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Abstract The aim of spike sorting is to reconstruct sin-
gle unit spike times from extracellular multi-unit recordings.
Failure in the identification of a spike (false negative) or
assignment of a spike to a wrong unit (false positive) are
typical examples of sorting errors. Their influence on cross-
correlation measures has been addressed and it has been
shown that correlation analysis of multi-unit signals may
lead to incorrect interpretations. We formulate a model to
study the influence of sorting errors on the significance of
synchronized spikes, and thus are able to study if and how
the significance changes in case of imperfect sorting. Here
we explore the case of pairwise analysis of simultaneously
recorded neurons. Interestingly, a decrease in the significance
is observed in the presence of false positives, as well as for
false negatives. Furthermore, false negative errors reduce
the significance of synchronized spikes more strongly than
false positives. Thus, conservative sorting strategies have a
stronger tendency to lead to a loss of the significance of syn-
chronization. We demonstrate that a detailed understanding
of sorting techniques and their possible effects on subsequent
data analyses is important in order to rule out inconsistencies
in the interpretation of results.
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1. Introduction

In the field of electrophysiology, spike sorting is the proce-
dure of extracting single unit activity from a recorded ex-
tracellular “multi-unit” signal. Multiple single-unit record-
ings offer the chance to detect assembly activities, and to
identify the network composition and functions. The spike
sorting procedure typically consists of two stages: first, spike
waveforms originating from different neurons are identified
and separated from the background “extra-cellular noise”,
which is presumably composed of weaker neural signals and
measurement noise (Lewicki, 1998); second, spikes are then
classified, i.e. assigned, to putative neurons. Spike sorting
failures may occur in any of these two stages.

A variety of techniques and algorithms are meanwhile
available for spike sorting (see e.g. Lewicki (1998) for the
most recent review). The choice of the best algorithm for
this problem depends on a number of factors, like e.g. the
type of electrode, the brain area, the cell type of interest, etc.
Additional constraints for sorting methods are reasonable
computation time, available hard-disk space, compatibility
with the recording setup and software, and finally also the in-
tended subsequent data analysis. For offline sorting, standard
approaches to the classification problem are cluster cutting
in a feature space (see e.g. Harris et al., 2000). Unsuper-
vised (at least partially) statistical algorithms are available,
such as independent component analysis (ICA, Hyvärinen
and Oja, 2000) for multi-trode (stereotrodes, tetrodes, etc.)
recordings, and superparamagnetic clustering (Quiroga et al.,
2004) for independent multi-electrode recordings. For re-
solving more neurons than available electrodes in the multi-
trode, Takahashi et al. (2003) suggested to combine ICA and
k-means clustering. However, also less sophisticated tech-
niques, but with the advantage of online applicability, like
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threshold crossing, window discrimination, or multiple-point
template-matching procedures are in use. Major problems in
spike sorting are the difficulty to resolve spikes from differ-
ent neurons which overlap in time, and the variability of the
spike waveform (Fee et al., 1996; Quirk and Wilson, 1999;
Harris et al., 2000). A solution for spike sorting for the latter
problem was suggested by Pouzat et al. (2004), solutions for
the problem of overlapping spikes had been suggested by
Pouzat et al. (2004) and Zhang et al. (2004).

As this wide interest in finding the “ultimate” algorithm
suggests, there is not a unique solution and all existing ones
are subject to errors. Objective controls for sorting quality
have been proposed by Pouzat et al. (2002) and recently by
Schmitzer-Torbert et al. (2005), with the aim to allow for
comparability of sorting results from the different methods.

Sorting errors appear either as failures in the identification
of spikes, or as assignments of spikes to wrong units, referred
to as false negative errors (FN) or false positive errors (FP),
respectively. Taking the perspective of a particular neuron,
a false positive spike is a spike which is assigned to that
neuron despite having originated from another neuron or
from extra-cellular noise. Conversely, a false negative spike
was emitted by the neuron and successively unclassified or
assigned to another neuron. A few studies have quantitatively
shown the amount of errors introduced by sorting. Wehr et al.
(1999) and Harris et al. (2000) made use of simultaneous
intracellular and extracellular recordings in vivo (from adult
locust and rat hippocampus, respectively). They reported
average error rates of 6.2% for FPs and 15.9% for FNs (Harris
et al., 2000), and 3.5% for FPs and 2.8% for FNs (Wehr et al.
1999). Wood et al. (2004) estimated average error rates of
23% FP and 30% FN based on simulated data.

However, studies on how such errors affect subsequent
analyses of these data are surprisingly lacking. Bedenbaugh
and Gerstein (1997) and Gerstein (2000) investigated the
consequences of unresolved spike trains on cross-correlation
analysis, and found that the correlation coefficients calcu-
lated between spike trains that contain wrongly assigned
spikes can be strongly biased, depending on the degree of
mixing spike trains and also depending on correlation struc-
tures between local and/or remote groups of neurons. In con-
trast, Bar-Gad et al. (2001) concentrated on the influence of
correlated false negative spikes on the cross-correlation anal-
ysis. They also found that the cross-correlation function can
be heavily biased due to the errors. Quirk and Wilson (1999)
showed for the case of neuronal bursting activity that spikes
occurring later in the burst may be assigned to another neu-
ron due a change in its spike shapes. The cross-correlation
analysis between such neurons also revealed a strong bias by
indicating artificial delayed coincidences.

Here we present a study that combines the occurrence of
FN and FP sorting errors and that evaluates their influence on
unitary events (UE; Grün et al., 1999, 2002a, b) here for the

case of pairwise analysis only. UE analysis detects the pres-
ence of conspicuous spike coincidences in multiple parallel
spike recordings and evaluates their statistical significance.
The UE method enabled to study the relation between spike
synchronization and behavioral events (Riehle et al., 1997,
2000; Grün et al., 2002b).

A brief introduction to the method is provided in Section
2.1. In Section 2.2 we introduce a simple statistical model for
spike sorting errors, which allows us to study how FP and
FN errors influence the significance of joint-spike events,
as well as the measures entering the significance estimation
(Section 3.1). On the basis of the derived analytical expres-
sions and numerical simulations, we demonstrate that the
firing rates and the number of coincidences (empirical as
well as expected) may be increased or decreased depending
on the error rate combination, but the resulting significance
is always reduced irrespective of the error type. A rigorous
analysis reveals that the origin of significance reduction is
different for the two error types. In Section 3.2 we illustrate
that variation of physiological parameters, such as firing rates
of the neurons and their coincidence rate, influence the result-
ing significance only weakly as compared to the error rates.
Finally we discuss our results and further steps (Section 4).

