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Time table 

 

Exercises: Computer Pool, Room 224 
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XX 

• Course layout: time table | exercises  & rooms | link for 
download 

• Braitenberg ? 

• AG: who we are, what we do 

• Kursangebot: modelling / data analysis / reading seminars 

• Abstraction versus detail 

• Single neuron models: levels of abstraction: Herz et al. 

Biology | Biophysics | Bioinformatics | Computational Biology  
Computational Neuroscience | Computer Science | Econometrics  

Engineering | Information Technology | Physics | Mathematics  

Our Team 
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Outline 

Introduction 

Spatial and Temporal Scales of Brain Signals 

Neural Coding 
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Introduction 
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Experiment 

Modeling 

Data 
Analysis 

Hypothesis  

Applications 
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Experiment 

Modeling 

Data 
Analysis 

Hypothesis  

Applications 

 

Statistics of Animal Behavior 
Spike Train Statistics 

Machine Learning 
Linear Systems Analysis 

Dynamical Systems Analysis 
GLM 

Point Process Theory 
Dynamical System Theory 

Machine Learning 
Spiking Neural Networks 

 
 

Electrophysiology 
 Imaging Data 

Behavioral Experiments 
(Insects and Primates) 

Cortical Slice Recordings 

Neuromorphic Harware 
Neuromorphic Robots 

 
 

Experimental Design 
Model Design 

Grant Proposals 
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Models in computational neuroscience … 

 functional model 
 
 
  

 
 
 
 
stochastic model 

    connectionist model 

 neural network model 

 phenomenological model 
 
    
          biophysical model 
 

abstract model 
 
 
 

mathematical model 
 

computational model 

statistical model 
 
 
      Artificial Neural Network 
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BEHAVIOR  and  COGNITION 

MOLECULES 

approaches experiments models 
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Spatial and Temporal Scales of Brain Signals 

• Measurement techniques 

• Neural output: spike train recordings 
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Spatial Scales 
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Resolution in Space and Time 

 

 (adapted from Matt Fellows) 

PET 

20μm 

Vm 

intracellular 

Ca-imaging NIRS 
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BEHAVIOR  and  COGNITION 

MOLECULES 

approaches experiments models 

EEG / MEG 
fMRI 
PET 
NIRS 

behavioral  
(psychophysics, language, …) 

spike train recordings 
intracellular measurements 

Ca imaging 

local field potentials 
multi-unit-activity 
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Direct vs. Indirect Measures of Neuronal Signals 

 
20μm 

electrophysiology        imaging 

 direct measurement of neuronal signals                  visualization of single neuron activity 

intracellular recording from 

- single neurons / dendrites 

extracellular recording of 

- action potentials (SUA/MUA) and 

- local field potential (LFP, indirect) 

electrocorticography (ECoG) 

- epicortical field potentials 

electroencephalography (EEG) 

magnetoencephalography (MEG) 

optical imaging with  

voltage sensitive dyes 

functional magnetic 

resonance imaging (fMRI) 

positron emission tomography (PET) 

 measurement of electric mass signals   

optical imaging of 

intracellular Ca activity 

- in vitro / in vivo 

- 2D / 3D 

 visualization of average activity   

imaging pics from: 

Stosiek03 
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Intracellular recording 

 

© Clemens Boucsein 

‘Spike Train’ 
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Extracellular recording 
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Extracellular recording 
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Extracellular recording 

 

► metal    |  silicon  |  glas electrodes 

► spike output activity   

► in vitro  |  in vivo  

culture in vitro 
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Extracellular recording 

 

Valentino Braitenberg & Almut Schüz 

Cortex: Statistics and Geometry of Neuronal Connectivity 

Springer, Berlin, 1998 (Second Edition) 

Cortex 
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Extracellular recording 

 

The Mouse Cortex Cortex 

Valentino Braitenberg & Almut Schüz 

Cortex: Statistics and Geometry of Neuronal Connectivity 

Springer, Berlin, 1998 (Second Edition) 

 

Undersampling ! 

 

spikes field potential 
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State of the art : 100 channels in parallel (Utah Array) 

 

Positioning the array Pneumatic insertion recordings 

Thomas Brochier, Alexa Riehle, CNRS, Marseille.   
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State of the art : 100 channels in parallel (Utah Array) 

 

Monkey L 

RH 

Thomas Brochier, Alexa Riehle, CNRS, Marseille.   
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Extracellular recording 
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Extracellular recording: spikes 

 

Extrazelluläre Aufnahmen im somatosensorischen Kortex der Ratte. Spontanaktivität unter Anästhesie.  

