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Single-trial estimation of neuronal firing rates:
From single-neuron spike trains to population activity

Martin Nawrot, Ad Aertsen, Stefan Rotter *
Neurobiology and Biophysics, Institute of Biology III, Albert-Ludwigs-Uni6ersity, Schänzlestraße 1, D-79104 Freiburg, Germany

Received 15 July 1999; accepted 5 August 1999

Abstract

We present a method to estimate the neuronal firing rate from single-trial spike trains. The method, based on convolution of
the spike train with a fixed kernel function, is calibrated by means of simulated spike trains for a representative selection of
realistic dynamic rate functions. We derive rules for the optimized use and performance of the kernel method, specifically with
respect to an effective choice of the shape and width of the kernel functions. An application of our technique to the on-line,
single-trial reconstruction of arm movement trajectories from multiple single-unit spike trains using dynamic population vectors
illustrates a possible use of the proposed method. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Most prevailing models of neural coding rely heavily
on neuronal firing rates. It has been demonstrated in
many physiological studies that the firing rate reveals
relevant aspects of a neuron’s involvement in informa-
tion processing and computation. The availability of
methods to measure firing rates from neuronal spike
trains is therefore essential. The conventional strategy is
to average the spike responses over repeated trials in
the form of a peri-stimulus time histogram (PSTH;
Gerstein and Kiang, 1960), and to interpret the out-
come as an estimate of the time-varying rate function
(Fig. 1). Using this technique, important insights into
the neural mechanisms of sensory and motor processing
have been gained.

There are, however, a number of problems with this
approach: (1) Not all interesting experiments can be
forced into a repeated-trial design; (2) averaging across
trials requires stationarity across trials, which is not
always guaranteed; (3) potentially relevant dynamic
effects which are not strictly time-locked to the trigger

event do not survive trial-averaging. For these various
reasons it is becoming increasingly important to elimi-
nate the need for trial-averaging and to consider, in-
stead, the alternative of estimating spike rates on the
basis of single-trial responses. In addition, (4) the issue
of trial-by-trial variability of neuronal responses is re-
cently receiving increasing interest (Arieli et al., 1996;
Azouz and Gray, 1999). Moreover, (5) certain multiple-
electrode recording experiments (e.g. Chapin et al.,
1999) create the need for a reliable on-line estimate of
neuronal firing rates.

The firing rate is a fundamental concept for the
description of a spiking neuron (and a point process in
general; Cox and Isham, 1980). The underlying firing
rate r(t), also termed intensity function, is a non-nega-
tive deterministic function of time, such that the
integral& tb

ta

r(t) dt (1)

represents the expected number of spikes encountered
in an observation of the neuron during the observation
interval [ta, tb).

In the context of the current paper, the underlying
rate function is assumed to be invariant across trials. In
reality, this rate function may change as a result of
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circumstances beyond the control of the experimenter.
However, even if the rate function is the same over
trials, individual spike trains in repeated observations
may vary considerably, as a result of random fluctua-
tions. The underlying rate is nevertheless reflected by
the instantaneous density of spikes.

The rate function underlying the spiking of a real
neuron, however, cannot be observed directly, it must
be reconstructed from the recorded spike trains. Unfor-
tunately, the theory of stochastic point processes does
not currently provide a substantial apparatus for the
direct inference of underlying dynamics from experi-
mental data. Here, we describe a method to estimate
the neuronal firing rate from single-trial spike trains by
convolution with a fixed kernel function. The method
is calibrated on the basis of simulated spike trains for
a selected set of typical dynamic underlying rate
functions. From this we derive rules for the optimized
use and performance of the kernel method. Finally,
we present an application of our technique to the
on-line, single-trial reconstruction of arm movement
trajectories from multiple single-unit spike trains using
dynamic population vectors. Preliminary results have
been presented in abstract form (Nawrot et al., 1997,
1999).