2. Methods

2.1. Unitary event analysis

Unitary event analysis, introduced by Grün et al. (2002a),
measures the significance of joint-spike events occurring
amongst multiple, simultaneously recorded neurons. When
their synchronization exceeds the chance level by a signifi-
cant amount, the coincident patterns are called unitary events.
UE analysis evaluates the significance based on the null-
hypothesis of independent firing. In the case of Poissonian
spike trains, the probability distribution of the number of
coincident patterns can be analytically derived. For the case
of spike trains deviating from Poisson or non-stationary data
we suggested methods for correction (Grün et al., 2003; Pipa
and Grün, 2003; Pipa et al., 2003). Here we restrict ourselves
to the assumptions of stationary and Poissonian spike trains,
i.e. the situation described in Grün et al. (2002a), which we
briefly introduce below.

Let us consider a stationary process (of rate λ) in the
observed time window T containing N = T/δ bins (with δ

the bin width in seconds). The probability of neuron i to fire
within the time interval of bin size δ is

pi = λiδ, (1)

here for neurons i = 1, 2. Under the null-hypothesis of sta-
tistically independent firing of the neurons, we derive the
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Fig. 1 (a) Probability density function of number of coincident events
before and after spike sorting. The distribution in the middle illustrates
the density function for the original case before sorting. Its mean npred

is the expected number of coincidences based on the firing rates of
the original spike trains. The empirical number of coincidences nemp is
shown to be higher than expected, i.e. on the tail of the distribution. The
black area represents the p-value for significance estimation. The two
gray distributions to the left and to the right, show examples of coinci-
dence distributions, whose mean npred is derived from the firing rates
after sorting. The distribution on the left mimicks the case of more FN
errors than FP (σ+ < σ−), and the one on the right the case for more FP

than FN (σ+ > σ−). The number of coincidences after sorting (nσ
emp)

does not necessarily generate the same p-value (gray area) as nemp. (b)
Sketch of the spike sorting model. (Top) Original spiking activity of
two neurons before sorting. Each time a spike occurred is marked by
a black line. (Bottom) The spike trains after having experienced sort-
ing errors. Black solid lines show the original and correctly classified
spikes. Black dashed spikes are missed (FNs), whereas gray spikes are
falsely assigned (FPs). Marked coincidences indicate all possible coin-
cidence error types (FN and FP coincidences) entering the number of
coincidences after sorting (nσ

emp)

probability of joint-firing in one bin as P = p1· p2. The
probability distribution of the coincident events can be ap-
proximated by a Poisson distribution (for a derivation see
Grün et al., 2002a):

ψ(n; pi ; N ) = (npred)n

n!
· enpred , (2)

with npred being the expected number of coincidences, given
the firing rates:

npred = p1 p2 N = λ1λ2δ
2 N . (3)

The empirically found number of coincidences nemp is
then compared to the predicted value npred using the Poisson
distribution (Eq. (2)). Significant deviation from the expected
value is estimated by the joint-p-value, i.e. the cumulative
probability of having nemp or even more coincident events
(gray area from nemp to ∞ under the probability density
curve in Fig. 1(a), middle distribution). For better visibility
of the relevant significance values we express the significance
as a non-linear (log-)transformation of the joint-p-value �,
resulting in the significance measure ‘joint-surprise’ js:

js(�) = log
1 − �

�
, (4)

with

�(nemp|npred) =
∞∑

n=nemp

(npred)n

n!
e−npred . (5)

When the value of js exceeds an a priori threshold, e.g. 1%
or 5%, the synchrony is classified as significant.

2.2. Statistical model of spike sorting errors

We shall now formulate a statistical model on how spike
sorting errors may affect neuronal spike trains. Given si-
multaneous spike trains of two neurons (Fig. 1(b), top), we
assume a uniformly distributed probability for spikes to be
missed as false negatives, or that spikes may be added with
uniform probability as false positives to the spike trains (for
illustration see Fig. 1(b), bottom). Both error types are ap-
plied independently to each neuron. Effectively we assume
the neurons to be recorded from different electrodes, such
that neuronal activity of one neuron may only be registered
at one electrode, and that errors do not interact across elec-
trodes. Thus, for a single neuron the different errors are
assumed to be applied independently, however excluding the
unrealistic case that an introduced FP spike is considered as
FN.

Errors are expressed as fractions σ+
i for FPs and σ−

i for
FNs of the original firing rates of neuron i = 1, 2. As a
result, the firing rate of neuron i after sorting (λi

σ ) is the sum
of three terms, i.e. the original rate (λi), the FP rate and the
FN rate:

λi −→ λσ
i = λi + λi · σ+

i − λi · σ−
i = λi · (1 + σ+

i − σ−
i ).

(6)
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Thus sorting errors alter the original firing rates λi by con-
taminating the spike trains. False negatives reduce the rate,
whereas false positives enhance the rate, and they may com-
pensate for equal error rates. Thus, the resulting firing rate
after sorting may be larger or smaller than the original rate
depending on the relative contributions of errors.

In the following, the index σ will indicate a variable after
sorting. For simplifying reasons we define the variable σ i for
the combined influence of errors as:

σi = σ−
i − σ+

i . (7)

Inserting Eq. (6) and using Eq. (7) in Eq. (1), we similarly
get new values for the firing probability per time bin:

pi −→ pσ
i = pi · (1 + σ+

i − σ−
i ) = pi · (1 − σi ). (8)

2.3. Simulations

For understanding the influence of spike sorting errors on sig-
nificance estimation by the unitary events method, we make
use of two approaches: analytical derivation and numerical
simulations. For the simulations we follow the approach in-
troduced in Grün et al. (1999). Neuronal spiking activities are
realized as a combination of independent background activ-
ity and correlated spiking activities. The background activity
is generated as realizations of stationary Poisson processes
with rate λ′

i for each neuron i = 1,2. Correlations between
the neurons are introduced by inserting coincident events of
rate λc simultaneously to both processes. Then the total rate
of the neurons reads

λi = λc + λ′
i , i = 1, 2. (9)

As a result, each of the simultaneous spike trains contain
intermixed independent background spikes and correlated
spikes. The consecutively applied sorting errors affect spikes
irrespective of their origin.

3. Results

This section presents results for the expected and empirical
number of coincidences after sorting as functions of the un-
perturbed (“original”) values and of the error rates (Sections
3.1.1 and 3.1.2) and under variation of physiological param-
eters, i.e. firing rates of the neurons and degree of correlation
(Sections 3.2.1 and 3.2.2). These results find entry in the

evaluation of the significance of joint-spike events. The in-
fluence of sorting onto the latter is explored in Sections 3.1.3
and 3.2.3.

