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Chapter 3
Analysis and Interpretation of Interval and
Count Variability in Neural Spike Trains

Martin Paul Nawrot

Abstract Understanding the nature and origin of neural variability at the level of
single neurons and neural networks is fundamental to our understanding of how
neural systems can reliably process information. This chapter provides a starting
point to the empirical analysis and interpretation of the variability of single neuron
spike trains. In the first part, we cover a number of practical issues of measuring the
inter-spike interval variability with the coefficient of variation (CV) and the trial-
by-trial count variability with the Fano factor (FF), including the estimation bias for
finite observations, the measurement from rate-modulated spike trains, and the time-
resolved analysis of variability dynamics. In the second part, we specifically explore
the effect of serial interval correlation in nonrenewal spike trains and the impact of
slow fluctuations of neural activity on the relation of interval and count variability
in stochastic models and in in vivo recordings from cortical neurons. Finally, we
discuss how we can interpret the empirical results with respect to potential neuron-
intrinsic and neuron-extrinsic sources of single neuron output variability.

3.1 Introduction

In the living animal, neural signals fluctuate on various temporal and spatial scales.
Across experimental repetitions, neural responses may vary considerably in micro-
scopic and macroscopic signals, both in invertebrate and vertebrate brains. Under-
standing how nervous systems ensure reliable function under the variable and seem-
ingly noisy in vivo conditions is a key issue in computational systems neuroscience
that is of fundamental importance for theories on sensory coding, learning and mem-
ory, and behavioral control.
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In this chapter, we introduce methods to analyze two aspects of neural output
variability. The variance of inter-spike intervals reflects intra-trial variability on a
relatively fast time scale of tens to hundreds of milliseconds. In contrast, the vari-
ance of the number of spikes counted during repeated experimental observations re-
flects a variability on a comparably slow time scale of seconds or even minutes. On
theoretical grounds, interval and count statistics are fundamentally related. We will
thus place a special focus on the coanalysis of both aspects, and we suggest ways
to interpret their empirical relation in the light of stochastic models. The present
chapter emphasizes practical issues that are relevant for the analysis of experimen-
tal data. The Appendix provides reference to a number of Matlab tools for point
process simulation and spike train analysis which are publicly available with the
FIND toolbox (Meier et al. 2008). Additional course material including example
data sets is made available at the portal site of the German Neuroinformatics Node
(http:www.g-node.org).

3.2 The Analysis of Inter-Spike Interval Variability

3.2.1 The Coefficient of Variation and Bias of Estimation

Definition 1 We consider the empiric observation of a series of spike events within
a finite interval (a, b] with a < b and duration T = b − a. We assume a finite num-
ber of spike events N within (a, b]. We denote the spike times as a < t1 < t2 <

· · · < tN ≤ b and define the N − 1 inter-spike intervals as X1,X2, . . . ,XN−1, where
Xi = ti+1 − ti . Repeated and independent observations j result in an ensemble of k

independent spike trains, each with a spike count Nj .

Practically, we obtain repeated independent measurements of action potentials
either during repeated experimental trials, the time-frame of which is defined by
the experimental protocol (e.g., in fixed temporal relation to a sensory stimulus pre-
sentation). Repeated observations may also be obtained through segmentation of a
continuous spike train (e.g., recorded during sleep or under spontaneous conditions)
into subsequent, nonoverlapping observation windows of equal length. In this sec-
tion we assume the repeated observation of a spiking process that has a constant
spike rate, and we assume that the constant firing rate is identical in each trial.

The empirical distribution of inter-spike intervals, its mean, variance, and higher
moments generally depend on the length T of the observation window. Suppose that
we empirically sample intervals X that were drawn from a fix interval distribution
f (x) within a finite observation window of length T as in Fig. 3.1A, where the
observation window is expressed in multiples of the mean inter-spike interval (we
will call this the operational time axis). Evidently, we can only observe intervals
X that are shorter than the observation window T , and thus the empirical interval
distribution is f̂ (x) = 0 for x > T (cf. Fig. 3.1B). For all intervals x ∈ (0, T ], the
likelihood of their observation is proportional to T −x, which leads to the following
expression for the empiric distribution
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Fig. 3.1 Bias of CV estimator for a finite observation window. (A) Independent empiric observa-
tions (trials) of a gamma renewal process within the finite observation window (0,2] in operational
time results in an empiric sample of inter-spike intervals X (orange). Intervals X > T ′ cannot be
observed; long intervals are more likely to span across one or both interval limits than short ones.
(B) Gamma distribution f (x) of order α = 2 (gray) and distribution f̂ (x) restricted to intervals
X ≤ T ′ = 2 (orange, (3.1), normalized to unit area). Mean and variance are clearly smaller for
f̂ (x) than for f (x). (C) Dependence of the CV on the observation window. Shown is the expec-
tation value for the empiric squared coefficient of variation CV2 (black) and the Fano factor (gray;
cf. 3.3.1) in dependence on the interval T ′ in operational time for gamma processes of different
order α = 0.5,1,2,4 (from top to bottom). Dashed lines correspond to the Poisson process. For
increasing T ′ the empiric CV2 and the empiric FF approach CV2∞ = 1/α

f̂ (x) =
{

η−1(T − x)f (x) for x ∈ [0, T ],
0 otherwise,

(3.1)

where

η =
∫ T

0
(T − s)f (s) ds

normalizes the distribution to unit area. Thus, long intervals (X � T ) are less fre-
quently observed than short ones (X � T ), a statistical effect also known as right
censoring (Wiener 2003). This becomes intuitively clear when we consider that long
intervals are likely to span across the left or right limit of our observation window
such that, e.g., ti < a < ti+1. On the contrary, multiple small intervals may fit into
one single observation (cf. Fig. 3.1A).