Fig. 2. Concept of single-trial rate estimation by means of the kernel
approach. The ‘true’ underlying rate function r(t) shown in (A) is
estimated from one single-trial spike train (B) by taking the sum over
kernel functions K(t− ti), centered at spike occurrence times ti (C),
yielding the empirical rate function l(t) shown in (D). In this
particular example, a triangular kernel with a standard width of
s=40 ms was used.

Fig. 1. Rate estimation by means of trial-averaging: the peri-stimulus
time histogram (PSTH). (A) Raster display of spike events for 30 trial
repetitions. (B) PSTH of average spike response, constructed from all
30 trials using a bin size of 30 ms.

2. Methods

2.1. Estimation

Consider a single spike train, comprised of a finite
number of discrete spike events at times t1, . . .,tn. We
define the estimation of the time-varying rate function
as

l(t)� %
n

i=1

K(t− ti) (2)

where K(t) is called kernel function. Thus, the desired
underlying ‘true’ rate function is estimated from a
single-trial spike train by taking the sum over kernel
functions K(t− ti), centered at spike occurrence times ti

(Fig. 2).
We require K(t) to be non-negative to avoid negative

rates. Moreover, the kernel should be normalized such
that each spike contributes with unit area to the rate
function. This guarantees that the integral of l(t) is
equal to the total number of spikes n recorded during
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Table 1
Tested kernel functionsa

Kernel SupportK(t, s)

Boxcar 1

2
3s
[−
3s, 
3s ]

Triangle 1

6s2
(
6s−�t �) [−
6s,
6s ]

Epanechnikov 3

4
5s

�
1−

t2

5s2

�
[−
5s,
5s ]

Gauss
[−�,+�]

1


2ps
exp

�
−

t2

2s2

�
a Outside the support, the kernels are defined to be zero. All kernel

functions are normalized to unit area and have standard width s.

&�
−�

t K(t) dt=0. (3c)

The properties of the estimation depend on the prop-
erties of the specific kernel function chosen. Two as-
pects are important: the shape of the kernel function
and its width. The kernel shape determines the visual
appearance of the estimated rate function. The stan-
dard width of the kernel

s=
'&�

−�

t2 K(t) dt (4)

specifies the temporal resolution of the rate estimation.
Hence, s can be viewed as a smoothing parameter.
Table 1 lists the four kernel functions of different
shapes that we tested, parametrized by their standard
width. Fig. 3 shows the time course and Fourier trans-
form of these four types of kernels.

Kernel estimators are widely used and treated theo-
retically in the context of density estimation (Parzen,
1962; Silverman, 1986; Scott, 1992; Bowman, 1997).
The method has also been proposed for estimating
neuronal firing rates by various authors (Sanderson,
1980; Richmond et al., 1987, 1990; Paulin, 1992;
Nawrot et al., 1997; Szücs, 1998).

2.2. Calibration

To test the kernel estimator method we employ a
calibration procedure on the basis of simulated spike
trains, generated according to pre-set underlying rate
functions with a variety of parametrized dynamics. The
calibration involves three steps. First, we specify the
stochastic point process used for generating spike data.
Second, we choose a representative class of underlying
rate functions that will be used for the simulations.
Third, we define a quality measure with which we can
assess the performance of the rate estimation.

2.2.1. The Poisson process
The underlying rate function is only partially specify-

ing the point process, it represents its ‘deterministic’
aspects. The actual stochastic properties of spike gener-
ation are reflected by the probability distribution of the
spike counts for each observation interval.

In the context of neuronal modeling, the most fre-
quently used type of stochastic point process is the
Poisson process. In fact, it is the most elementary type
of stochastic point process (Cox and Isham, 1980). The
points occur independently of each other, governed
only by the rate function. As a consequence, the spike
counts have a Poisson distribution with both mean and
variance given by expression (1). The simplicity of the
Poisson model supports the generation of computer-
simulated spike trains, while being not too remote from
real spike trains recorded from physiological neurons.

