg

Extracellular recording: spikes

Extrazelluläre Aufnahmen im somatosensorischen Kortex der Ratte. Spontanaktivität unter Anästhesie. Data Curtsey: Clemens Boucsein und Dymphie Suchanek, Neurobiologie & Biophysik, Universität Freiburg

Extracellular recording: spike train

Extrazelluläre Aufnahmen im somatosensorischen Kortex der Ratte. Spontanaktivität unter Anästhesie. Data Curtsey: Clemens Boucsein und Dymphie Suchanek, Neurobiologie & Biophysik, Universität Freiburg

Extracellular recording: spike sorting

Extracellular recording: spike sorting

Estimated number of spike sorting errors :

false positive rate : 13% ~10%

[1]

false negative rate: 9% ~10%

single unit activity # single neuron activity

[2]

[1] Joshua, Elias, Levine, Bergman (2007) J Neurosci Meth doi: jneumeth.2007.03.012 [2] Pouzat, Delescluse, Viot, Diebolt (2004) J Neurophysiol 91

Neural output: spike train

binary representation (array)

' spike train '

discrete time series of events

Neural Coding I

• Rate Code vs. Temporal Code

Rate Code vs. Temporal Code

Rate Code

 concept: information encoded in neuronal firing rate

- population code permits encoding of precise information
- redundancy in large populations permits fast transmission
- neuron acts as 'Integrator'

Temporal Code

- concept: information encoded in temporally precise spike times and spike patterns across neurons
- fast information transmission through
 coincident spiking in neuronal assemblies
- encoding with few action potentials (sparse code) explores large coding space
- neuron acts as coincidence detector

Contra:

- little conclusive evidence

 single action potentials and coincident events vanish in the variable ongoing network activity Rate code: concept and stimulus tuning

- spike count *N* in tim interval *T*
- rate r = N/T

Hubel and Wiesel (1968) J Physiol 195: 215-43

Rate code: Time-varying rate estimate

Single unit activity from primary motor cortex of the monkey during repeated reaching movement Data Curtsey: Alexa Riehle, CNRS, Marseille

Rate Code vs. Temporal Code

Rate Code

 concept: information encoded in neuronal firing rate

- population code permits encoding of precise information
- redundancy in large populations permits fast transmission
- neuron acts as 'Integrator'

Contra:

- rate coding requires integration time (it is slow)
- large numbers of action potentials consume a large amount of energy
- combinatorial explosion in large coding space (grand mother cells)

Temporal Code

- concept: information encoded in temporally precise spike times and spike patterns across neurons
- fast information transmission through
 coincident spiking in neuronal assemblies
- encoding with few action potentials (sparse code) explores large coding space
- neuron acts as coincidence detector

Contra:

- little conclusive evidence
- single action potentials and coincident events vanish in the variable ongoing network activity

Rate Code vs. Temporal Code

Rate Code

 concept: information encoded in neuronal firing rate

- population code permits encoding of precise information
- redundancy in large populations permits fast transmission
- neuron acts as 'Integrator'

Contra:

- rate coding requires integration time (it is slow)
- large numbers of action potentials consume a large amount of energy
- combinatorial explosion in large coding space (grand mother cells)

Temporal Code

- concept: information encoded in temporally precise spike times and spike patterns across neurons
- fast information transmission through
 coincident spiking in neuronal assemblies
- encoding with few action potentials (sparse code) explores large coding space
- neuron acts as coincidence detector

Temporal code: experimental evidence I

Temporal code: experimental evidence I

Gollisch and Meister (2008) Science 319

Temporal code: experimental evidence II

UNIT 101-1

 $z_i(t)$

N₁=7921

Temporal code: experimental evidence III

significant coincident spiking in motor cortical units related to expectation

Coincident Events

Unitary Events

Riehle, Grün, Diesmann, Aertsen (1997) Science 278, 1950-53

Temporal code: neuron acts as coincidence detector

 coincident excitatory synaptic inputs are translated into a single spike output

Burkitt (2006) Biol. Cyber. 95

a

Kumar, Rotter, Aertsen (2010) Nat Rev Neurosci

TeachingN&webtGorometatingstra

Curtsey: Sonja Grün

Diesmann et al. (1999) Nature 402: 529-532

pulse packett:

 \mathbf{a} = number of presynaptive spikes $\mathbf{\sigma}$ = temporal dispersion of spikes