Definition 2 We define the empiric coefficient of variation for a set of inter-spike
intervals as the standard deviation of interval lengths divided by the mean interval
length

CV = SD[X]
E[X] . (3.2)

In the case of repeated independent observations (trials) j we have two options
for computing the CV. The standard procedure is to compute the CV across the
complete set of intervals pooled from all observations. Alternatively, we may first
compute the individual CVj for each trial separately and in a second step calculate
the mean CV = 1

k

∑
CVj across trials. Under stationary conditions where the gener-

ating stochastic process has a constant rate which is identical in all trials it follows
that CV = CV, on expectation.
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Right censoring introduces a systematic error to the empirical estimation of the
coefficient of variation (Nawrot et al. 2008). For a unimodal interval distribution
the empirical CV underestimates the theoretical value CV∞ that is derived from the
full distribution. To explore this effect in more detail we calculated the empirical
CV(T ′) for the widely used model of the gamma interval distribution (see Appendix)
as a function of the observation time. In Fig. 3.1C we explore this dependence for
the squared coefficient of variation because it directly relates to the Fano factor
(see Subsect. 3.3.1). We find that the empiric CV2 drops with decreasing observation
time. Conversely, with increasing observation time, the empiric CV2 approaches the
theoretical CV2∞. The dashed line refers to the special case of the Poisson process
with α = 1. Note, that we expressed observation time T ′ = T/E[X] in multiples
of the mean inter-spike interval E[X] (operational time), which gives results that
are independent of the actual firing rate. In practice, we may produce calibration
curves similar to those in Fig. 3.1C from experimental data to explore this bias
behavior in a given set of data. Elsewhere, we estimated that for regular spiking
cortical neurons, observation intervals that comprise about 5–10 ISIs are practically
of sufficient length to avoid a strong bias (Nawrot et al. 2008).

Due to the finite length T of the observation window, one cannot sam-
ple the full interval distribution f (x) that is generally defined on R+. This
introduces a bias of estimation for the empiric CV which generally leads to
the underestimation of the theoretic CV∞ (Fig. 3.1). Practical consequences:
1. Use long observation windows, i.e., clearly longer than the average ISI
(T � E[X]). 2. If short observation windows are necessary, e.g., to uncover
fast variability dynamics (see Fig. 3.2D), use a fixed window size in opera-
tional time to ensure a constant bias across repeated measurements.

3.2.2 Analysis of Rate-Modulated Spike Trains

The CV measures the dispersion of the interval distribution. It characterizes the ir-
regularity of spike trains and allows one to quantify the stochastic nature of the
observed spiking process. However, the CV is a useful measure only if the spike
rate is constant over time and if the variation of intervals is of stochastic nature such
as in the case of the gamma renewal process illustrated in Fig. 3.1. Whenever a
neuron modulates its output firing rate, e.g., in response to a sensory stimulus, then
this rate modulation strongly influences the empiric interval distribution. Any rate
modulations that are slow compared to the mean ISI will increase the dispersion of
the empiric interval distribution and thus lead to an increased CV which no longer
reflects the stochastic nature of the spiking process alone (see Fig. 3.2A).

Here, we describe one possible strategy to overcome this problem which requires
two additional steps of analysis as demonstrated in Fig. 3.2. First, one obtains an es-
timate λ̂(t) of the time-varying firing rate on the basis of repeated measurements.
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Fig. 3.2 Estimation of interval variability in operational time. (A) Repeated observations of a
rate-modulated gamma process with order α = 4. We expect for the gamma renewal process
CV∞ = 1/

√
α = 0.5. The empiric estimate CV = 0.73 is artificially increased due to the changing

rate. (B) Kernel estimate of the time-varying firing rate λ̂(t) (black) from N = 20 spike trains in A
(triangle kernel, σk = 45 ms) and integrated rate function Λ(t) (maroon). The gray function depicts
the original intensity used to simulate the spike trains in A. (C) Demodulated spike trains in oper-
ational time. Each single spike time in A was transformed according to t ′i = Λ(ti ). In operational
time the empiric estimate CV = 0.46 agrees well with the expectation CV∞ = 0.5. (D) Time-re-
solved estimate of the CV in operational time. Window width is T ′ = 5. (E) Time-resolved CV as
in D back-transformed to experimental time (maroon). The time-resolved CV estimated from the
original spike trains in A (black) is modulated due to the changes in firing rate

Second, one transforms the experimental time axis to the so-called operational time
axis such that the firing rate modulation is compensated (time warping). In opera-
tional time we then proceed with estimating the CV.

3.2.2.1 Step 1. Estimation of the Rate Function

Obtaining a reasonably good estimate of the rate function is crucial. Here, we use the
method of linear kernel convolution (Nawrot et al. 1999; Shimazaki and Shinomoto
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2009; Parzen 1962) with a fixed kernel function. After choosing a kernel shape
which has little influence on the quality of the estimate, one has to fix the kernel
width which determines the time resolution of the rate estimate. In the example
of Fig. 3.2, we first pooled the spike trains from all observations (trials) and then
estimated the trial-averaged rate function. To this end, we chose a symmetric kernel
of triangular shape. To obtain an estimate for the optimal kernel width σk (defined
as the standard deviation of the normalized kernel function) on the basis of the
empirical data, we applied a heuristic method outlined elsewhere (Nawrot et al.
1999). Recently, Shimazaki and Shinomoto (2009) formalized this optimization of
the kernel width for fixed and variable width kernels using a Bayesian approach on
the basis of a specific model assumption for the generating point process. For fixed
width kernels, this approach is outlined in detail in Chap. 2 of this book.

3.2.2.2 Step 2. Demodulation and Analysis in Operational Time

Based on the estimated firing rate λ(t), we define the time transformation (Reich et
al. 1998; Brown et al. 2002; Nawrot et al. 2008)

t ′ = Λ(t) =
∫ t

0
λ(s) ds, (3.3)

according to the integrated rate function for all spike events t
j
i . We call t ′ the opera-

tional time because on this new time axis the empirical spiking process has constant
unit rate. Figure 3.2B shows the integral Λ(t) (maroon) of the empiric rate func-
tion λ(t) (black). The transformed spike trains depicted in Fig. 3.2C do not display
any overt rate modulation and result in an empiric estimate CV = 0.46, which is
close to the theoretic CV∞ = 0.5 of the underlying gamma process that was used
for simulation.