Fig. 3. Tested kernel functions (—Triangle, – – Boxcar, –·– Gauss,
· · · Epanechnikov). All kernels have unit area and are parametrized
according to their standard width s (cf. Table 1). (A) Time course
and (B) Fourier transforms of kernel functions.

the observation interval. Finally, we require the first
moment of K(t) to be zero to preserve the center of
mass of the spike train. Taken together, this leads to
the following constraints on the kernel function:

K(t)]0, (3a)&�
−�

K(t) dt=1, (3b)



M. Nawrot et al. / Journal of Neuroscience Methods 94 (1999) 81–9284

Table 2
Simulation parameters for the dynamic rate function r(t): constant
background rate b, response strength A and response width wa

b [Hz] 1 2 5 10 20 30 40 50 –
0A [spikes] 5 10 20 30 40 50 80 100

20 30 40 50 8010 100w [ms] 150 200

a The parameter space tested is spanned by a selection of triple
combinations (b, A, w) taken from this set.

spikes and w=100 ms is shown in Fig. 2A. Thirty
Poisson realizations using this underlying rate function
are shown in Fig. 1A.

2.2.3. Measure of performance
To evaluate the performance of the rate estimator

(Eq. 2) we use the integrated square error (Silverman,
1986; Scott, 1992)

ISE�
& T

0

(l(t)−r(t))2 dt (8)

as a global measure of the discrepancy of the estimated
rate function l(t) from the underlying rate function
r(t). The integral was computed for a fixed observation
interval, which we chose to begin 100 ms before re-
sponse onset and to end 400 ms after it. The better the
agreement between the underlying rate function r(t)
and its estimate l(t), the lower the value of ISE. An
example for visual comparison of underlying and esti-
mated rate functions is shown in Fig. 2A and D,
respectively.

For each intensity function rb,A,w(t), we simulated an
ensemble of N=100 trials. From each spike train we
then estimated a single-trial rate function and calcu-
lated the ISE with respect to rb,A,w(t). As a measure for
the performance of the rate estimation method for
ensembles of trials we used the mean integrated square
error

MISEN��ISE�N=
1
N

%
N

j=1

& T

0

(lj(t)−r(t))2dt (9)

as the mean ISE for N single-trial estimations lj(t) of
the same underlying rate function r(t).

3. Results

The results of our calibration procedure, expressed in
terms of the mean integrated square error MISE, show
how the performance of the rate estimation depends on
shape and width of the kernel function. Based on a
systematic variation of the parameters (b, A, w), we
derived rules for the construction of optimized kernels
when applying the method to experimental data.

3.1. Influence of kernel shape

In the case of constant spike rates, i.e. in the absence
of a phasic response, the four kernel shapes perform
virtually identically, independent of the rate level. As
can be seen for a typical example in Fig. 4A, the four
kernel shapes can hardly be distinguished on the basis
of their MISE values. The standard deviation of ISEs,
calculated from an ensemble of single-trial estimates
with a Triangle kernel, is larger than the differences
between mean values for different kernel shapes.

2.2.2. A family of rate functions
Next, we have to define a class of realistic dynamic

rate functions r(t) that resemble typical PSTHs from in
vivo single-unit spike recordings. For this purpose we
chose a parametric family of phasic response profiles,
superimposed on a stationary background of adjustable
strength. All parameters were subject to systematic
variation. The phasic response was selected to be pro-
portional to a beta-function

bt 1,t 2
(t)�Í

Ã

Ã

Á

Ä

1
t1−t2

�
e−

t

t1−e−
t

t2
�

0

for t\0

for tB0

(5)

where tl\t2\0 are the falling and rising time con-
stants, respectively. Here, bt 1,t 2

(t) is normalized to unit
area, and its standard width is given by

w=
t1
2+t2

2. (6)

We finally define the following class of intensity
functions

rb,A,w(t)�b+A bt 1,t 2
(t− t0), with t1=2t2 (7)

where t0 denotes the time of response onset. Thus, we
have three parameters that capture the essential proper-
ties of the underlying rate function. The constant back-
ground rate b accounts for spontaneous activity. The
response strength A is the integral over the phasic
excitatory response; it measures the expected number of
spikes exceeding spontaneous activity. The temporal
extent of the response is characterized by its standard
width w.