Analytical descriptions serve to derive the expected and
empirical number of coincidences after sorting given the
original values and to evaluate their effects on the signif-
icance. In addition, numerical simulations of simultaneous
spike trains of controllable firing rates and degree of correla-
tion allow to study the influence of physiological parameters
on the various measures under sorting errors.

3.1. Dependence on error rates

3.1.1. Number of expected coincidences

In the following we derive the relation between the expected
number of coincidences before (npred, original value) and
after sorting (nσ

pred). Their relation results directly from the
sorting model introduced in Section 2.2. By substituting in
the expression for the original expected number of coinci-
dences (Eq. (3)) the expression for the firing probabilities
after sorting (Eq. (8)), we obtain for the expected number of
coincidences after sorting:

npred −→ nσ
pred = (1 − σ1)p1 · (1 − σ2)p2 · N

= npred · (1 + σ+
1 − σ−

1 ) · (1 + σ+
2 − σ−

2 ).

(10)

The expected number of coincidences after sorting nσ
pred is

proportional to the expected number of coincidences before
sorting, multiplied by scaling factors that contains the error
rates σ+

i and σ−
i . In Fig. 2 (top) it can be seen that the

predicted number of coincidences after sorting nσ
pred is an

increasing function of σ+
1 and σ+

2 and a decreasing function
of σ−

1 and σ−
2 . Thus, depending on their relative amounts,

nσ
pred may be larger (for σ+

i > σ−
i , i = 1, 2) or smaller than

npred (for σ+
i < σ−

i , i = 1, 2) as a direct consequence of the
sorting errors onto the firing rates (Eq. (6)). This in turn leads
to a different position of the probability distribution used for
significance estimation (cf. Fig. 1(a)).

3.1.2. Number of empirical coincidences

The empirical number of coincidences after sorting is not a
mere function of altered firing rates as the expected number
of coincidences, but is also a function of changes in the
number of joint-events across neurons. New coincidences
may be created and/or deleted by sorting:

nemp −→ nσ
emp = nemp − nFN + nFP . (11)
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Fig. 2 Number of coincidences and resulting significance as a function
of various combinations of error rates. Number of expected (top row)
and empirical (middle row) coincidences after sorting and joint-surprise
after sorting (bottom row), as a function of errors applied to neuron 1
(either FPs (σ+

1 ) or FNs (σ−
1 )) in combination with different error types

and rates applied to neuron 2 (a–d, either FPs (σ+
2 ) or FNs (σ−

2 )). (e)
neuron 1 experiences the two different types of errors, while neuron 2
is perfectly sorted (no errors). For each curve the second error rate is

constant. Curves for nσ
pred (top), nσ

emp (middle) and jsσ (bottom) with
the same gray level correspond to the same parameters. In each of the
cases, only two error types (out of four possible) are applied, the other
two are set to zero. Crosses show the symmetrical cases where the two
applied errors are of equal absolute amount. Additional parameters are
the same for all cases and set to λ′

1 = λ′
2 = 20 Hz, λc = 2 Hz, T = 100

seconds, bin size δ = 1 ms

As illustrated in Fig. 1(b) (bottom) the number of coinci-
dences deleted by false negative spikes (nFN) may be com-
posed by three contributions: spikes originally involved in
coincidences may be deleted from neuron 1, or from neuron
2, or simultaneously from both neurons. This is expressed
as:

nFN = nemp · [σ−
1 (1 − σ−

2 ) + σ−
2 (1 − σ−

1 ) + σ−
1 · σ−

2 ].

(12)

On the other hand, wrongly assigned spikes may lead to
false positive coincidences (nFP). By inserting spikes either
in one or in the other neuron at the very same time when
the corresponding other neuron contributes with an original
spike, or inserting two false positive spikes in the two neurons
coincidently in time, new coincidences are created:

nFP = npred · [σ+
1 (1 − σ−

2 ) + σ+
2 (1 − σ−

1 ) + σ+
1 · σ+

2 ],

(13)

(see appendix for a formal derivation of Eqs. (12) and
(13)). Inserting these expressions in Eq. (11) and rearranging
the terms, leads to the following relation for the empirical

number of coincidences after sorting:

nσ
emp = (1 − σ−

1 )(1 − σ−
2 ) · [nemp − npred]

+(1 + σ+
1 − σ−

1 )(1 + σ+
2 − σ−

2 ) · npred. (14)

As a result, the empirical number of coincidences nσ
emp after

sorting can be expressed as a function of the original ex-
pected and empirical number of coincidences, multiplied by
factors containing the error rates. The first term consists of
the difference of the empirical and the expected number of
coincidences, i.e. the original “excess” coincidences, multi-
plied by a factor consisting of false negative errors only. The
more false negatives occur, the more the factor is deviating
from 1 to smaller values in a nonlinear fashion. Thus, excess
coincidences may only be reduced due to sorting errors. The
second term is actually the expected number after sorting (cf.
Eq. (10)). Interestingly, only here false positive errors enter
the expression for the empirical number of coincidences af-
ter sorting. As discussed in Section 3.1.1, the errors may
–depending on the relation of the errors rates– compensate
to 0, or may lead to a factor larger or smaller than 1.

Two important results may be extracted from this discus-
sion of Eq. (14) and are depicted in Fig. 2 (middle row):
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� False positive spikes contribute to chance coincidences
only and increase them.

� False negatives are the only error type that affects excess
coincidences and may only lead to a reduction of their
number.

3.1.3. Significance

In the previous two sections we learned that the empirical
as well as the expected number of coincidences are affected
by both types of sorting errors. These two measures enter
the significance estimation of the empirically found number
of coincidences given the number of coincidences expected
by chance (Eq. (4)), i.e. we obtain now a value jsσ , as a
function of nσ

emp and nσ
pred :

jsσ = js
(
nσ

emp, nσ
pred

)
, (15)

where nσ
pred defines the mean of the distribution that enters

the significance measure (Eq. (2)). In addition, this number
also affects the shape of the distribution: the larger the mean,
the wider the distribution (a feature of the Poisson distribu-
tion, Fig. 1(a)), and thus the larger the empirical number of
coincidences required for significance. Since the errors enter
both the empirical and the expected number, it is not obvious
how the significance measure is affected.