Transformation of spike times from the experimental time axis to the op-
erational time axis according to the integrated rate function can eliminate rate
fluctuations in the spike train. In a next step, this allows us to obtain an em-
piric estimate of the CV in operational time. This method requires a reliable
estimate of the time-varying rate function (Fig. 3.2).

3.2.2.3 Time-Resolved Analysis of the CV

It is now straightforward to analyze the CV(t ′) as a function of operational time
using a sliding window approach. The window width T ′ defines the time resolution
of this analysis, and we are faced with a trade-off between short windows that ensure
a good time resolution of our analysis and large windows that reduce the variance
and the bias of estimation (see Subsect. 3.2.1). In Fig. 3.2D, we estimated CV(t ′)
within a window of length T ′ = 5, i.e., the window size is 5 times the average
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interval. We find no significant variation with a mean of 〈CV(t ′)〉 = 0.45, a faithful
representation of the underlying gamma process used for simulation in Fig. 3.2A. In
a final step we may use the inverse time transformation of (3.2) (Meier et al. 2008;
Nawrot et al. 2008) to represent our time-resolved estimate CV(t ′) in experimental
time CV(t) (see Fig. 3.2E). Note that the support points at which the measured
values CV(t) are represented are not equidistant in experimental time.

3.2.2.4 Alternative Methods

There are several alternative parametric and nonparametric methods to estimate in-
terval variability from rate-modulated spiking activity and in a time-resolved man-
ner. A number of nonparametric so-called local measures have been proposed that
estimate normalized interval variability locally in time. The common idea behind
these approaches is that a temporally confined estimate will largely ignore rate mod-
ulations that are comparatively slow. At each step in time, local measures are based
on rather small data samples and are thus inherently noisy—i.e., they express a
large variance of estimation—and they are in general subject to estimation biases.
Estimation variance may be decreased by temporal averaging over local estimates.
Here, I briefly outline two local measures. A simple yet efficient method for es-
timating the local CV from repeated trials has been introduced by Benda (2002).
At any given point in time t , this method computes the empiric CV from all in-
tervals in all trials that contain t , i.e., for which ti < t < ti+1. Evidently, shorter
intervals are less likely to be observed than longer ones. This introduces an esti-
mation bias with respect to the CV∞ which is opposed to the one we described
in Subsect. 3.2.1, and which can be compensated (Nawrot and Benda 2006). Rate
fluctuations on a time scale that are longer than the average ISI will have little in-
fluence on this measure. It is, however, sensitive to across-trial nonstationarities of
the rate. The “classical” local measure termed CV2 was introduced in 1996 by Holt
et al. (1996). It simply computes the coefficient of variation for each successive pair
of intervals (Xi,Xi+1), i.e., it normalizes the variance across two successive inter-
vals by their mean and thus becomes insensitive to across-trial nonstationarities and
largely ignores rate modulations that are slower than twice the average ISI. Other
local measures are mostly variants thereof, and each has been designed under a cer-
tain optimization constraint. The robustness of these measures is typically increased
by averaging across trials and across time. An in-depth review and calibration of
the CV2 and three other local measures (Shinomoto et al. 2005; Davies et al. 2006;
Miura et al. 2006) was recently published by Ponce-Alvarez et al. (2009).

In competition to nonparametric local measures, a few parametric methods of
estimating the firing irregularity have been proposed. They assume a specific un-
derlying model (e.g., a nonhomogeneous Poisson process) and estimate a single or
several model parameters from the empiric spike train. Recently, Shimokawa and
Shinomoto (2009) introduced an elegant method for which they assume a gamma
process with time-varying intensity (firing rate) λ(t) and time-varying regularity (or-
der of the gamma process) α(t). Using a Bayesian approach, the proposed method
allows us to estimate both λ(t) and α(t) from a given set of empirical data.



A
U

T
H

O
R

’S
 P

R
O

O
F

Book ID: 152465_1_En, Chapter ID: 3, Date: 2010-06-11, Proof No: 1, UNCORRECTED PROOF

8 M.P. Nawrot

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

3.3 The Combined Analysis of Interval and Count Variability

In the case of a mathematically defined point process model, its interval and count
statistics are uniquely determined and inherently related (see Appendix). To charac-
terize an unknown neural spiking process on the basis of experimental observations,
it is therefore useful to coanalyze interval and count statistics, and their specific re-
lation. This can help to choose a particular stochastic model (or a class of models)
that adequately describes the experimentally observed process.

3.3.1 Fano Factor and Bias of Estimation

The Fano factor is a well-established measure of count variability and has been re-
peatedly used to quantify spike train variability (for review, see Nawrot et al. 2008).

Definition 3 The empiric Fano factor FF is defined as the ratio of the variance and
the mean of the spike count Nj as measured within an observation interval of length
T during repeated observations j :

FF = V ar[Nj ]
E[Nj ] . (3.4)

The distribution of spike count across repeated observations and thus the mean
and variance of this distribution generally depend on the length T of the observation
window. This introduces an estimation bias for the empiric FF with respect to the
limit value FF∞ = limT →∞ FF which can be derived analytically from the defini-
tion of the process. In Fig. 3.1C we demonstrate how the Fano factor depends on the
observation window T ′ = T/E[X] for gamma processes of different order α. With
increasing observation time T ′, the FF estimates approach the limit values FF∞.
As for the CV, an observation window of length T ′ = 5–10 seems practically suffi-
cient to avoid a strong bias if the observed process is more regular than the Poisson
process (α ≥ 1), e.g., in regular spiking cortical neurons (Nawrot et al. 2008). For
decreasing observation times T ′ → 0, the Fano factor approaches unity. This can be
easily understood as an approximation of the Bernoulli process for which in each
small interval we observe either 1 spike with probability p or 0 spikes with probabil-
ity 1−p. As T ′ → 0, the variance p(1−p) of the Bernoulli distribution approaches
the mean p (Teich et al. 1997).