To test the performance of the rate estimation, we
generated sets of repeated trials of artificial spike train
data for a variety of choices for the parameters
(b, A, w) according to Table 2. We made sure that the
scanned parameter range covers dynamic rate functions
as they are typically observed in physiological record-
ings from a variety of brain areas, including critical
cases with weak responses, possibly in the presence of
high background rates. Time-inverted versions of these
rate functions are implicitly covered by our analysis,
because all tested kernels are symmetrical. An example
for a rate function with parameters b=20 Hz, A=20
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In the case of time-varying rates (A\0) we obtained
the same result. Different kernels perform equally well
over a broad range of kernel widths. As shown in the
example of Fig. 4B, the main features of the graphs are
present for all four kernel shapes. In particular, for
optimal choice of s, the difference in performance for
different kernel shapes is negligible. This finding is in
good agreement with theoretical results given in Silver-
man (1986) and Scott (1992).

From these results we can draw the conclusion that
the choice of a specific kernel shape is not critical for
the estimation error. Thus, the choice of the kernel
shape can be based on other considerations, in particu-
lar visual appearance (e.g. smoothness) of the estimated
rate. The latter is determined by the filter properties of
the kernel function, which can be inferred from its
frequency spectrum (Fig. 3B).

The results shown in Fig. 4 also indicate that the
standard width is a good choice for parametrizing the
temporal resolution of K(t) with respect to the com-
parability of kernel shapes.

Computational costs scale with the extent of the
support, i.e. the domain over which the kernel function
assumes non-zero values. This parameter is comparable
for all kernels, with the exception of the Gaussian
kernel. This latter kernel, predominant in earlier publi-
cations on this subject, must be constrained to a rea-
sonable finite support (cf. Fig. 3A) to be competitive
with respect to computational costs. All results pre-
sented in subsequent sections are based on estimations
using a Triangle kernel.

3.2. Influence of kernel width

3.2.1. Constant rates
Fig. 5 summarizes the performance of the kernel

estimator for stationary spike rates. Specifically, we
analyzed the dependence of the estimation error MISE
on spike rate b and kernel width s. Fig. 5A generalizes
the result obtained in Fig. 4A for different firing rates
b. In each case, we observe a monotonic decrease of
MISE with increasing kernel width s. As was to be
expected for a constant rate, a better estimate of the
rate is obtained for a wider kernel.

When comparing the performance of the kernel esti-
mator for different values of the spike rate, we observe
an increase of MISE and, hence, a decrease of perfor-
mance with rate. This is a straightforward result of the
statistical properties of the Poisson process: the vari-
ance of the spike count increases with its rate. This, in
fact, suggests to normalize the MISE by dividing it by
the variance of the total spike count, which is propor-
tional to the rate b in the case of a Poisson process.
Indeed, Fig. 5B shows that the variance-normalized
MISE is independent of the spike rate, apart from
statistical fluctuations.

3.2.2. Time-6arying rates: 6ariation of response
duration

We now turn to the performance of the kernel esti-
mator for time-varying rate functions. In our simula-
tions, this is accomplished by having a phasic response
component, characterized by its response strength A
and duration w, superimposed on a constant back-
ground b.