Data Curtsey: Clemens Boucsein und Dymphie Suchanek, Neurobiologie & Biophysik, Universität Freiburg  
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Extracellular recording: spikes 

 

Extrazelluläre Aufnahmen im somatosensorischen Kortex der Ratte. Spontanaktivität unter Anästhesie.  

Data Curtsey: Clemens Boucsein und Dymphie Suchanek, Neurobiologie & Biophysik, Universität Freiburg  
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Extracellular recording: spike train 

 ‘Spike Train’ 

Extrazelluläre Aufnahmen im somatosensorischen Kortex der Ratte. Spontanaktivität unter Anästhesie.  

Data Curtsey: Clemens Boucsein und Dymphie Suchanek, Neurobiologie & Biophysik, Universität Freiburg  
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Extracellular recording: spike sorting 

 

100

0

-100

-200

-300

µV

A_
D1

_-
70

18

1050 1060 1070 1080 1090 1100
s

Spike Templates 

Principle Components 

Time  (s) 

X G X

-71.61

200

0

-200

µ
V

A
_
D

1
_
-7

018

11

200

0

-200

µ
V

D
_
2

12

200

0

-200

µ
V

D
_
3

13

Events3

254 255 256 257 258 259 260
s

02 01
100

0

-100

-200

µ
V

A
_
D

1
_
-7

0

18

11

258.20 258.22 258.24
s

V
o
lt
a
g
e
 (

µ
V

) 

Extrazelluläre Aufnahmen von α-extrinsischen Neuronen im Bienengehirn. Antwort auf Duftreiz.  

Data Curtsey: Dr. Martin Strube, Neurobiologie, Freie Universität Berlin 
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Extracellular recording: spike sorting 

 

Estimated number of spike sorting errors : 

 

   [1]   [2] 

 

false positive rate : 13% ~10% 

 

false negative rate: 9% ~10% 

[1] Joshua, Elias, Levine, Bergman (2007) J Neurosci Meth doi: jneumeth.2007.03.012 

[2] Pouzat, Delescluse, Viot, Diebolt (2004) J Neurophysiol 91 

single unit activity  ≠  single neuron activity 
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Neural output: spike train 

 

10100001000100000000001010010100000100010100000000001 

binary representation 

(array) 

discrete representation 

(list) 

t1 t2 tn 

‘ spike train ‘ 

discrete time series of events 
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• Rate Code vs. Temporal Code 

 

Neural Coding I 
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Rate Code vs. Temporal Code 

© S. Reichinnek & C. Boucsein 

Rate Code 

 concept: information encoded in 

neuronal firing rate  

 population code permits encoding of 

precise information  

 redundancy in large populations permits 

fast transmission 

 neuron acts as ‘Integrator’ 

 

Temporal Code 

 concept: information encoded in 

temporally precise spike times and spike 

patterns across neurons  

 fast information transmission through 

coincident spiking in neuronal assemblies 

  encoding with few action potentials 

(sparse code)  explores large coding space  

 neuron acts as coincidence detector 

 

Contra: 

- little conclusive evidence 

- single action potentials and coincident 

events vanish in the variable ongoing 

network activity 
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Rate code: concept and stimulus tuning 

Hubel and Wiesel (1968) J Physiol 195: 215-43 

T 

• spike count N in tim interval T 

• rate r = N/T 
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Rate code: Time-varying rate estimate 

 

Single unit activity from primary motor cortex of the monkey during repeated reaching movement 

Data Curtsey: Alexa Riehle, CNRS, Marseille 
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Rate Code vs. Temporal Code 

© S. Reichinnek & C. Boucsein 

Rate Code 

 concept: information encoded in 

neuronal firing rate  

 population code permits encoding of 

precise information  

 redundancy in large populations permits 

fast transmission 

 neuron acts as ‘Integrator’ 

 

Contra: 

- rate coding requires integration time (it is 

slow) 

- large numbers of action potentials 

consume a large amount of energy 

- combinatorial explosion in large coding 

space (grand mother cells) 

Temporal Code 

 concept: information encoded in 

temporally precise spike times and spike 

patterns across neurons  

 fast information transmission through 

coincident spiking in neuronal assemblies 

  encoding with few action potentials 

(sparse code)  explores large coding space  

 neuron acts as coincidence detector 

 

Contra: 