The finite length T of the observation window introduces a bias of estima-
tion for the empiric FF (Fig. 3.1C). As T ′ → 0, the Fano factor approaches
unity. Practical consequences as in Subsect. 3.2.1: 1. Use long observation
windows, and 2. If short observation intervals are necessary, use a fix window
size in operational time to ensure a constant bias.
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Fig. 3.3 Count variability (FF) versus interval variability (CV2). (A) Variance of estimator and
residual bias effect. The renewal prediction FF∞ = CV2∞ is depicted by the black diagonal. Grey
shadings represent 90% confidence regions for numeric ensemble simulation of gamma processes
of order α = 2 (CV2∞ = 0.5) and α = 5 (CV2∞ = 0.2). Grey colors indicate number of trials
(N = 20,50,100, from dark to light gray). The observation time comprised T ′ = 10 intervals
on expectation. Each confidence region was computed from 10,000 ensembles as follows. A 2D
Gaussian filter produced a smooth 2D histogram of all log-transformed value pairs. After sorting
all histogram entries starting with the largest entry, their cumulative sum was computed. All in-
dices up to the index for which the 90% quantile was reached define the 2D confidence region. The
black squares and lines depict average and standard deviation for n = 100 trials. The red squares
indicate expectation values. (B) The effect of serial interval correlation on interval and count vari-
ability. Colored shadings represent the 90% confidence regions from 10,000 numeric ensemble
simulations (50 trials, T ′ = 10) of the autoregressive process with marginal log-normal interval
distribution (see text). The blue (red) region shows the effect of a negative (positive) serial inter-
val correlation with respective parameter β = −0.3 (β = 0.3); gray region is computed from the
interval-shuffled spike trains which do not exhibit serial correlations. Black triangles reproduce
the empiric results obtained from 7 cortical cells (Nawrot et al. 2007). Data courtesy of Clemens
Boucsein, University of Freiburg, Germany

3.3.2 Fano Factor vs. Squared Coefficient of Variation

For the class of renewal point processes, the expectation values of FF and CV2 are
simply related by

FF∞ = CV2∞. (3.5)

Renewal processes are widely used as models for neural spiking. As a starting point
for our analysis of experimental data, we may therefore formulate the renewal pre-
diction (3.5) as the null-hypothesis. Any deviation from this null-hypothesis may
then trigger further analysis.

A direct way of jointly visualizing the empiric relation of interval and count vari-
ability is to plot FF against CV2 in a scatter diagram as demonstrated in Figs. 3.3
and 3.4. Individual empirical estimates of FF and CV2 are computed from a finite
number of samples and are, therefore, subject to statistical errors that is expressed
in the variance of estimation (Nawrot et al. 2008). Repeated measurements will
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thus lead to values that scatter around the theoretic expectation value. Figure 3.3A
demonstrates the effect of a limited sample size in numeric simulations of the
gamma renewal process with order parameters α = 2 and α = 5 and correspond-
ing expectation values CV2∞ = FF∞ = 1/α. We chose different numbers of trials
n = 20,50,100 and constructed the 90% confidence region from 10,000 indepen-
dent simulations, depicted as gray shadings. The empirical sample size of intervals
and counts scales linearly with the number of trials. Consequently, reducing the
number of trials increases the variance of estimation for both, FF (horizontal) and
CV2 (vertical). The number of intervals additionally scales with T ′ and, thus, re-
ducing observation time will increase the variance of the CV2 estimator (not shown;
Nawrot et al. 2008).

In practice, residual estimation biases due to the experimentally limited observa-
tion time T for CV2 (see Subsect. 3.2.1) and FF (see Subsect. 3.3.1) may affect their
empirical relation. As a consequence, in Fig. 3.3A the average empiric values for
T ′ = 10 (black squares) of the Fano factor is larger, and the average empiric value
of the CV2 is smaller than the expectation values indicated by red squares.

For any (stationary) renewal point process, the relation of Fano factor and
coefficient of variation is given by FF∞ = CV2∞. For the special case of the
Poisson process, it holds that FF = CV2∞ = 1.

3.3.3 The Effect of Serial Interval Correlation

Renewal processes represent the most prominent class of stochastic models for
neural spiking. Yet, serial correlations of inter-spike intervals have been observed
experimentally in various systems including neocortical cells (for review, see
Farkhooi et al. 2009). For stationary point processes in equilibrium with seri-
ally correlated inter-event intervals, the following equality holds (McFadden 1962;
Cox and Lewis 1966):

lim
T →∞ FF = CV2∞(1 + 2 ξ) with ξ =

∞∑
i=1

ξi, (3.6)

where ξi denotes the ith-order linear correlation coefficient, i.e., the expected linear
correlation for all pairs of intervals (ISIk, ISIk+i ) that are separated by i −1 interme-
diate intervals. If all correlation coefficients vanish, we obtain the renewal statistics
where FF∞ = CV2∞. Overall negative serial correlation ξ < 0 will result in a Fano
factor that is smaller than the CV2, while a positive correlation ξ > 0 leads to an
increased count variability.