Figure 2 (bottom row) shows that the value of the joint-
surprise after sorting jsσ is always decreasing, irrespective
of the combination of error types applied to the two neurons.
If only one error rate is modified, the offset of the decreasing
joint-surprise is higher (light gray lines) than if another error
is also applied (darker lines). Identical levels of the error rates
are marked additionally by crosses. Their slope is always
steeper than for non-identical levels (i.e. when one neuron
experiences less errors), indicating an even stronger effect
for identical error levels. Therefore we restrict ourselves in
the following to the worst case scenario, i.e. to the case σ−

1 =
σ−

2 = σ− and σ+
1 = σ+

2 = σ+, without loss of generality but
thereby lightening the formalism.

In order to investigate more deeply where the overall de-
crease of significance originates from, we jointly observe
nσ

pred, nσ
emp and jsσ as functions of (symmetrical) false nega-

tives and false positives error rates (Fig. 3). As expected (Eqs.
(14) and (10) and Fig. 2 (bottom)), both measures decrease
with σ−, however nσ

emp reduces more rapidly with increasing
σ− than nσ

pred (solid gray lines). As a result, the significance
also decreases with increasing σ− (solid black line). For FPs
only (σ− = 0 and increasing σ+), i.e. adding chance coinci-
dences only, nσ

emp and nσ
pred increase in parallel (dashed gray

lines). Again, the joint-surprise decreases with increasing
errors (dashed black line), however for a different reason.
Although the difference of the empirical and the expected
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Fig. 3 Number of coincidences and resulting significance as a func-
tion of error rates. Two situations: increase of σ− while σ+ = 0 (solid
lines), and increase of σ+ while σ− = 0 (dashed lines). For each of the
situations, the empirical (nσ

emp, dark gray) and the expected number of
coincidences (nσ

pred, light gray), as well as the resulting joint-surprise
( jsσ , black) are shown. Both jsσ (σ−) and jsσ (σ+) decrease with error
increase, although for increasing σ+ the underlying number of coin-
cidences increases. Parameters: λ′

1 = λ′
2 = 20 Hz, λc = 0.15 Hz, 100

seconds, bin size 1 ms

number stays constant, due to increasing the mean and thus
the width of the distribution the empirical number becomes
less significant. As a consequence, both types of errors tend
to reduce the significance of the observed coincidences after
sorting, although the absolute number of coincidences may
even increase with false positive errors.

Figure 4(a) illustrates the relation of the joint-suprise af-
ter sorting in relation to the original value. Interestingly, this
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Fig. 4 Underestimation of significance of synchronization after spike
sorting. The ratio between the joint-surprise after sorting jsσ and the
original significance js is shown under variation of σ+ for fixed values of
σ− (dashed lines) and under variation of σ− while σ+ has a fixed value
(solid lines). (a) σ− = 0 (dashed) and σ+ = 0 (solid); (b) σ− = 0.08
(dashed) and σ+ = 0.08 (solid). (b, inset) Same data and parameters
as in b), but now colored according to the relation of the error rates.
Portions of the curves for which holds σ+ < σ− are marked in light
gray, for the condition σ+ > σ− they are marked in dark gray
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ratio ( jsσ /js) is always smaller than 1, and decreases with
increasing sorting errors, irrespective of error type. For false
positive errors only (dashed line), the significance is less
drastically reduced than for the same amount of false nega-
tive errors (solid line). This is particularly surprising, since
in case of FP errors new coincidences are created and no
coincidences are deleted.

Figure 4(b) shows the same curves as in panel (a) but for
different combinations of error rates: instead of the respective
other error to be set to 0, here it is set to 0.08. Now both
curves start at values lower than 1, and cross each other. The
crossing point is exactly at σ− = σ+. It is worth noticing
that although the case σ− = σ+ balances the effect of errors
on the firing rates (Eq. (6)), it still affects (and reduces) the
significance after sorting. The inset shows that for the part
of the curves always being largest (black line) holds the
condition σ+ > σ−, again indicating that FNs reduce the
joint-surprise more strongly than FPs do.

3.2. Dependence on physiological parameters

In this section we evaluate the dependencies of the various
measures on physiological parameters, such as background
rates λ′

i of the neurons i = 1, 2 and injected coincidence
rate λc. We shall make use of simulations as introduced
in Section 2.3. Since we are interested in the change of
the coincidence numbers after sorting in relation to before
sorting, we again express them as ratios. Also here, we only
consider symmetrical error rates and use now Eq. (10) and
Eq. (14) in which we have replaced σ−

1 = σ−
2 by σ− and

σ+
1 = σ+

2 by σ+.

3.2.1. Expected coincidences

The relation of the expected number of coincidences after
sorting in relation to before sorting is given by Eq. (10)
divided by npred:

nσ
pred

npred
= (1 + σ+ − σ−)2. (16)

Thus, nσ
pred/npred does not show any dependence on rates, but

only a quadratic dependence on error rates.

3.2.2. Empirical coincidences

We analyse here the ratio between nσ
emp (Eq. (14)) and nemp.

As introduced by Grün et al. (2002b) the latter can be ex-
pressed as the expected number given the uncorrelated neu-
ronal activity plus the additionally injected coincidences (of
rate λc):

nemp = (λcδ + λ′
1δ · λ′

2δ) · N . (17)

For the expression of the expected number of coincidences
we replace in Eq. (3) the rates by Eq. (9):

npred = (
λc + λ′

1

)
δ · (

λc + λ′
2

)
δ · N . (18)

Inserting Eqs. (17) and (18) into Eq. (14) and rearranging
leads to:

nσ
emp

nemp
= (1 − σ−)2 + (2σ+ − 2σ−σ+ + σ+2)

npred

nemp
(19)

= (1 − σ−)2 + (2σ+ − 2σ−σ+ + σ+2)

×
(
λ2

c + λ′
1λc + λ′

2λc + λ′
1λ

′
2

)
δ2

(λcδ + λ′
1λ

′
2δ

2)
. (20)

Figure 5(a) illustrates the two variables and their relation
(nσ

emp/nemp) as a function of firing rate (top) and as a func-
tion of coincident firing rate (bottom) for fixed error rates.
The graph shows that both, nσ

emp and nemp, increase with co-
incidence rate as well as with firing rate, with nσ

emp always
being lower than nemp. For increasing λc (bottom), nσ

emp in-
creases with smaller slope than nemp. As a consequence, the
relation nσ

emp/nemp decreases rapidly with λc. An increase in
firing rate (top) leads to a slightly smaller increase of nσ

emp as
compared to nemp, such that nσ

emp/nemp grows rather slowly.
Figure 5(b) shows the dependence on error rates.

nσ
emp/nemp increases with σ+ approximately linearly, with

changes in firing and coincidence rates. Increasing firing
rate increases the slope (top), whereas increasing coinci-
dence rate decreases it (bottom). Taking the dashed line
(corresponding to the parameters used in (a)) as a refer-
ence, we notice that the slope varies non-linearly with firing
and coincidence rates. nσ

emp/nemp decreases approximately
linearly with σ− (Fig. 5(c)). Here, changes in rate or co-
incidence rate do not influence the slope of the relation
but rather the intersection with the vertical axis, again in
a non-linear way. With increase in rate the vertical offset
of nσ

emp/nemp slightly increases, with increasing coincidence
rate it slightly decreases. Note that the ratio may be larger
than 1 for high firing rates or low coincidence rates, i.e.
after sorting the empirical number of coincidences may be
increased.