Diesmann et al. (1999) Nature 402: 529-532

network motif

synaptic transmission

dendritic integration

spike generation

Boucsein et al. (2011) Frontiers in Neuroscience 5:32

- high reliability of synaptic transmission(> 90%)
- ▶ high temporal precision across trials (jitter < 1ms)
- modest amplitude variability (CV ~ 0.25)

Nawrot et al. (2009) Frontiers in Neural Circuits 3:1

dendritic generation is temporally precise and reliable

Nawrot et al. (2009) Frontiers in Neural Circuits 3:1

spike generation is temporally precise and reliable

Fig. 1. Reliability of firing patterns of cortical neurons evoked by constant and fluctuating current. (**A**) In this example, a superthreshold dc current pulse (150 pA, 900 ms; middle) evoked trains of action potentials (approximately 14 Hz) in a regular-firing layer-5 neuron. Responses are shown superimposed (first 10 trials, top) and as a raster plot of spike times over spike times (25 consecutive trials, bottom). (**B**) The same cell as in (A) was again stimulated repeatedly, but this time with a fluctuating stimulus [Gaussian white noise, $\mu_s = 150$ pA, $\sigma_s = 100$ pA, $\tau_s = 3$ ms; see (14)].

Mainen & Seijnowski (1995) Science 268

Susanne Reichinnek (2007) Diplomarbeit

Rate Code vs. Temporal Code

Rate Code

 concept: information encoded in neuronal firing rate

- population code permits encoding of precise information
- redundancy in large populations permits fast transmission
- neuron acts as 'Integrator'

Contra:

- rate coding requires integration time (it is slow)
- large numbers of action potentials consume a large amount of energy
- combinatorial explosion in large coding space (grand mother cells)

Temporal Code

- concept: information encoded in temporally precise spike times and spike patterns across neurons
- fast information transmission through
 coincident spiking in neuronal assemblies
- encoding with few action potentials (sparse code) explores large coding space
- neuron acts as coincidence detector

Contra:

- little conclusive evidence
- single action potentials and coincident events vanish in the variable ongoing network activity

Neural Coding II

• *En*coding – *Re*coding – *De*coding

Olfactory system of the honeybee (insect)

Galizia & Rössler (2009) Annu. Rev. Entomol. 55

Krofczik, Menzel & Nawrot (2008) Frontiers Comp Neurosci 2

Olfactory pathway in the honeybee (insect)

Teaching Alect Connectation and Brain | M Nawrot

Encoding of odors in the antennal lobe

Krofczik, Menzel & Nawrot (2009) Frontiers in Computational Neuroscience 2

Teaching Acet Connectation of New York Connect

- Intracellular recordings from projection
- Reliable and stereotypic rate responses

Krofczik, Menzel & Nawrot (2009) Frontiers Comp Neurosci 2

Teaching Alect Connectation and Brain | M Nawrot

► >50% of PNs activated by single odor (broad odor tuning)

С

Teaching Naver Connectation of Statistics and Brain | M Nawrot

- ► >50% of PNs activated by single odor (broad odor tuning)
- odor specific binary activation pattern (combinatorial code)

Teaching North Connectation of Statistics and Brain | M Nawrot

- ► >50% of PNs activated by single odor (broad odor tuning)
- odor specific binary activation pattern (combinatorial code)
- rapid odor encoding within tens of milliseconds

Krofczik, Menzel & Nawrot (2009) Frontiers Comp Neurosci 2

Teaching Naver Connectation of New York Connec

Encoding of odors in the antennal lobe : glomerular space

100µm

2.7on

Recoding in the mushroom body

Strube-Bloss, Nawrot & Menzel (2011) J Neurosci 31

Teaching North Compatibility Science | Mind and Brain | M Nawrot

Classical conditioning: experimental paradigm

Experiments by Martin Strube-Bloss in the lab of Randolf Menzel

Classical conditioning: experimental paradigm

Strube-Bloss, Nawrot & Menzel (2011) J Neurosci 31

Classical conditioning : behavioral performance (group)

Bees learn odor-reward association under experimental conditions

Strube-Bloss, Nawrot & Menzel (2011) J Neurosci 31

Single unit recording at mushroom body output

Odor VALUE coding at mushroom body output

TOPPHING Note of CBERTRATIONAL New Inseign of the CBERTRATION AND A CONTRACTOR OF A CONTRACTOR

Odor VALUE coding at mushroom body output

► Reward prediction after ~ 140ms

Teaching Aleet Coepontation and New Inseit on the Course of Mary Aleet Coepone and New Inseit of the Coepone and New Inseit of

Neural performance correlates with behavioral performance

FIN