We demonstrate this effect in numerical simulations of a simple autoregressive
model as outlined in (Farkhooi et al. 2009) (see Appendix). The intervals X of this
model are log-normal distributed. The serial correlation of intervals is controlled
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by an additional correlation parameter β . Correlations are short ranged, i.e., the
linear correlation coefficients ξi quickly diminish with increasing serial correlation
order i (Farkhooi et al. 2009). In Fig. 3.3B, we consider two cases: (i) negative
serial correlation of ISIs (ξ < 0, blue), and (ii) positive correlation (ξ > 0, red). Both
are compared to the corresponding renewal process (ξ = 0, gray). In each case we
simulated 10,000 spike train ensembles of 50 trials, and each ensemble represents
the repeated measurement of one neuron with a single estimate for CV2 and FF.
For each neuron, we adjusted the model parameters to obtain a specific value of
the squared coefficient of variation in the range CV2∞ ∈ [0.2,0.5]. This covers the
empirically relevant range for regular spiking neocortical neurons under stationary
conditions (e.g., Nawrot et al. 2007; Nawrot et al. 2008). From all 10,000 simulated
samples we numerically constructed the confidence region which covers 90% of the
measurements. As theoretically predicted, the negative serial correlations reduce the
Fano factor, in this case by about 30%, while positive correlations increase the Fano
factor by about 60%.

To compare the modeling results with experimental findings, we reanalyzed in-
tracellular recordings from rat somatosensory cortex of the anesthetized rat (Nawrot
et al. 2007). 7 of 8 regular spiking cortical cells expressed short-ranged negative
interval correlations with ξ ≈ −0.2 leading to a count variability reduced by 30%
(black triangles in Fig. 3.3B).

Negative serial interval correlations (ξ < 0) in a stationary point process
realization lead to a reduced count variance as compared to the count variance
of a renewal process with the same interval distribution, and thus FF < CV2.
Positive serial interval correlations (ξ > 0) lead to an increased count vari-
ance, and thus FF > CV2; see (3.6) and Fig. 3.3B.

3.3.4 The Effect of Nonstationarity

In the typical experimental situation, we make repeated observations in time (trial
design). This allows us to perform statistical analyses on the trial ensemble, e.g.,
estimating the trial-averaged firing rate or the variance of the spike count across
trials. By doing so, we make the implicit assumption that the observed spik-
ing process is stationary in time and across trials (Knoblauch and Palm 2005;
Nawrot et al. 2008). However, this assumption is often violated in neural systems.
In this section we explore the influence of a particular type of nonstationarity: we
assume slow modulations of the firing rate on time scales of seconds or even min-
utes. In the living animal, such modulations are likely to occur for various reasons
(see Sect. 3.4).
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3.3.4.1 Slow Activity Fluctuations Introduce Across-Trial Nonstationarity

To model slow fluctuations of the firing rate, we use the following approach. In
a first step we generate a time-dependent intensity φ(t) using a moving average
process with log-normal distributed noise (see Appendix). The intensity (or rate)
fluctuates about the mean of r = 1 Hz on a slow time scale τ ′ = 20 in operational
time (e.g., equivalent to a rate of 10 Hz and τ = 2 s in experimental time). In the next
step we generate a realization of a rate-modulated gamma process with intensity
φ(t) and order parameter α = 2 and with a total duration of 500 expected spikes in
operational time. In a final step we divide this spike train into n = 50 observations
(or trials) of length T ′ = 10 and analyze interval and count variability. Again, we
compute confidence regions for FF vs. CV2 in the scatter diagram of Fig. 3.4A.

The Fano factor is boosted by the additional nonstationarity (green shadings) and
can reach very high values that are up to 20 times larger than in the stationary case
(gray shading). This effect can be easily understood. The expectation value for the
spike count varies from trial to trial as the process intensity modulates on long time
scales and thus across trials. This has a dramatic effect on the distribution and vari-
ance of the spike count. The CV2 is only slightly increased (light green shading), and
the effect dominates in ensembles that also show high count variability. The general
explanation for the increased CV2 is simple: shorter intervals in trials with higher
intensity and longer intervals in trials of lower intensity will lead to an additional
dispersion of the interval distribution. This effect can be avoided. In Subsect. 3.2.1

we introduced an alternative way of estimating the CV
2

by estimating the CVi in
each individual trial and subsequent averaging. This procedure normalizes per trial
and thus is not susceptible to across-trial nonstationarities. In Fig. 3.4A the dark
green shading indicates the corresponding confidence region. In summary, the FF

is strongly increased, while the distribution of the CV
2

with mean 0.37 is similar to
that of the control with mean 0.38.

We compare the simulation results to a set of in vivo single unit recordings from
the primary motor cortex of a monkey (Macaca mulatta) that performed a delayed
center-out reaching task (Rickert et al. 2009). We analyzed interval and count vari-
ability during the first 900 ms of the 1-s delay period. At the start of this period, the
monkey had received a directional cue but was not allowed to move his arm until
the GO signal appeared at the end of the delay period. Many neurons showed a task-
related activation profile that was tuned for the specific target cue. We therefore es-
timated the trial-averaged firing rate and performed the analysis in operational time
(see Subsect. 3.2.2). The results are shown in Fig. 3.4B. The Fano factor assumes
high values with a mean of FF = 1.87 (median 1.39), while the values of the CV2

are considerably lower with average CV2 = 0.76 (median 0.70). The shape of the
90% confidence region compares to that of the numeric simulations in Fig. 3.4A.
Two additional factors will likely lead to an overestimation of the empiric CV2 in
the present data. First, we may assume that the activity is not stationary across trials
due to slow modulations, as in our model simulations. As a consequence, the result-
ing estimate of the task related rate profile from the trial-averaged spike trains does
not properly reflect the single-trial rate profile. Second, we deal with another type
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Fig. 3.4 Slow rate modulations can boost count variance. (A) Simulation. The gray shading rep-
resents the confidence interval for gamma processes with α ∈ [2,5]. The green shadings demon-
strate the effect of slow modulations of the process intensity (MA log-normal noise; σ = 200,
τ ′ = 20). The FF is strongly increased. The empiric CV2 (light green) was estimated by pool-