We first consider the dependence of the estimator
performance on the kernel width s under variation of
the response duration w. The response strength A and
background level b are kept fixed. The results are
summarized in Fig. 6. Observe that for each choice of
response duration there exists a unique optimal choice
of kernel width s. For instance, in the case of
w=50 ms, best performance is achieved for :20 ms,

Fig. 4. Performance of rate estimation for different kernel shapes,
depending on the kernel width s. Line styles as in Fig. 3. Error bars
denote the standard deviation of the integrated square error from 100
single-trial estimations with a Triangle kernel. (A) MISE as a func-
tion of s for the estimation of a constant rate with b=10 Hz. (B)
MISE as a function of s in the case of a time-varying rate function
with simulation parameters b=10 Hz, A=20, w=50 ms. The esti-
mate is optimal for s:20 ms, independent of the kernel shape. For
both constant and transient rate functions, the choice of the kernel
shape has almost no influence on the performance of the rate
estimation.
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Fig. 5. Performance of rate estimation for constant rates b, depending
on the kernel width. (A) Absolute error (MISE), (B) variance-normal-
ized error (MISE/b). Gray code using arbitrary units, darker regions
represent better performance (low MISE resp. MISE/b), lighter re-
gions represent worse performance (high MISE resp. MISE/b). Con-
tour lines are drawn for equidistant levels of MISE and MISE/b,
respectively.

Fig. 6. Dependence of rate estimation performance on kernel width,
under variation of the duration w of the phasic response. Background
rate b=10 Hz and response strength A=20 spikes are fixed. Gray
code as in Fig. 5; contour lines are drawn for equidistant MISE
levels. Dashed line fitted to minimum values of MISE.

mine the optimal time resolution to be chosen in the
analysis. Conversely, the time resolution chosen in the
analysis poses a lower bound for the time constants of
the dynamics that can be reliably reconstructed.

3.2.3. Time-6arying rates: 6ariation of response
strength and background rate

Next, we consider the dependence of the estimator
performance on the kernel width s under variation of
the response strength A. Now, the response duration w
and background level b are kept fixed. The results are
shown in Fig. 7A.

Observe that for large enough response strength A,
there exists a clear minimum of the MISE, and an
associated optimal choice of s close to the shorter time
constant of the response transient. For increasing val-
ues of A, this optimum slowly shifts towards smaller
values of s (cf. dashed line in Fig. 7A). Hence, for weak
phasic responses, the temporal resolution of the rate
estimation is reduced. As in Fig. 5, the gradual decrease
of MISE values for smaller A reflect the decrease in
variance of the corresponding spike counts.

Analogous conclusions can be drawn from the results
of variation of the background rate b (Fig. 7B). A
similar behavior of the optimal kernel width s as in
Fig. 7A is obtained, provided we replace a decrease of
A by an increase of b. This underlines the dual roles of

coinciding with the shorter of the two time constants
governing the rate dynamics (Eq. 5). For the parameter
range shown here, the optimal choice of kernel width
increases approximately linearly with the response du-
ration, as indicated by the dashed line in Fig. 6.

This result confirms our expectation that the fastest
time constants of the underlying rate dynamics deter-
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Fig. 7. Dependence of rate estimation performance on kernel width,
under variation of (A) the strength A of phasic response and (B) the
background rate b. In (A) the background rate b=20 Hz and
response duration w=50 ms. In (B) the response strength A=5 and
response width w=20 ms. Gray code as in Fig. 5; contour lines are
drawn for equidistant MISE levels. Dashed lines fitted to minimum
values of MISE.

3.2.4. Rules for optimized use and performance of the
kernel method

Given a measured spike train, we will now outline
two possible and complementary strategies for finding
an optimized kernel to be employed for single-trial rate
estimation.

The first strategy is based on the availability of
sufficient pre-knowledge about the underlying rate
function. Calibration plots as discussed in the previous
sections can then be used to determine a kernel which
promises (near-)optimal rate estimators. The results
from our numerical analyses have been cast into a set
of rules to guide the user in the search for the optimal
kernel (see Table 3). Starting from educated guesses of
the temporal width w, the strength A of the response,
and the intensity b of the background rate, one can
read out the width s of the best-performing kernel from
the corresponding calibration plots as in our Figs. 5–7.
Iterative improvement by repeated application of this
procedure might recommend itself.

