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Abstract. Correlation analysis of neuronal spiking activity relies on the
availability of distributions for assessing significance. At present, these
distributions can only be created by surrogate data. A widely used sur-
rogate, termed dithering, adds a small random offset to all spikes. Due
to the biological noise, simultaneous spike emission is registered within
a finite coincidence window. Established methods of counting are: (i)
partitioning the temporal axis into disjunct bins and (ii) integrating the
counts of precise coincidences over multiple relative temporal shifts of
the two spike trains. Here, we rigorously analyze for both methods the
effectiveness of dithering in destroying precise coincidences. Closed form
expressions and bounds are derived for the case where the dither range
equals the coincidence window. In this situation disjunct binning de-
tects half of the original coincidences, the multiple shift method recovers
three quarters. Thus, only a dither range much larger than the detection
window qualifies as a generator of suitable surrogates.

Keywords: multi-channel recording, spike train, Monte-Carlo, surrogate
data, correlation.

1 Introduction

The only way to identify information processing in biological neuronal networks
is to simultaneously record from many neurons at a time. Nowadays multi-
channel recordings are a standard technique in electrophysiological laboratories.
Correlation analysis of such data has demonstrated that neurons exhibit corre-
lated spiking activity on a fine temporal scale (ms precision) and in relation to
the experimental protocol [1,2]. This has been interpreted as indicative for an
involvement of correlated spiking activity in brain processing.

However, the presence of correlated spiking activity is not obvious from visual
inspection. At first sight, the data appear to originate from a stochastic process
with large variability in the number and the timing of spikes in responses to an
identical stimulus. Furthermore, the rate of spike emission typically exhibits a
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Fig. 1. Spike dithering and two methods of coincidence detection. Filled bins indicate
spike occurrence, the width of the bins indicates the time resolution δ (typically 1
ms). Top: Generation of surrogate data. Original simultaneous spike data (grey bins)
of neuron 1 and 2. Coincidences are assumed to be precise (within the same bin). In
surrogate spike trains (black bins) all original spikes are independently dithered with
uniform probability in the range ±s (in units of δ). Middle: In the disjunct binning
(DB) method coincidences are detected in exclusive windows of width w to allow a
temporal jitter of the spikes. Only spikes within the same window (between thick
vertical lines) are counted as a coincidence. Bottom: In the multiple shift (MS) method
spike coincidences are detected if the distance between spikes is smaller than or equal
to an a-priori parameter (see Sec. 3).

complex temporal profile. Clearly, spike coincidences with millisecond precision
can also occur as chance events. Thus, the empirical number of joint-spike events
needs to be compared to the distribution of coincidence counts resulting from
independent spike trains. This distribution can only be derived using strong
assumptions about the statistics of the spike trains [3] typically not fulfilled by
electrophysiological data. Therefore, Monte-Carlo methods are widely used to
construct the distribution of coincidence counts from surrogate data [4] that
maintain certain statistical properties of the original data but do not include
correlations [5].

Various methods are in use for the generation of surrogate data [6,4,7,8,9]. All
of them fulfill the condition to destroy the correlation, but also have the draw-
back to simultaneously destroy one or the other statistical feature of the data
[8,10], e.g. the Poissonian nature or the exact spike counts. Date and colleagues
proposed the method of spike dithering to generate surrogates which currently
best meets the criterion to destroy the correlation between spike trains and si-
multaneously to maintain as many statistical properties of the data as possible
[11]. The approach is to randomly re-place each spike within a small time window
around its original position, thereby almost perfectly preserving the other sta-
tistical features of the single neuron data. Meanwhile, the method is in routinely
use in the correlation analysis of neuronal spike trains [12,13]. Strategies have
been developed to reduce the perturbation of the inter-spike interval statistics
for moderate dithers [10,14].

However, it is not well understood how much dither is required to destroy the
spike correlation, in particular if joint-spike events are allowed to have a temporal
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jitter. Here we study the decay rate of the number of coincidences as a function of
the dither width and as a function of allowed temporal jitter of the coincidences.
In particular we answer the question to which degree coincidences are destroyed,
if the dither width corresponds to the allowed temporal jitter of the joint-spike
events. Intuition says that coincidences should then be reduced by 50%. This
needs to be analyzed in the context of the chosen method of coincidence detection
since it critically influences the result: we concentrate on the disjunct binning
method (DB) and the multiple shift method (MS) of coincidence detection [15]
(cf. Fig. 1 middle and bottom, respectively).