ing intervals from all trials. The CV
2

(dark green) was estimated in each trial separately and
then averaged. Bottom panel shows spike raster for one ensemble (red square). (B) Experiment.
In vivo estimates from 56 motor cortical single units, each recorded in 6 directions (see text).
The FF strongly exceeds the CV2. The CV2 was estimated from intervals pooled across tri-
als. For each ensemble the number of trials was ≥ 15 (to limit the variance) and the observa-
tion window comprised T ′ ≥ 10 intervals (to avoid a strong bias). This included a total of 223
samples. Bottom panel shows one example (red square). Modified from (Nawrot et al. 2001;
Nawrot 2003). Data courtesy of Alexa Riehle, CNRS, Marseille, France

of variability, namely the trial-by-trial variation of the response onset time (Nawrot
et al. 2003). This further impairs the trial-averaged estimate of the rate profile. Both
factors will lead to an imperfect demodulation of the single-trial spike trains and,
thus, to an increased dispersion of the inter-spike interval distribution and an in-
creased empiric CV2. An in-depth analysis of interval and count variability for this
data set and a second monkey is provided in (Nawrot 2003). A time-resolved anal-
ysis of variability for this monkey (monkey 1) is provided in (Rickert et al. 2009).

In the model of slow rate fluctuations, we introduced a single time scale τ ′ for
the temporal modulation. How does this time scale interact with the length T ′ of
the empiric observation interval? In Fig. 3.5A, B the Fano-time curve FF(T ′) dis-
plays a nonmonotonic behavior resulting from two independent factors. For small
observation times T ′ ≤ E[X], the bias effect dominates, and the FF tends to unity as
T ′ → 0. With increasing T ′ > E[X], the slow intensity fluctuations cause a strong
increase in count variance. As the positive serial interval correlations introduced
by the rate fluctuation vanish for large correlation lags i � τ ′ (Fig. 3.5C), the FF
saturates for large T ′ � τ ′ (Fig. 3.5B) because the spike count averages across the
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Fig. 3.5 Effect of slow rate modulations on the Fano-time curve and serial interval correlation.
(A) FF(T ′) estimated from three individual realizations of a rate-modulated gamma process of
order α = 2. The process intensity φ(t) was modulated according to an MA process with log-nor-
mal noise (σ = 200, τ ′ = 20). The gray curve represents the expectation value for the stationary
gamma process. (B) For large observation intervals T ′ � τ ′, the Fano factor saturates. (C) Serial
interval correlation coefficients diminish only for large serial correlation lags i � τ ′

stochastic fluctuations within the observation interval. Importantly, the trial-by-trial
variability assumes a minimum for observation times T ′ ≈ E[X], which is even more
pronounced for a nonrenewal process with short-lived negative serial interval corre-
lation (not shown; see Subsect. 3.3.3).

3.3.4.2 Task-Related Variability Dynamics

In a next step we extended the previous model for slow-rate modulation by adding a
task-related response profile ψ(t) during repeated trials that represents task-related
activation of a neuron (or neural ensemble), e.g., in response to a stimulus. We
model ψ(t) with a Gaussian profile as in Subsect. 3.2.2. Now we have the situ-
ation that the same intensity profile repeats identically in each trial and adds to
a fluctuating background φ(t). How does this affect the time-resolved variability?
Figure 3.6 shows the result: The time-resolved Fano factor (blue curve) expresses
a task-related dynamics. It is high during the initial phase of the trial before the re-
sponse is triggered at t = 0 and again at the end of the trial. During the response,
the FF strongly decreases and almost reaches the expected value for a stationary
process with FF = 1/α = 0.5. This modulation can be easily understood: Whenever
the firing rate is dominated by the task-related component ψ , the relative trial-by-
trial fluctuations of the point process intensity, and thus of the empiric Fano factor,
are minimal. Conversely, at times when the task-related component ψ is essentially
zero, the spike count variability is dominated by the trial-to-trial variations due to

the fluctuating intensity φ(t). The trial-based estimate of the CV2 (dark green curve
in Fig. 3.6D) does not show any apparent modulation. It correctly signifies the “true”
stochasticity of the underlying gamma process except for a small bias that under-
estimates the expected value CV2∞ (see Subsect. 3.2.1). The ratio of FF/CV2 in
Fig. 3.6F combines both analyses and reveals dynamic deviations from the renewal
hypothesis for which FF = CV2.
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Fig. 3.6 Temporal modulation of spike count variability. (A) Five individual single trial intensities
resulting from the superposition of the slow fluctuating background rate φ(t) and the task-related
Gaussian modulation ψ(t) (width σ = 100 ms, amplitude 30/s). (B) Spike raster from rate-mod-
ulated gamma process (α = 2) realizations during 100 trials. (C) Kernel estimate of firing rate.

(D) The time-resolved CV2 (light green) is slightly modulated. The CV2 (dark green) expresses an

expected residual bias. (E) Time-resolved FF. (F) The ratio of FF/CV2 combines both analyses.
Renewal prediction FF∞ = CV2∞ is indicated by the dashed line. Length of observation interval in
D–F was T ′ = 5

Slow modulations of the output firing rate can be modeled by a nonstation-
ary point process with time-varying intensity φ(t) and large time constant of
modulation τ � E[X]. Such a modulation introduces a positive serial interval
correlation (ξ > 0) and can strongly increase the count variance. The CV2 is
less sensitive to the nonstationarity. As a result, we observe that FF > CV2

(see Fig. 3.4A). When this model is combined with a task-related intensity
profile ψ(t) which is identical in each trial, we observe a task-related modu-
lation of the FF(t) (see Fig. 3.6).