The second strategy, in contrast, does not rely so
much on pre-information and user interaction. The
non-monotonic dependence of the MISE on kernel
width, especially at larger values of the response
strength A and low values of the background rate b,
suggests an alternative approach to determine the un-
known rate dynamics underlying an experimentally-
recorded spike train. By systematically reducing the
kernel width s and evaluating the ISE for pairs of
successive rate estimates associated with these kernels,
one typically encounters a more or less clear minimum
in this measure of difference, located at some critical
value of the kernel width s. We applied this unsuper-
vised search procedure to a number of single-trial spike
trains for a representative selection of underlying rate
functions. The results are shown in Fig. 8. Observe that
in most cases considered, this procedure indeed yields a
clear minimum, provided the response is not too weak
or too wide. In each case, we also show the width of the
kernel which was found to be optimal according to our
previously stated criteria (dotted lines in Fig. 8). We
found very good agreement between these two num-
bers, in all cases examined. Hence, the location of the
minimum in our iterative procedure provides a useful
estimate of the optimized kernel width, even in the
absence of prior information on the underlying rate
dynamics.

We applied both strategies for determining an opti-
mized kernel width to real spike trains recorded from
single neurons of the monkey motor cortex. For such
data, obviously, no reference to a known underlying
rate function is possible. Nevertheless, in all cases con-
sidered the unsupervised search yielded an unequivocal
prescription of an optimized kernel width s. Depending
on the characteristics of the particular data set, this

these two parameters of the response. By contrast, both
an increase in A and an increase in b lead to an increase
in total spike count. As a consequence, in both cases
the variance is increased, implying larger values for the
MISE, as is reflected by the similarity of gray gradients
in both Fig. 7A and B.
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optimized kernel width was in the range of a few tens of
milliseconds. Again, it was possible to confirm this
estimate by an application of the first method, starting

out from rough estimates of the response parameters
obtained by visual inspection of the raw spike trains.
The possibility to cross-validate the results, an applica-

Table 3
Rules for optimized use and performance of the kernel methoda

Rule Figures

Stationary rates
The wider the kernel the better 4A, 5A, B1

Transient rates
Kernel shape not important 4A, B2

4B, 6, 7A, B3 Kernel width must be tuned for optimal performance,
depending on response strength, response duration, and background rate

Unique optimal kernel width exists and4
is proportional to (fastest) time constant 6

7Adecreases with increasing response strength
increases with increasing background rate 7B

a These results are based on an evaluation of the MISE for numerical simulations of a representative and physiologically plausible selection of
dynamic rate functions.

Fig. 8. Unsupervised search to identify optimized kernel width for single trial spike trains. Each curve shows the ISE between successive rate
estimates, determined by progressively decreasing the kernel width s by equidistant steps on a logarithmic scale. Each frame shows the results for
five individual trials of spike data for a particular choice of response strength A, response duration w, and background rate b. Different frames
correspond to representative selections of response strength A and response duration w ; the background rate b=20 Hz was fixed in all cases.
Observe that in most cases the ISE curves show a more or less clear minimum, provided the response is not too weak or too wide. For comparison
with previous results, obtained from direct comparison of the reconstructed rates with the known underlying rate function, the dotted lines
indicate the kernel width for which the estimator showed best performance in terms of MISE (dashed line in Fig. 7 A). In each row of frames
all ordinates are scaled identically.
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Fig. 9. Performance of trial-averaged kernel estimation in comparison
with the PSTH. Shown is the MISE of reconstructed rates for
randomly drawn ensembles of N trials for (A) trial-averaged kernel
estimates using a triangular kernel of width s and (B) conventional
PSTH estimates using bins of width 2
3s matched to the standard
width s of the Boxcar kernel. Example for fixed simulation parame-
ters b=20 Hz, A=20, w=50 ms. Gray scales for MISE values are
identical in both plots. Dashed line fitted to minimum values of
MISE.

estimator for single-trial estimates. Now we will con-
sider the question how good the kernel estimator per-
forms as a trial-averaging technique in comparison with
the classical method of constructing a PSTH. To this
end, we perform rate estimation for each single-trial
separately and average the resulting rate estimates
across a number of trials before evaluating the ISE.