- little conclusive evidence 

- single action potentials and coincident 

events vanish in the variable ongoing 

network activity 
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Rate Code vs. Temporal Code 

© S. Reichinnek & C. Boucsein 
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Temporal code: experimental evidence I 

 

Gollisch and Meister (2008) Science 319 
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Temporal code: experimental evidence I 

 

Gollisch and Meister (2008) Science 319 
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Temporal code: experimental evidence II 

single unit recorded in the auditory 
nerve of the cat 

Aertsen, Smolders & Johannesma (1979) Biol. Cyber. 32, 175-185 

cross-correlogram of trials 1 + 2 
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Temporal code: experimental evidence III 

Riehle, Grün, Diesmann, Aertsen (1997) Science 278, 1950-53 

significant coincident spiking in 
motor cortical units related to 
expectation 
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Temporal code: neuron acts as coincidence detector 
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► coincident excitatory synaptic inputs are 

      translated into a single spike output 

input 

output 

Burkitt (2006) Biol. Cyber. 95 
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Temporal code: ‚synfire chain model‘ 

 

Kumar, Rotter, Aertsen (2010) Nat Rev Neurosci 

a) Hebb 1949 

b) James 1890 

c) Abeles 1991 

d) Diesmann 1999 

 f) Griffith 1963 

 

M Nawrot ▪ FU Berlin ▪ SFA in the insect olfactory pathway 
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Temporal code: ‚synfire chain model‘ 

 

Curtsey: Sonja Grün 



Teaching Week Computational Neuroscience | Mind and Brain | M Nawrot  

Temporal code: ‚synfire chain model‘ 

 

Pulspaket Eingang 

pulse packett: 

 

 a = number of presynaptivc spikes  

 σ = temporal dispersion of spikes 

 

. 

Diesmann et al.  (1999) Nature 402: 529-532 
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Temporal code: ‚synfire chain model‘ 

 

Diesmann et al.  (1999) Nature 402: 529-532 
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Temporal Code: are neurons precise enough ? 

 

Boucsein et al. (2011) Frontiers in Neuroscience 5:32 
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Temporal Code: are neurons precise enough ? 

 

Nawrot et al. (2009) Frontiers in Neural Circuits 3:1 

► high reliability of synaptic transmission(> 90%) 

► high temporal precision across trials (jitter < 1ms) 

► modest amplitude variability (CV ~ 0.25) 

 

 

  


t 



Teaching Week Computational Neuroscience | Mind and Brain | M Nawrot  

Temporal Code: are neurons precise enough ? 

 

Nawrot et al. (2009) Frontiers in Neural Circuits 3:1 

► dendritic generation is temporally precise and reliable 
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Mainen & Seijnowski (1995) Science 268 

► spike generation is temporally precise and reliable 

 

 

  

Temporal Code: are neurons precise enough ? 
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Temporal Code: are neurons precise enough ? 

 

Susanne Reichinnek (2007) Diplomarbeit 

σ = 1ms 

σ = 11ms 

a = 40 a = 10 
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Rate Code vs. Temporal Code 

© S. Reichinnek & C. Boucsein 

Rate Code 

 concept: information encoded in 

neuronal firing rate  

 population code permits encoding of 

precise information  

 redundancy in large populations permits 

fast transmission 

 neuron acts as ‘Integrator’ 

 

Contra: 

- rate coding requires integration time (it is 

slow) 

- large numbers of action potentials 

consume a large amount of energy 

- combinatorial explosion in large coding 

space (grand mother cells) 

Temporal Code 

 concept: information encoded in 

temporally precise spike times and spike 

patterns across neurons  

 fast information transmission through 

coincident spiking in neuronal assemblies 

  encoding with few action potentials 

(sparse code)  explores large coding space  

 neuron acts as coincidence detector 

 

Contra: 

- little conclusive evidence 

- single action potentials and coincident 

events vanish in the variable ongoing 

network activity 
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• Encoding – Recoding – Decoding 

 

Neural Coding II 
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Olfactory system of the honeybee (insect) 

 

30µm 

Krofczik, Menzel & Nawrot (2008) Frontiers Comp Neurosci 2 Galizia & Rössler (2009) Annu. Rev. Entomol. 55 

T2 03 

T1 22 

LN 
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Olfactory pathway in the honeybee (insect) 

 

1st order 

 

Receptor 

Neurons 

 

~ 60.000 ORNs 

2nd order 

 

Projection 

Neurons 

 

~ 950 PNs 

3rd order 

  

Kenyon 

Cells 

 

~ 160.000 KCs 

4th order 

 