3.2.3. Significance

Here we analyze how the significance of synchronized
spikes changes due to sorting errors in combination with
the changes of physiological parameters explored in the for-
going subsections. We have seen above that the empirical
number of coincidences may increase or decrease depending

Springer



336 J Comput Neurosci (2006) 21:329–342

0 0.1 0.2
0.7

0.8

0.9

1

1.1

1.2

b)

λ/
2
 (Hz)

n em
p

σ
/n

em
p

σ+
0 0.1 0.2

0.6

0.8

1

1.2

c)

σ

0 0.1 0.2
0.7

0.8

0.9

1

1.1

1.2
λ

c
 (Hz)

σ+

n em
p

σ
/n

em
p

0 0.1 0.2

0.6

0.8

1

1.2

σ

 5
10
20
50
100

 0
 1
 2
 5
10

0 5 10
0

500

1000

1500

n

λ
c
  (Hz)

n
emp

n
emp
σ

0 50 100
0

100

200

300

400

500

n

λ
2
/   (Hz)

a)

n
emp
σ

n
emp

0.6

0.7

0.8

0.9

1

n
emp
σ /n

emp

0.6

0.7

0.8

0.9

1

n
emp
σ /n

emp

Fig. 5 Influence of firing, coincidence and error rates on the number
of coincidences. (a) Empirical number of coincidences before (nemp,
dashed-dotted line) and after sorting (nσ

emp, dashed line) and their rela-
tion nσ

emp/nemp (solid line; corresponding axis on the right) as a function

of backgound firing rate λ
′
2 (top) and of injected coincidence rate λc

(bottom). Values of error rates: σ+ = 0.08, σ− = 0.16. (b,c) nσ
emp/nemp

as a function of error rates, in (b) as a function of σ+, and in (c) as a

function of σ−. In the top row, the background rate of neuron 2 is varied
(see legend) while λc = 2 Hz. In the bottom row, the coincidence rate
is varied (see legend) while λ

′
2 = 20 Hz. In all plots (a,b,c) λ

′
1 = 20 Hz.

The thin black line depicts for reference the identity relation
nσ

emp

nemp
= 1.

The dashed thin lines mark the parameters used in (a). The values cho-
sen for σ+ and σ− in (a) are (about) the average error rates extracted
by Harris et al. (2000)
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Fig. 7 Example of loss of significance due to sorting errors. Two
simultaneous spike trains are simulated with background rates λ′

1 =
λ′

2 = 20 Hz and a coincident rate of λc = 0.15 Hz. Duration of the
simulation T = 105 ms, time resolution δ = 1 ms and 50 repetitions
for each parameter setting of the error rates. Each bin in the matrix
corresponds to a set of parameters σ− (horizontal axis) and σ+ (vertical
axis), both varied from 0 to 0.3 in steps of 0.01. The original joint-
surprise value without any sorting errors (bottom left corner) is j̄ s =
1.9 ± 1.2, i.e. well above the 5% level which corresponds to a value of
js = 1.28 (switch dark to light in color bar). Increasing levels of sorting
errors cause the significance jsσ to progressively decrease (from left to
right and bottom to top). Light values represent jsσ above, dark values
below significance threshold of 5%

on the specific parameter combinations. The change of the
predicted numbers depends only on the error rates, i.e. no
dependence on firing and coincidence rate is present. Now it
needs to be evaluated how the significance of empirical coin-
cidences given the predicted numbers changes with sorting.
Figure 6(a) illustrates the changes of the joint-suprise rela-
tion js as a function of firing rate (top) and coincidence rate
(bottom). With increasing λ

′
2, both components decrease.

jsσ is always smaller than js, but js decreases faster and
thus the relation of the two decreases. Although both com-
ponents increase with increasing λc, the ratio also decreases,
since jsσ is always smaller than js and does not increase as
much as js.

Figure 6(b, c) shows the dependence of the ratio jsσ /js
on the error rates (in b) for σ+, in c) for σ−) under varia-
tion of the firing rate (top) and variation of the coincidence
rate (bottom). As already shown in Fig. 4, the relation de-
creases with error rates, and we see here that the firing and
coincidence rates are only slightly modifying the slopes. The
dominating parameters are the error rates.

In summary, as a general result we observe that sorting er-
rors always reduce the significance, irrespective of the error
type, and mostly independent of the physiological parame-
ters. Figure 7 shows an example where the originally signif-
icant synchronization is changed due to the sorting errors to
an unsignificant result.

4. Discussion

4.1. Sorting errors reduce significance of spike
synchrony

We studied the influence of spike sorting errors on the anal-
ysis of unitary events. Our statistical model of spike sorting
is based on the assumptions that false positive and false neg-
ative errors are likely to occur at any instant in time and
independently for the two neurons. As a consequence, sort-
ing errors lead to erroneous statistical rate estimations, as
well as to erroneous coincidence counts and erroneous sig-
nificance of the latter. In order to understand the influence
of these errors on the significance estimation of coincident
spikes, we derived analytically the predicted and the em-
pirical number of coincidences after sorting as compared
to their original values before sorting. In addition we also
tested, both analytically and through simulations, the influ-
ence of physiological parameters like the firing rate of the
neurons and the coincidence rate. We showed that the joint-
surprise reduces with error rates, finally leading to a loss of
significance of originally significant spike synchronization.
It turned out, that the significance of spike synchronization
is always reduced by sorting errors irrespective of the error
type. This also holds for non-symmetrical combinations of
error rates experienced by the two neurons, however with less
strong reduction of the significance as compared to the sym-
metrical case. The reduction of significance is mainly due to
the “normalization” of the observed coincidence counts by
comparison to their expected number. However, the reason
for significance reduction is different for the different error
types.