In the following we treat the two methods in two subsequent sections, in each
of which we briefly introduce the respective method, and derive analytically
the probability of detecting coincidences given originally precise coincidences as
a function of dither and of the allowed coincidence width. The results section
compares the two methods for the particular case of the applied dither being
equal to the allowed coincidence width. We show that the probability of detec-
tion decays with increasing dither, however much faster for DB as compared
to the MS method. We also compare to the case where only one spike train is
dithered.

2 Disjunct Binning

The original spike data are discretized into bins of width δ, such that the total
duration T of the recording is divided into N bins (T = δ · N). Each bin is
assumed to contain at most one spike. As a result the activity of each neuron is
represented by a binary sequence (Fig. 1) of zeros (no spikes) and ones (spikes).
We define coincident events (or simply coincidences) as the joint firing of the two
neurons within a coincidence window of w bins, thereby allowing coincidences
to have a certain temporal jitter. In order to detect the total number of coin-
cident events, the DB method sections T into disjunct, adjacent time segments
(coincidence windows) Wk, k = 1, ..., �N/w� each containing w bins of width δ.
With bins numbered from 1 to N , the first coincidence window W1 is composed
of bins {1, 2, ..., w}, the second W2 of {w + 1, w + 2, ..., 2w}, and so on.

We assume the original coincidences (i.e., before dithering) to be perfectly
synchronous joint-events, i.e., both neurons have a spike in the very same bin.
Due to an applied dither in the range of [−s, s] bins a spike may trespass the
border of a coincidence window and fall into another coincidence window. The
dither factor D = � s

w �, i.e., the next integer larger than (or equal to) s
w , defines

in how many coincidence windows the spike may fall and thus how many borders
it might cross.

Next we are interested in the probability to detect a coincidence after dither-
ing. The result depends on whether dithering is applied to both neurons (2-
neuron dithering) or only one neuron (1-neuron dithering). The approaches are
treated separately in the next two sections.
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2.1 2-Neuron Dithering

In 2-neuron dithering each spike of both spike trains is randomly displaced in
the range of [−s, s] bins with uniform probability.

In order to calculate the probability that a coincidence after dithering is still
detected as a coincidence, we need to consider all coincidence windows Wk into
which the dithered spikes may be scattered. The number of windows is given by
the dither factor D. If we assume the original coincidence to be in window W0,
spikes may be dithered into coincidence windows Wk with k = 0, ±1, ±2, ..., ±D.
Therefore, the probability is the sum of the probabilities that the spikes fall into
the same window Wk.

The probability to detect a coincidence within a particular coincidence win-
dow Wk depends on the number of bins that may be reached from the original
coincidence position given a particular dither s. The probability to fall in a single
bin δ within the dither interval [−s, +s] is 1/(2s + 1). Depending on the initial
position α = 1, 2, ..., w of a spike in the coincidence window, a different number
of bins is reachable in the surrounding coincidence windows. In the coincidence
windows where all w bins can be reached (k ∈ [−D + 2, . . . , D − 2]), the prob-
ability of a spike to fall into the window is Δwα

k · 1
2s+1 , with Δwα

k = w. In the
remote windows {W−D, W−D+1, WD−1, WD}, the probability corresponds to the
number of reachable bins, i.e., Δwα

k′ · 1
(2s+1) with k′ = −D, −D + 1, D − 1, D,

respectively.
Because the two coincident spikes are dithered independently, the joint prob-

ability of both spikes being in window Wk is the product of the probabilities
(Δwα

k · 1
2s+1 ) for the individual spikes. Then the total probability to detect the

coincidence after dithering is given by the sum of the joint probabilities across
all reachable coincidence windows:

P [2−n]
α (w, s) =

k=D∑

k=−D

(
Δwα

k

2s + 1

)2

. (1)