Exemplary results are shown in Fig. 9. In the case of
kernel estimation (Fig. 9A) there exists a unique opti-
mal kernel width s for any number of trials N. As
could be expected, the temporal width of the kernel
may be chosen smaller, the more trials are available.
Thus, the temporal resolution that can be attained by
the rate estimate improves with the number of trials N
(cf. dashed line in Fig. 9A). The integrated square error
decreases approximately with the square root of N.

In comparison, the results of PSTH performance
(Fig. 9B) show that there is no optimal bin width for
constructing the histogram. The vertical stripes in this
Figure are a Moiré-type pattern, reflecting the misalign-
ment of the discrete binning grid with the response
onset t0 (cf. Section 2.2.2). Only if t0 lies exactly on the
grid, the region around the response onset is faithfully
captured by the PSTH.

In general, on the basis of a fixed number of trials,
the kernel estimator performs decisively better than the
PSTH. In practical terms, this implies that kernel esti-
mation needs considerably fewer trials than the his-
togram approach to achieve an equally good rate
reconstruction.

Note that in our simulations we did not introduce
any trial-specific latency variations for the response
onset t0. Such latencies are, however, often present in
experimental data where repeated trials are not strictly
time-locked to the response-inducing event (typically a
stimulus) (Sanderson, 1980; Richmond et al., 1990;
Nawrot et al., 1999). In the presence of such latency
variations, the binning artifact will be diminished. Evi-
dently, in this case, straightforward trial-averaging is
bound to decrease the peak performance of both the
PSTH and the kernel estimator. More sophisticated
techniques, based on a realignment of trials, may then
be invoked to obtain a faithful portrait of the dynamic
rate functions (Sanderson, 1980; Nawrot et al., 1999).

3.3. Application to single-trial population 6ector

In the previous sections we were mainly concerned
with ascertaining ourselves that the kernel estimator
yields a reliable estimate of the underlying rate func-
tions. Now, we will explore an application of the
method that specifically addresses two other important
aspects: the possibility of on-line estimation, combined
with having access to the simultaneous activities of
multiple-single neurons. This application, in fact, re-
sembles earlier approaches to reconstruct the sensory

tion of a dual strategy as outlined above is, therefore,
our strong recommendation.

3.2.5. Time-6arying rates: trial-a6eraging
So far we have evaluated the performance of our rate
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Fig. 10. Representation of a fast 2D arm movement by simultaneous spike trains of a recorded population of 100 neurons. (A) Preferred directions
of all neurons contributing to the population vector, length of the vectors indicate velocity tuning. (B) Spike trains of a representative sample of
30 neurons. An average firing rate between 10 and 25 Hz and Poisson statistics were used in the simulations. (C) Simulated hand trajectory, giving
rise to the neuronal spike trains is shown. Observe how the frequent turns during the initial phase of the movement are reflected in dynamic
changes in the firing rates. (D) Reconstructed movement trajectory, obtained by integration of the population vector. The firing rates were
computed from the spike trains without averaging by using the kernel method (Triangle, s=75 ms).

interpretation of multi-neuron spike trains (Johan-
nesma, 1981; Gielen et al., 1988; Hesselmans and Jo-
hannesma, 1989).

The on-line computation of time-dependent neuronal
population vectors (Georgopoulos et al., 1982;
Schwartz, 1994) from simultaneously recorded spike
trains can be achieved by a straightforward application
of the kernel method. Trial-averaging is not necessary,
if (1) the neuronal population is large enough, (2) the
preferred directions of the individual neurons are uni-
formly distributed, and (3) the parameters of the kernel
are carefully chosen. An application to real-time con-
trol of reaching movements of a robot arm on the basis
of simultaneously recorded motor cortex neurons in
extension to Chapin et al. (1999) thereby becomes
feasible.