False positive spikes lead to an increase of the empirical
as well as of the expected number of coincidences. Most in-
terestingly they even increase by the same absolute amount,
which is due to additional chance coincidences only. The
difference between the two measures are the “excess coin-
cidences”, whose relative amount reduces, thus leading to a
decrease in significance.

Missing spikes (FNs) reduce the number of expected co-
incidences as well as the empirical number. The expected
number is reduced due to decreased firing rates. The em-
pirical number in addition experiences a reduction of the
excess coincidences (first term in Eq. (14)). Therefore the
significance reduces (Fig. 3, solid lines). The impact of FNs
on synchronized spikes is strong (for error rates found by
Harris et al. (2000) the joint-surprise may be reduced by
40%, cf. also Fig. 4), which is explained by the fact that the
loss of only one spike of a synchronized event already leads
to the loss of the coincidence. Furthermore, the higher the
coincidence rate, the larger the chance to miss a spike, and
thus the larger the reduction of the empirical coincidences

Springer



338 J Comput Neurosci (2006) 21:329–342

(see Fig. 5(a,b), bottom). In summary, a conservative sorting
strategy, i.e. rather missing a spike than capturing a wrong
one, might lead to a stronger loss of detectability of originally
existing significant synchronization.

Co-occurrence of both error types may lead to partial
(for σ− �= σ+) or even to full cancellation (for σ− = σ+) of
change of the expected number of coincidences after sort-
ing. Depending on the net excess of errors the expected
number may be increased (for σ− < σ+) or decreased (for
σ− > σ+). For the empirical number, the errors may not
cancel in respect to the number of excess coincidences.
Excess coincidences may be deleted by FNs, but cannot
be created by FPs, since newly created coincidences en-
ter as chance coincidences only. In addition, the proba-
bility for generating chance coincidences is much smaller
than the impact of injected coincidences (cf. Eqs. (17) and
(18)), and thus the effects on the significance are not can-
celed in case σ− = σ+ (see also Fig. 4). Interestingly, the
available literature on the relative amounts of both errors
documented a tendency towards higher values of FNs as
compared to FPs (Harris et al., 2000; Wood et al., 2004),
indicating a preference for conservative strategies. Thus
one may conclude that neural synchronization is typically
underestimated.

4.2. Relation to cross-correlation

The cross-correlogram is a widely used method for estimat-
ing the correlation between the spiking activities of two neu-
rons (Perkel et al. 1967b). The method allows to study zero-
lag and delayed coincidences. The unitary event analysis
method concentrates on zero-lag (or near-coincident) events
and may be directly compared to the zero-lag (or near-by)
bins of the cross-correlogram. Cross-correlograms are often
used without any normalization and just provide the empir-
ical coincidence counts (raw cross-correlation). In addition,
normalization procedures are availabe, that account for the
expected number of coincidences given the firing rates of the
neurons (cross-covariance) by subtracting the latter from the
empirical counts. Normalizing this number to the product of
the variances of the single processes yields the correlation
coefficient (for an extensive discussion and comparison of
such measures see Aertsen et al. (1989)). Thus, the zero-bin
correlation coefficient in our variables reads r = nemp−npred√

T ·λ1
√

T ·λ2
.

This measure behaves very similarly to the joint-surprise,
however with different abolute numbers.

Let us emphasize that correlation analyses which only
consider the raw (i.e. empirical) coincidence counts, e.g. like
in an uncorrected cross-correlogram, would find increased
synchronization in the case of FPs. However relating the
observed number of coincidences to the expected ones, as

done in the UE analysis (Grün et al., 2002a, b, 1999) or by
the correlation coefficient, corrects for that.

4.3. Experimental situations that violate UE
assumptions

Inherent assumptions of the unitary event analysis are sta-
tionary Poisson processes. However, experimental data typi-
cally do not fulfill these assumptions and methods to account
for non-stationary (Grün et al., 2002b; Grün 2003) and non-
Poisson processes (Pipa and Grün, 2003; Pipa et al., 2003;
Pipa 2001; Pipa et al., 2006) have been worked out.

In case of non-stationary processes in time the solution
to avoid false positives is to perform the analysis in slid-
ing window fashion to account for the change in rate (Grün
et al., 2002b). In case of non-stationarity across trials, the
expected number of coincidences is calculated within the
sliding window in a trial-by-trial manner and then summed
yields the correct estimate for the expected number of co-
incidences (Grün et al., 2003). By doing that we account
for non-stationary firing rates. A change in brain state or
different behavioral variables could lead to coherent change
of neuronal firing rates, e.g. by a common increase in the
membrane potentials as discussed in Brody (1998). In the
same way as the firing rates co-vary the amount of chance
coincidences do: the larger the firing rates the more chance
coincidences. As discussed before such a case is well treated
by the unitary event method which is specifically designed
to evaluate the degree of excess synchrony as compared to
chance synchrony and to estimate its significance, also under
non-stationary conditions.

Sorting errors like the loss of coincident spikes due to
an overlap of the spike waveforms, would trivially covary
with covariation of the rates. However, treating the data in
segments of stationary firing rates, we are per segment in a
stationary situation which is discussed below (Section 4.4.2).

In Grün et al. (2002a) we have shown that the unitary event
analysis method reacts robustly to non-Poissonian point pro-
cesses that were simulated as Gamma processes. Although
the auto-correlation structure of the spike trains affects the
shape of the coincidence distribution, it turned out that as-
suming a Poisson distribution -as analytically derived for
Poisson spike trains (Grün et al., 2002a)- leads to conserva-
tive estimates for experimentally found ranges of the shape
factor (Pipa, 2001; Pipa et al., 2006).

We also performed the analysis for the dependence of
FN and FP sorting errors for the case of Gamma processes
(not shown here) and found no differences in the results. FN
and FP errors applied to Gamma processes also lead to a
reduction of the sigificance as in the case of Poisson spike
trains.
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Fig. 8 Experimentally relevant cases of spike sorting. Sketch of possi-
ble origins of spike sorting errors due to specific cluster configurations
in the space of two spike-waveform features. Triangles, squares and cir-
cles represent spikes, contours represent putative clusters, and dashed
lines indicate the two neurons whose correlation is analyzed. (a) Due to
the presence of other neurons they may erroneously provide (FP error;
circles in upper left cluster) or “steal” (FN error; triangles in lower
right cluster) spikes to/from the neurons under consideration. (b) Ghost
cluster. A significant amount of overlapping spikes originating from the

two neurons under consideration for correlation analysis, gives rise to
a ghost cluster (middle cluster containing circles), which “steals” coin-
cident spikes from the two neurons. (c) Correlated errors. The neurons
being analyzed are recorded from the same electrode and their cluster
separation is poor, indicated by squares from the left cluster mixing
with triangles in the right cluster, and vice versa. Therefore a number
of spikes are assigned from one neuron to the other and vice versa,
resulting in false negatives of one neuron that become false positives in
the other

4.4. Typical errors in sorting

Now we shall relate our considerations to typical exper-
imental cases, thus eventually abandoning the model hy-
potheses of independent errors and neurons recorded from
different electrodes. Furthermore we will also discuss this in
the framework of cluster analysis in spike-waveform feature
space.