The closure relation is given by the condition that the total dither involves 2s+1
bins:

k=D∑

k=−D

Δwα
k = 2s + 1 ⇒

k=D∑

k=−D

Δwα
k

2s + 1
= 1 . (2)

Fig. 2A,B show the coincidence detection probability P
[2−n]
α (w, s) as a func-

tion of the initial position α of the spikes in the coincidence window, for differ-
ent values of the dither s. Surprisingly, the probability of detection P

[2−n]
α (w, s)

depends on the distance of the initial coincidence from the borders of the co-
incidence window. For s = w (Fig. 2A) the probability P

[2−n]
α (w, s) reaches its

minimum if the initial coincidence is in the center of the window, and is maximal
when the initial coincidence is just at the window border. This counterintuitive
result holds true for all values of w. However, it can be understood by considering
that if spikes were originally in the proximity of the border of the coincidence



432 A. Pazienti, M. Diesmann, and S. Grün

A B C

−5 0 5
0.35

0.4

0.45

0.5

pos. α in window

pr
ob

. o
f d

et
ec

tio
n

2−neuron dith.

 

 

−5 0 5
0.2

0.4

0.6

0.8

1

 

 
2−neuron dith.

  
−5 0 5

0.2

0.4

0.6

0.8

1

  
 

 

1−neuron dith.

Fig. 2. Probability of detecting coincidences after dithering for DB as a function of
the position α of the original coincidences measured from the center of the coincidence
window W0. A,B: For 2-neuron dithering. C: For 1-neuron dithering. Black curves: case
w = s (enlarged ordinate in A), solid grey curves: w < s, dashed grey curves: w > s.
Parameter values: w = 10, s = 15 (solid, dark grey), s = 21 (solid, light grey), s = 7
(dashed, dark grey), and s = 4 (dashed, light grey).

window the number of destination windows is generally smaller than for origi-
nally centered spikes. As a consequence, spikes fall in larger stretches of successive
bins, and thus the probability for the fission of coincidences by the borders of
the coincidence windows is reduced. The total probability P

[2−n]
α (w, s), which is

constrained by Eq. 2, is maximized if few increments Δwα
k are large and is min-

imal if all increments have intermediate values. In other words, the number of
ways of arranging the two spikes in a destination window increases quadratically
with the number of involved bins (cf. Eq. 1), hence the α-dependance observed
in Fig. 2A.

As shown in Fig. 2B, the overall probability P
[2−n]
α (w, s) progressively in-

creases with decreasing s from s > w to s < w, shown here for a fixed w. For
decreasing s the spikes have a decreasing chance to trespass the window border
and to escape from their original window. In extreme, for s � w the spikes may
not reach any other windows and thus stay coincident. In contrast, for s > w the
coincidence has an increasing probability to be destroyed because of the large
number of potential destination windows. The probability P

[2−n]
α (w, s) shows

different shapes depending on the exact relationship between s and w.

2.2 1-Neuron Dithering

In case only the spikes of one spike train are dithered (e.g. only the spikes of
neuron 2, [6]) the probability of detecting the coincidences after dithering only
depends on the new positions of the spikes of train 2. This method leads to a



Bounds of the Ability to Destroy Precise Coincidences 433

total probability

P [1−n]
α (w, s) =

{
w/(2s + 1) if s ≥ w − 1
Δwα

k /(2s + 1) if s < w − 1 ,
(3)

where we assumed the initial coincidence window to be Wk and Δwα
k to be

the associated number of bins reachable by a spike from neuron 2. Again, this
number depends on the initial position α of the spike.

For s ≥ w − 1 both sides of the dither window [−s, s] are larger than the
coincident window Wk and thus the probability for the two original spikes to
stay coincident after dithering depends on the probability for the dithered spike
to stay in that window. Its probability is given by the number of bins in the
window w relative to the total number of possible bins, i.e., 2s + 1, the spike
may be dithered into (upper relation in Eq. 3). This obviously does not depend
on the initial position α of the coincidence.

If both sides of the dither window are smaller than the coincident window
(s < w − 1), only a fraction of the bins may receive a spike after dithering and
depends on the original position α of the spike (Fig. 2C). For s < w − 1 the
probability of detecting the coincidence after dithering increases progressively
as s decreases, with a maximum at the central bins of the window. The maximal
detection probability w/(2s + 1) is attained if the whole dither window [−s, s]
is included in the coincidence window Wk.