3.4 Interpretations

3.4.1 Components of Single Neuron Variability

We may coarsely distinguish two components of single-neuron output variability
(DeWeese and Zador 2004). The first component is attributable to neuron-intrinsic
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sources such as synaptic failures and variability of synaptic event amplitude (e.g.,
DeWeese and Zador 2004; Nawrot et al. 2009; Zador 1998), noise caused by
dendritic integration (e.g., Nawrot et al. 2009; Ariav et al. 2003; Shoham et al.
2005), and the reliability of spike initiation (e.g., Mainen and Sejnowski 1995;
Nowak et al. 1997). The second, neuron-extrinsic component results from the spatial
and temporal statistics of the synaptic input, i.e., the spiking statistics of the presy-
naptic excitatory, inhibitory, and neuromodulatory networks. Biological neurons are
nonlinear, complex input–output devices that translate synaptic input into an output
comprising a sequence of action potentials. When we analyze a neuron’s output, we
cannot distinguish between the different sources that caused the observed variabil-
ity. Also, the concept of an “intensity” that we use in the framework of stochastic
point process theory and that we like to interpret as “underlying rate” of neural fir-
ing has no physical equivalent in biological neurons. Therefore, we must base our
interpretations on additional numerical studies of biophysical neuron models and ex-
perimental studies that focus on basic neural mechanisms in reduced preparations,
which allow for highly controlled experimental conditions.

3.4.2 Serial Interval Correlations

Negative serial correlations have been reported for various neuron types in in-
vertebrate and vertebrate systems (for review, see Farkhooi et al. 2009). These
correlations are short-ranged, typically extending over only a few intervals, and
they are of intermediate strength (e.g., ξ ≈ −0.2 for cortical neurons) which re-
sults in a considerable reduction of the Fano factor of up to 50%. A plausi-
ble physiological explanation for this phenomenon are neuron-intrinsic mecha-
nisms of spike frequency adaptation (SFA) (Benda and Herz 2003), which can
introduce negative interval correlations in the output spike train when the neu-
ron is in a steady state (i.e., for constant output rate), a result that has been es-
tablished in various types of biophysical single neuron models (e.g., Wang 1998;
Prescott and Sejnowski 2008; Muller et al. 2007). The reduction of the Fano factor
implies that SFA neurons have an improved signal-to-noise ratio which increases
the coding capacity of a rate code on slow time scales. On fast time scales, i.e.,
for very short observation windows, however, the Fano factor tends to unity (see
Subsect. 3.3.1). In the frequency domain this results in a reduction of the low
frequency noise (noise shaping; Chacron et al. 2001, 2005; Lindner et al. 2005;
Chacron et al. 2007).

Systematic reports of negative serial correlations in experimental data are rare, in
particular, in central brain structures such as the neocortex or the central insect brain.
We briefly discuss two factors that may impair their empiric observation. First, serial
correlation analysis assumes stationarity of the spike train. Any modulation of the
firing rate will introduce positive serial correlations, which may conceal the negative
correlations and increase the Fano factor (see Subsect. 3.3.4). The second issue is
of technical nature. At extracellular electrodes we measure spikes that stem from



A
U

T
H

O
R

’S
 P

R
O

O
F

Book ID: 152465_1_En, Chapter ID: 3, Date: 2010-06-11, Proof No: 1, UNCORRECTED PROOF

3 Analysis and Interpretation of Interval and Count Variability in Neural Spike Trains 17

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

multiple neurons. Subsequent spike sorting—to some extent—represent the activity
of multiple neurons. From surrogate data we estimated that only 10–15% falsely
assigned spikes can impair the detection of realistic negative serial correlations in
recordings that comprise ∼ 1,000 spikes (unpublished observation).

In the context of cross-correlation analysis of two (or more) simultaneously
recorded neurons, renewal models are typically used to calculate the expected joint
count distribution under the assumption that the neurons’ activity is independent.
Serial interval correlations affect the joint count distribution, and the renewal statis-
tics may thus not be appropriate to test for deviations from independent spiking in
SFA neurons (Grün et al. 2008).

3.4.3 Nonstationary Conditions in the Living Brain

There have been frequent reports on a large trial-by-trial variability in in vivo single-
unit recordings, notably in the mammalian cortex where, with few exceptions, large
average values of the Fano factor (FF ≥ 1) have been measured (e.g., Shadlen and
Newsome 1998; for review, see Nawrot et al. 2008). This has lead to the dogma that
the activity of cortical neurons is well characterized by Poisson statistics, which has
subsequently become a benchmark for cortical network models. However, the large
variability in vivo is contrasted by a series of in vitro studies that have quantified
the output variability of pyramidal neurons for stationary input conditions. They
used intracellular injection of currents generated by stochastic trains of excitatory
and inhibitory synaptic inputs. It showed that the interval and count variability is
in the range of CV2 ≈ FF ∈ [0.1,0.8], depending mostly on the relative fractions of
excitation and inhibition (for review, see Nawrot et al. 2008). Negative serial interval
correlations may further reduce the count variance such that FF < CV2 (Fig. 3.3B;
Nawrot et al. 2007). From these studies we may conclude that—for stationary input
conditions—cortical neurons are more regular and less variable than the Poisson
process.

What could be the reason for the discrepancy between the in vivo and in vitro
results? One possibility is that in the living brain, stationary input conditions do not
exist for neurons that are embedded in a recurrent and permanently active network.
Local networks may be exposed to global changes of their activation state, e.g.,
due to homeostatic regulation, changes in the general state of arousal, plasticity,
adaptation, etc., and they may be subject to top–down influences such as attentional
modulation.

The simple stochastic model outlined in Subsect. 3.3.4 generates a random fluc-
tuation of the firing intensity that underlies the stochastic production of spike events.
We found that slow modulations of the intensity on time scales τ � E[X] can
strongly increase the count variance across independent observations, leading to
large values of FF � 1 as observed in vivo. The more important result, however,
is expressed in the relation of count and interval variability. The CV2 was only
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slightly increased so that FF � CV2, indicative of positive serial interval correla-
tions due to the slow-rate modulations. This is what we also observed in the single-
unit recordings from M1 in the behaving monkey (Fig. 3.4B; Nawrot et al. 2001;
Nawrot 2003). These results suggest nonstationary input conditions in vivo, and
they may indicate that the large in vivo variability does not characterize the stochas-
tic nature of the individual neuron. Experimental studies (Nowak et al. 1997;
Carandini 2004; Nawrot 2003) suggest that even mild fluctuations in the neuron’s
input are sufficient to cause a strong variability in the neuron’s output. This is ex-
plained by the nonlinear transfer function of synaptic input drive and output firing
rate. Mechanistically, such modulation of the presynaptic network input may be
achieved by various means, e.g., through unbalancing of (presynaptic) excitatory
and inhibitory networks, or through neuromodulatory regulation.