4.4.1. Independent sorting errors

Here we investigate the correlation between two neurons,
each of which experiences FN or FP errors from other, un-
related neurons. This is the case if we consider two neurons
that were recorded and sorted from two different electrodes.
It may also be the case for two neurons that are recorded
from the same electrode and are well sorted, but one or both
neurons experience errors due to yet other neurons (see Fig.
8(a)). This is actually the case we studied in the framework
of our statistical sorting model, and learned that irrespective
of the error type the resulting significance is reduced. The
reduction is strongest for the case that both neurons expe-
rience the same degree of errors, but not as pronounced if
one of the neurons experiences a smaller amount of errors
than the other. If only one neuron is exposed to errors, the
reduction of significance is even smaller (Fig. 2, all upper
joint-surprise curves).

In the case of a rather conservative sorting strategy, i.e. if
one tries to catch as little FPs as possible thereby accepting
the danger of loosing spikes (i.e. having more FNs), the sig-

nificance is more reduced than for the case of a rather tolerant
sorting strategy. The latter would represent the case if one
tries to catch as many spikes as possible while accepting false
positives. In the cluster space of a given sorting algorithm, a
conservative sorting strategy would correspond to accepting
only spikes from within a radius smaller than the outer bound
of the cluster of points, whereas a tolerant sorting strategy
would take spikes from a radius catching all the points in
the cluster of points. Schmitzer-Torbert et al. (2005) sug-
gested measures for cluster quality. The L ratio measures the
amount of noise observed in the vicinity of the cluster. The
authors showed that a high value of the L ratio correlates with
a high number of FNs, the case we would call conservative
sorting.

Directly related to our study is the work by Bedenbaugh
and Gerstein (1997) and Gerstein (2000) who evaluated the
correlation coefficient as a measure for synchrony between
unresolved multi-neuron recordings. They assumed the ac-
tivities recorded on each of the two electrodes to be mixtures
of spiking activities of up to three neurons which may fire
independently or include correlations. The focus is on the
resulting correlation between the multi-neuron recordings
from two electrodes as functions of the original correlation
of neurons across electrodes and as functions of correla-
tions between neurons at a single electrode. Thus mixtures
of spikes trains are studied which in our scenario may be
interpreted as false positives, but the framework neglects the
problem of missing spikes. Under specific parameter set-
tings, Gerstein’s (2000) results are directly comparable to
ours. He also found that the resulting correlation between
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spike trains that experienced contamination with uncorre-
lated spikes is reduced as compared to the original, distant
correlation between two neurons.

4.4.2. Overlapping spikes

Another relevant situation in spike sorting is that coincident
spikes of two neurons recorded at the same electrode may
overlap in time such that the resulting waveform may re-
sult in the formation of a ghost cluster (Fig. 8(b), cluster
that includes circles). As a result, the simultaneous spikes
are systematically removed from the two spike trains under
consideration.

The work by Bar-Gad et al. (2001) studied the influ-
ence of missing coincident spikes onto the cross-correlation
measure, under the specific condition that a spike is fol-
lowed by a noticable dead time, and neurons have high fir-
ing rates. Under these conditions they found that the shape
of the cross-correlation function alters: zero-delay coinci-
dences were lacking, but close delayed coincidences were
enhanced as compared to background. Corrections for ex-
pectancy were not performed. Thus, in our words, they stud-
ied the influence of false negative coincidences and found
for the case of zero-delayed coincidences a reduction in their
numbers.

In our framework this case can be represented as a specific
deletion of coincident spikes. As a consequence, the empir-
ical number of coincidences is reduced by a fraction σ−

coinc:
nσ

emp = (1 − σ−
coinc) · nemp. Compared to the case where FN

errors are independently applied to both neurons, case which
leads to quadratic dependence on σ−

coinc (substitute in Eq. (14)
σ−

i by σ−
coinc and set σ+

i = 0, i = 1, 2), here the deletion of
coincident events leads also to a reduction of the empiri-
cal coincidences, but with a slope that is less steep. On the
other hand, with increasing σ−

coinc the expected number is also
decreased, however by a smaller amount as compared to in-
dependently applied FN errors (Eq. (10)), since here only
spikes that are involved in coincidences may be deleted. The
expected number of coincidences then reads: nσ

pred = (λ1 −
λdel) · (λ2 − λdel) · δ2 · N , with λdel = nemp·σ−

coinc

T the spike re-
duction rate. As a result, also in the case of a joint dele-
tion of coincident spikes, the joint-surprise decreases, even
with a similar slope as for the case of independent FN
errors.

4.4.3. Overlapping clusters

Another problem that may arise if different neurons are
recorded and sorted from the same electrode is, that spikes
from one neuron may be assigned to another neuron. Quirk
and Wilson (1999) discussed such a case for bursting neu-

rons, where late spikes in a burst were different in shape
and thus were wrongly assigned to the other neuron. Using
cross-correlation analysis for the identification of correlation
between the spiking activities of the two neurons, they found
artificially increased delayed coincidences. Although their
case does not apply to zero-bin correlations, the case that
spikes of one neuron are assigned to another is of general
interest.

This type of correlation errors can be expressed in our
framework as FNs of one neuron become FPs of the other.
The empirical number of the coincidences will stay the
same, since coincidences will not be created by moving
spikes to the other spike train, nor will spikes of coinci-
dences be moved to the other neuron since that would cor-
respond to another waveform (overlapping spikes). Thus,
only the expected number of coincidences is influenced:
nσ

pred = (1 − σ 1)λ1 · (1 + σ 1)λ2 · δ2 · N , with σ 1 the prob-
ability of assigning spikes to a wrong cluster. This leads
to a decrease of the expected number of coincidences, and
consequently the significance of the empirical coincidences
increases with error rate.