3 Multiple Shift

This method provides a different way of counting coincident spikes of two neu-
rons, avoiding the arbitrarily located “hard” borders. The multiple shift method
defines a maximum allowed shift b. Assuming again the spike trains to have reso-
lution δ, the procedure begins with counting all precise coincidences. Then spike
train 2 is shifted with respect to spike train 1 by δ and again all precise coin-
cidences are counted. The procedure continues for all positive shifts 2δ, 3δ, .., bδ
and for the negative shifts −δ, −2δ, ..., −bδ. Consequently, spikes with a distance
of up to ±b bins are counted as coincident. The parameter b is analogous to the
coincident width w, however with the substantial difference that there are no
fixed borders and the initial position of the coincidence α is meaningless.

Consider both spikes constituting a coincidence to be dithered in the range
±s and the origin of the temporal axis to be located at the position of the initial
coincidence. After dithering the probability to find spike 2 at distance k from
spike 1 is given by the probability to find 1 at i times the probability to find 2
at k + i summed over all possible positions i:

J(k, s) =
1

2s + 1

s∑

i=−s

p(k + i) . (4)

However, p(k+ i) is subject to further constraints. If e.g. spike 1 is at −s, spike 2
can only be coincident or to the right of spike 1, requiring p(k − s) to vanish for
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negative k. Therefore, the effective limits of the sum also depend on k, collapsing
Eq. 4 to

J(k, s) =

⎧
⎨

⎩

1/(2s + 1) for k = 0
2s+1−|k|
(2s+1)2 for |k| ≤ 2s

0 for |k| > 2s .

(5)

The probability of dithering two initially coincident spikes to a distance |k|
reaches its maximum at zero offset and decreases linearly with |k| before it
drops to zero at ±2s.

In the MS method all spikes dithered up to a distance k = ±b are classified
as coincident. To obtain the probability to detect an initially coincident event
after dithering P [MS](b, s) we have to sum the probabilities J(k, s) of all possible
dithering results for k in the range −b, ..., b

P [MS](b, s) =

⎧
⎨

⎩

1/(2s + 1) for b = 0
1

2s+1 +
∑b

k=−b
2s+1−|k|
(2s+1)2 for b ≤ 2s

1 for b > 2s

=

{
2b+1
2s+1 − b(b+1)

(2s+1)2 for b ≤ 2s

1 for b > 2s .

(6)

4 Results

In this section we will derive the expected probability of detecting a coincidence
after dithering given a large number of coincidences occurring in the spike trains
at random times.

In the disjunct binning framework the assumption of many coincidences oc-
curring at random times implies that the original coincident events will cover,
in expectation, all possible initial positions α ∈ [1, ..., w]. Therefore we have to
average the results of Secs. 2.1 and 2.2 (Eqs. 1, 3) over α. For 2-neuron dithering
this yields

〈P [2−n]
α (w, s)〉α =

1
w

w∑

α=1

k=D∑

k=−D

(
Δwα

k

2s + 1

)2

. (7)

Using similar arguments we derive the expected probability for the case of DB
after 1-neuron dithering utilizing Eq. 3:

〈P [1−n]
α (w, s)〉α =

{
w/(2s + 1) if s ≥ w − 1
Δwα

k /(2s + 1) if s < w − 1 ,
(8)

whereas in the case of the MS method there is no α-dependence of the probability.
For convenience however we also rewrite Eq. 6:

〈P [MS](b, s)〉 =

{
2b+1
2s+1 − b(b+1)

(2s+1)2 for b ≤ 2s

1 for b > 2s .
(9)
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Fig. 3. Expected probability of detecting coincidences with DB and MS as a function
of dither range. 〈P [MS](b, s)〉 (light grey), 〈P [1−n]

α (w, s)〉α (dark grey), 〈P [2−n]
α (w, s)〉α

(black). A: Three values of constant coincidence width. Thin curve: b = 0, w = 1
(MS and 1-/2-neuron, respectively), thick curves with knobs: w = b = 5, thick curves:
w = b = 10. B: Bounds for coincidence width corresponding to dither width, w = s
and b = s respectively.