We tested the performance of this approach on the
basis of computer simulated spike trains, assuming a

population of motor cortex neurons with realistic direc-
tional and velocity tuning (Moran and Schwartz, 1999).
If the directional tuning of a neuron follows a cosine
law, its firing rate f(t) depends on the current velocity
vector 6

�
(t) of the movement according to

f(t)= f0+ p
�

· 6
�

(t) (10)

where f0 is the background firing rate and p
�

is the
preferred movement direction of the neuron. The mod-
ulation of the firing rate p

�
· 6
�

(t) is proportional to the
velocity of the movement, the length of the preferred
vector p

�
encodes the gain for velocity. For a randomly

sampled population of motor neurons, the preferred
vectors p

�
are broadly distributed, more or less evenly

covering all possible directions.
We used the kernel method to reconstruct the time

course of the firing rate for each neuron of the popula-
tion individually. On the basis of these rates, and
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assuming that the preferred directions and velocity gains
of all neurons are known, the time-dependent population
vector can be constructed in the usual way. Temporal
integration of this population vector then yields a trajec-
tory in space, which matches the trajectory of the original
arm movement in very good approximation (Fig. 10). A
quantitative evaluation of this procedure for real multi-
neuron spike data is currently in progress. As was to be
expected, the reconstructed representation improves with
the size of the population. We found that, for the
relatively fast type of movement shown, a population of
only 50–100 neurons suffices to achieve a surprisingly
high quality of movement representation. Such numbers
are rapidly becoming feasible using state-of-the-art
multi-electrode recording techniques (Nicolelis, 1998).

4. Discussion

We described a method to estimate the neuronal firing
rate from single-trial spike train data. The method,
basically a convolution of the spike train with a fixed
kernel function, was calibrated on the basis of simulated
spike trains. Our findings demonstrate that estimation of
neuronal firing rates from single-trial spike trains is
feasible for a representative selection of physiologically
realistic dynamic spike responses, including difficult
cases with weak responses against a relatively strong
background. On the basis of these results, we derived
rules for the optimized use and performance of the kernel
method, specifically with respect to an effective choice of
the shape and width of the kernel functions.

To better localize sharp edges and other fast transients
of the underlying rate function (e.g. to extract the
response latency or the slope at response onset), the use
of asymmetric, causal or anti-causal, kernel shapes
suggests itself. However, judged by the ISE measure,
their use did not lead to improved rate estimates for the
family of dynamic rate functions examined. To selec-
tively assess the performance of rate estimators with
respect to such local features of the underlying rate
function, different (non-integral) measures can be con-
structed. The potential of such extended methods is
currently being explored. Further experiments in our
laboratory using extensions of the basic method (includ-
ing adaptive kernels, Savitzky–Golay filters (Diesmann
et al., 1996) and more general non-linear rate estimators
(Nawrot et al., 1997)) yielded promising results. So far,
however, they were not found to be widely applicable,
primarily because the additional parameters make them
less managable and, accordingly, they still require too
much user intervention.

We are currently testing the applicability of single-trial
rate estimates also in the context of other types of spike
train analyses. A particularly important application in
this respect concerns their use as control measurements

against which to test multiple single-unit spike data for
the presence of dynamic spike synchronization phenom-
ena (Gerstein and Aertsen, 1985; Aertsen et al., 1987,
1989; Riehle et al., 1997; Grün et al., 1999).

The approach of single-trial estimation of neuronal
firing rates opens the way to address a number of
questions that were previously impossible to be treated
with conventional methods relying on trial-averaging. As
a possible application in this sense, we described the
on-line, single-trial reconstruction of arm movement
trajectories from multiple single-unit spike trains using
dynamic population vectors.
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