Extrinsic 

Neurons 

 

~ 400 ENs 

INPUT 
OUTPUT 

x 100 / 100 

PLASTICITY 

Antenna Antennal Lobe (AL) Mushroom Body (MB) 

M Nawrot ▪ INRA ▪ Feb 03, 2011 
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Encoding of odors in the antennal lobe 

 

1st order 

 

Receptor 

Neurons 

 

~ 60.000 ORNs 

2nd order 

 

Projection 

Neurons 

 

~ 950 PNs 

3rd order 

  

Kenyon 

Cells 

 

~ 160.000 KCs 

4th order 

 

Extrinsic 

Neurons 

 

~ 400 ENs 

Antenna Antennal Lobe (AL) Mushroom Body (MB) 

INPUT 
OUTPUT 

M Nawrot ▪ INRA ▪ Feb 03, 2011 

Krofczik, Menzel & Nawrot (2009) Frontiers in Computational Neuroscience 2 
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Krofczik, Menzel & Nawrot (2009) Frontiers Comp Neurosci 2 

► Intracellular recordings from projection 

► Reliable and stereotypic rate responses 

 

M Nawrot ▪ INRA ▪ Feb 03, 2011 

Encoding of odors in the antennal lobe : rate code 



Teaching Week Computational Neuroscience | Mind and Brain | M Nawrot  

Encoding of odors in the antennal lobe : rate code 

 

► >50% of PNs activated by single odor (broad odor tuning) 

 

M Nawrot ▪ INRA ▪ Feb 03, 2011 
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Encoding of odors in the antennal lobe : rate code 

 

► >50% of PNs activated by single odor (broad odor tuning) 

► odor specific binary activation pattern (combinatorial code) 

 

M Nawrot ▪ INRA ▪ Feb 03, 2011 
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Encoding of odors in the antennal lobe : rate code 

 

Krofczik, Menzel & Nawrot (2009) Frontiers Comp Neurosci 2 

► >50% of PNs activated by single odor (broad odor tuning) 

► odor specific binary activation pattern (combinatorial code) 

► rapid odor encoding within tens of milliseconds 

 

 

M Nawrot ▪ INRA ▪ Feb 03, 2011 
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Encoding of odors in the antennal lobe : glomerular space 
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Recoding in the mushroom body  

 

1st order 

 

Receptor 

Neurons 

 

~ 40.000 ORNs 

2nd order 

 

Projection 

Neurons 

 

~ 950 PNs 

3rd order 

  

Kenyon 

Cells 

 

~ 160.000 KCs 

4th order 

 

Extrinsic 

Neurons 

 

~ 400 ENs 

Antenna Antennal Lobe (AL) Mushroom Body (MB) 

INPUT 
OUTPUT 

M Nawrot ▪ INRA ▪ Feb 03, 2011 

Strube-Bloss, Nawrot & Menzel (2011) J Neurosci 31 
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Classical conditioning: experimental paradigm 

 

Acquisition 

 

POST PRE 

 
5 odors 
10 trials 

random order 

5 odors 
10 trials 

random order 

CS 
US 

Experiments by Martin Strube-Bloss in the lab of Randolf Menzel 

20 min 3h 
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Classical conditioning: experimental paradigm 

 

Strube-Bloss, Nawrot & Menzel (2011) J Neurosci 31 
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Classical conditioning : behavioral performance (group) 

 

* Trial 5 G=7.2; p<0.01; 

df=1; Trial 10 G=10.5; 

p<0.01; df=1 

* Trial 1 G=5.37; p<0.05; 

df=1]; trial 6 [G=8.79; 

p<0.05; df=1  

Acquisition [N=36]
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* *

► Bees learn odor-reward association under experimental conditions 

Strube-Bloss, Nawrot & Menzel (2011) J Neurosci 31 
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Single unit recording at mushroom body output 

 

Strube-Bloss, Nawrot & Menzel (2011) J Neurosci 31 

INPUT OUTPUT x 100 / 100 

PLASTICITY 
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Odor VALUE coding at mushroom body output 

 

M Nawrot ▪ FU Berlin ▪ SFA in the insect olfactory pathway 
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Odor VALUE coding at mushroom body output 

 

M Nawrot ▪ FU Berlin ▪ SFA in the insect olfactory pathway 

► Reward prediction after ~ 140ms 

 

Re-Coding : Odor IDENTIY (AL)  Odor VALUE (MB) 
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Neural performance correlates with behavioral performance 
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