Fig. 3A shows 〈P [2−n]
α (w, s)〉α, 〈P [1−n]

α (w, s)〉α and 〈P [MS](b, s)〉 as functions
of the dither s and for three different values of allowed coincidence width. The
expected probability declines with increasing dither in all cases. Detecting only
precise coincidences (w = 1 or b = 0, respectively) the dither has a strong effect
and destroys coincidences already at small values of s.

With increasing coincidence width the different cases deviate from each other,
the 2-neuron dithering being the more effective way of destroying coincidences.
For w = b = 10 the 2-neuron dithering destroys about 80% of the original
coincidences for dither values of about s = 20. In this situation, the 1-neuron
dithering leads to similar but slightly higher probabilities of detection, whereas
for a similar loss of detected coincidences with the MS method a dither of about
s = 50 is required.

Let us now investigate the special case in which the dither equals the coinci-
dence width, i.e., s = w, in order to obtain closed form expressions and limits.
For the 2-neuron dithering setting w = s and dither factor D = 1 reduces Eq. 7
to

〈P [2−n]
α (w = s)〉α =

1
w

w∑

α=1

k=1∑

k=−1

(
Δwα

k

2s + 1

)2

=
1
3

+
s(s − 1)

3(2s + 1)2
. (10)

For non-zero values of dithering Eq. 10 assumes values between 1/3 (for s, w = 1)
and 1

3 + 1
12 (for s, w � 1), that is 1

3 ≤ 〈P [2−n]
α (w = s)〉α < 0.416̄ = P

[2−n]
lim . There-

fore P
[2−n]
lim is the maximum probability of detecting a 2-neuron dithered coinci-
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dence with the disjunct binning method when the dither equals the coincidence
width.

For 1-neuron dithering Eq. 8 with w = s is just

〈P [1−n]
α (w = s)〉α =

s

2s + 1
, (11)

where the probability is larger than 1/3 (s, w = 1) and tends to P
[1−n]
lim = 0.5 for

s, w � 1.
Finally for the MS method replacing b = s in Eq. 9 yields

〈P [MS](b = s)〉 = 1 − s(s + 1)
(2s + 1)2

, (12)

bounded between 1 − 2/9 = 0.7̄ (b, w = 1) and P
[MS]
lim = 0.75 (for b, s � 1), the

difference being only about 4%. The above results are visualized in Fig. 3B.

5 Discussion

In this contribution we have rigorously analyzed the effectiveness of 2-neuron
dithering for the disjunct binning and the multiple shift detection methods and
for comparison also 1-neuron dithering for DB. The analysis is restricted to
precise coincidences. Further studies are required to investigate the biologically
more relevant case of jittered (i.e., imprecise) coincidences [15], the presence
of background activity, and processes with a biologically realistic inter-spike
interval statistics [10]. Nevertheless, the present study provides detailed new
insight in the dithering process. After uniform 2-neuron dithering of coincident
spikes, the distribution of spike distances |k| is not uniform, favoring the survival
of coincidences. Furthermore, in DB the probability of detection after dithering
depends on the initial location of the coincidence in a complex manner.

We provide analytic expressions for the expected probability of detection in
the different scenarios. In DB and MS the expressions reduce to simple closed
forms for w = s and b = s, respectively. Under these constraints we obtain in the
limit s → ∞ the bounds P

[2−n]
lim = 0.416̄, P

[1−n]
lim = 0.5, and P

[MS]
lim = 0.75. These

asymptotic values are monotonically approached. Thus, for 1-neuron dithering
analyzed by DB the intuition that a dither width equal to the coincidence window
destroys 50% of the coincidences is confirmed. For 2-neuron dithering the rate
of destruction is slightly larger. Counter to intuition, for MS the effect is much
less pronounced. At b = s still 3/4 of the coincidences survive. For example,
with b = 10 and s = 50 the probability of detection still is at P [MS](b, s) � 0.2.
Thus, for detection methods like MS which essentially evaluate the central peak
of the cross-correlation, a dither width much larger than the detection window
is required to destroy a relevant fraction of the coincidences.
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