A related case is if waveforms lead to overlapping clusters
of entries in the feature space (Fig. 8(c)), a case indicated
as of bad separation of clusters using the isolation distance
measure suggested by Schmitzer-Torbert et al. (2005). If
anyway spikes are assigned to distinct clusters, there is a
high likelyhood to get false negative and false positive errors.
Spikes from one cluster may be assigned to the other, i.e. FNs
of the first become FPs of the other, and also vice versa. Thus
errors will occur in both directions. The empirical number
of coincidences will not be affected by that, for the same
reasons as discussed for the one-way case above. However,
the expression for the expected number of coincidences will
get additional terms expressing the probability for FNs from
the second cluster becoming FPs in the first (via σ 2): nσ

pred =
(1 − σ 1 + σ 2)λ1 · (1 + σ 1 − σ 2)λ2 · δ2 · N . As a result the
error rates may partly compensate each other and thereby
leading to a less strong increase of the resulting joint-surprise
as compared to the one-way case.

In summary, correlated errors specifically may occur if
different neurons are recorded and sorted from a single elec-
trode. Overlapping spikes may be assigned to a third cluster,
thereby leading to a loss of empirical coincidences. As a con-
sequence the measured significance is reduced and the under-
lying existing correlation between neurons may be overseen.
Correlation analysis of the activities of two neurons that
experienced wrong assignments of spikes from one neuron
to the other (and/or vice versa) is dangerous. The detected
significance is prone to indicate false positive correlation.
Specifically the case when only one of the neurons is giving
spikes to other.

Springer



J Comput Neurosci (2006) 21:329–342 341

4.5. Conclusions

Spike sorting introduces two types of errors into the coin-
cidence count: false positive and false negatives. If errors
were experienced independently, they both lead to a reduc-
tion of the measured significance as compared to the original
correlation between the two neurons. The reason for the re-
duction is different for the two cases. False negatives simply
partly delete correlated spikes. However, false positives may
increase the correlation, and correlation measures that do
not correct for expectation by chance may conclude false
positive correlation.

If spike trains are sorted from a single electrode, also cor-
related sorting errors may occur, e.g. coincident spikes that
are ignored due to overlapping waveforms, or spikes that
are assigned from one neuron to another. In particular the
latter is problematic if one is interested to detect spike cor-
relation between the two neurons involved, since there is the
danger of detecting false positive correlation. Therefore we
rather suggest to avoid correlating neuronal spiking activity
recorded from the same electrode combined with low qual-
ity of cluster separation. However, for errors resulting from
a neuron not considered, this scenario leads to a reduction
of significance and thus rather to an underestimation of the
underlying correlation.

One main aspect is guiding our future work in this context.
The unitary event analysis was designed to allow for the de-
tection of neuronal assemblies and thus for correlation anal-
ysis of more than two neurons at a time. As a consequence
we aim to understand how spike sorting errors influence the
analysis of higher-order spike patterns. This includes to eval-
uate systems with more than two simultaneous recordings,
which involves a combinatorial increase of cases to consider.

In conclusion, if one is interested in neuronal interaction
in the brain, the activities of single units need to be simultane-
ously observed and analyzed for correlated activity. There-
fore spike sorting is an important, intermediate statistical
analysis for extracting the single unit activities. Subsequent
analysis may be considerably influenced by sorting errors,
and may arrive at wrong conclusions. In this work we have
shown that for the unitary event analysis, independent sort-
ing errors lead to reduced significance, but not to artificial
correlation.

Appendix

Rewriting Eq. (14) yields:

nσ
emp = (1 − σ−

1 )(1 − σ−
2 ) · [nemp − npred]

+(1 + σ+
1 − σ−

1 )(1 + σ+
2 − σ−

2 ) · npred. (14)

After sorting, the experimental spike trains contain FP and
miss FN spikes (cf. Fig. 1(b), bottom). The former occupy
bins that were empty, whereas a fraction of currently empty
bins was previously occupied by the latter. We introduce the
probability pi (+) to find a FP spike in a bin and the joint
probability pi (−, spike) to miss a spike as FN:

pi (+) = σ+
i · λiδ pi (−, spike) = σ−

i · λiδ,

where λi are the original firing rates of neuron i and δ the
bin width. We will refer to the two neurons through the
indices i, j, where i �= j . These expressions are not sym-
metrical because they refer to intrinsically different gener-
ating processes: insertion of new spikes (FPs) versus dele-
tion of already existing spikes (FNs). In the following we
also need the expression for the conditional probability of
missing a given spike pi (−|spike). Using Bayes theorem
we obtain pi (−|spike) = pi (−,spike)

pi (spike) = σ−
i . It follows that

the probability for a (given) spike not to be missed equals
(1 − pi (−|spike)) = 1 − σ−

i .
The number of coincidences after sorting can be expressed

as the sum of the original number of coincidences plus two
additional terms, which correct for the erroneously missed
and produced coincidences due to sorting:

nσ
emp = nemp − nFN + nFP. (A1)

The first of these additional terms is composed of
three contributions. The first two are given by the prob-
ability that either one of the two coincident spikes
is missed: pi (−|spike) · (1 − p j (−|spike)) = σ−

i (1 − σ−
j ).

The last term is the probability that both spikes are missed
as FNs: pi (−|spike)p j (−|spike) = σ−

i σ−
j . This results in:

nFN = nemp · [σ−
i (1 − σ−

j ) + σ−
j (1 − σ−

i ) + σ−
i · σ−

j ].

(A2)

Similarly, the number of false coincidences introduced by
sorting errors (nFP) receives contributions from three terms.
Again, the first two terms are given by the probability that
a FP is synchronous to an already existing spike, i.e. the
product of the probability of a false positive in neuron i
(pi (+)) and the probability that in neuron j an original spike
existed and survived

pσ−
j = p j (1 − p j (−|spike)) = λ jδ(1 − σ−

j ),

with pi defined in Eq. (1). This yields: pi (+)pσ−
j =

λiλ jδ
2σ+

i (1 − σ−
j ). The last term consists of the probability

of a coincidence of FP spikes: pi (+)p j (+) = λiλ jδ
2σ+

i σ+
j .
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In total we obtain:

nFP = npred · [σ+
i (1 − σ−

j ) + σ+
j (1 − σ−

i ) + σ+
i · σ+

j ],

(A3)

We notice here that λiλ jδ
2 N = npred (Eq. (3)) and that the

factor at the right-hand side of Eq. (A3) can be expressed as:

σ+
i σ+

j + σ+
i (1 − σ−

j ) + σ+
j (1 − σ−

i )

= (1 − σi )(1 − σ j ) − (1 − σ−
i )(1 − σ−

j ), (A4)

where we used again σi = σ−
i − σ+

i . After substituting Eqs.
(A2) and (A3) in Eq. (A1) and rearranging we obtain the
relation for nσ

emp in Eq. 14.
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