A number of theoretical models have investigated the effect of long-ranged tem-
poral correlations in the driving noise of biophysical model neurons. These studies
established the result of positive serial interval correlations in the output spike train
and of the nonmonotonic behavior of the Fano-time curve (Chacron et al. 2001;
Middleton et al. 2003; Schwalger and Schimansky-Geier 2008; Farkhooi et al.
2009). The strong increase of the Fano factor with increasing observation window,
and in some cases also the characteristic of a nonmonotonic Fano-time dependence,
has been reported in several experimental studies, e.g., in the cat striate (Teich et
al. 1996) and in the monkey motor cortex (Nawrot 2003), in the LGN (Teich et al.
1997), in the retina (Teich et al. 1997), and most pronounced in the electrosensory
afferents of the weakly electric fish (Ratnam and Nelson 2000). The fact that exper-
imental Fano-time curves can express a minimum for a certain range of observation
times may indicate that there exists an optimal temporal scale for information pro-
cessing in these systems.

In Fig. 3.6A we added to the spontaneous intensity fluctuation φ(t) a task-
related phasic component ψ(t), which repeats identically in each trial. As a di-
rect consequence, we observe a task-related modulation of the Fano factor. Indeed,
this behavior has been repeatedly observed in motor cortical single-unit activity
(Nawrot et al. 2001, 2003; Nawrot 2003; Churchland et al. 2006; Nawrot et al. 2008;
Rickert et al. 2009) and, more recently, also in other cortical areas (Churchland et
al. 2010). Thus, we may hypothesize that individual neurons or neural populations
are specifically recruited for a computational task, e.g., the processing of a sensory
stimulus, through a task-specific and dynamic input that overrides the background
input, which represents ongoing activity and/or global changes of the network acti-
vation state.
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Appendix

3.4.4 Matlab Tools for Simulation and Analysis

The following functions are available online in the FIND open source Matlab tool-
box (Meier et al. 2008); http://find.bccn.uni-freiburg.de/.

makeKernel builds simple kernel functions of predefined shape and
normalized temporal width (Nawrot et al. 1999; Meier et
al. 2008); used in Subsect. 3.2.2.

optimizeKernelWidth estimates the optimal kernel width from spike train data
according to a heuristic method (Nawrot et al. 1999;
Meier et al. 2008); used in Subsect. 3.2.2.

sskernel optimizes kernel width from spike train data according to
the method by Shimazaki and Shinomoto (Shimazaki and
Shinomoto 2009).

unWarpTime demodulation of point or counting process according to a
monotonic warp function. For details, see (Nawrot et al.
2008; Meier et al. 2008).

warpTime inverse modulation of point or counting process.
gamprc/simulateGamma simulates constant rate/rate-modulated gamma process

using time rescaling.
arlogn/simSCP simulates autoregressive log-normal point processes;

used in Sect. 3.2. For details, see (Farkhooi et al. 2009).

3.4.5 Point Process Models

Chapter 1 of this book provides a formal introduction to stochastic point process
theory, covering a number of issues that have been addressed in the present chapter.
Chapter 16 deals in more detail with the simulation of stochastic point processes.

For any point process, interval and count statistics are related. Define the kth-
order interval as τk = ∑k

i=1 Xi . For an ordinary process, τk ≤ t ⇐⇒ N [0, t) ≥ k.
The distribution of τk relates to the distribution of event count N by

P {τk ≤ t} = P {N[0,t) ≥ k}.
The class of renewal point processes is widely used for the simulation of neu-

ral spiking. The renewal process is defined as a process for which all inter-event
intervals are independent and identically distributed. Thus, we can define a particu-
lar renewal process by specifying its interval distribution. For nonbursting neurons,
there are a number of distributions that have been repeatedly used, in particular,
the (centralized) gamma distribution which includes the special case of the Poisson
process, the log-normal distribution, and the inverse Gaussian distribution.
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The interval distribution of the (centralized) gamma process is defined as

fα,ρ(x) =
{ 1


(α)
ρ(ρx)α−1e−ρx, x ≥ 0,

0, x < 0,

where 
 denotes the gamma function, and α > 0 and ρ > 0 are its two parameters.
The mean interval is α/ρ, and the variance is α/ρ2. For α = 1, we obtain the Poisson
process. For α > 1, the gamma process is more regular and, for 0 < α < 1, more
irregular than the Poisson process.

We used an autoregressive model to generate serially correlated interval series.
A generalization of this model is described in detail elsewhere (Farkhooi et al.
2009). Assume that a series of random variables Ys = βYs−1 + εs , where εs is as-
sumed to be normally distributed with mean μ and variance σ 2

N . β describes the
serial dependence of the series Ys . Then, the series

Xs = exp(Ys) = exp(βYs−1 + εs)

is asymptotically log-normal distributed. For parameterization according to defini-
tions of E[Y ] and CV, we used the following relations:

σN =
√

log
(
CV2 + 1

)(
1 − β2

)
,

μ = log
(
E[Y ]) ∗ (1 − β) − σ 2 (1 − β)/

(
2
(
1 − β2)).

In Subsect. 3.3.4, we simulated a moving-average noise process to generate a
modulated rate function φ(t). To this end we drew random noise samples from
a log-normal distribution with mean 1 (corresponding to unit rate) and standard
deviation σ = 200 with a time resolution of 0.01 (operational time). In a second step
we convolved the noise with a symmetric kernel of triangular shape and standard
deviation σk = 20 (operational time). The resulting rate function fluctuates on a
time scale that is 20 times larger than the mean interval.
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