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Abstract

Stationary spiking of single neurons is often modelled by a renewal point process. Here, we tested the underlying model assumption

that the inter-spike intervals are mutually independent by analyzing stationary spike train recordings from individual rat neocortical

neurons in vivo and in vitro. All neurons exhibited moderate (in vivo) or weak (in vitro) negative first order serial correlation of

neighboring intervals which was found to be significant in most cases. No significant higher order serial correlations were detected. The

observed negative correlation lead to a strong reduction of the spike count variability by about 30% in vivo.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Stochastic point processes are frequently used as models
for neuronal spiking. Renewal processes are a simple and
well-studied class of point processes where intervals
between successive events are independently and identically
distributed (i.i.d.) according to a fixed interval distribution
[10]. Renewal models may be defined in abstract mathe-
matical form by specifying an arbitrary interval distribu-
tion which essentially characterizes the process. Equally,
the output spike train of the biophysically motivated
integrate-and-fire neuron driven by stationary Poissonian
inputs is a realization of a renewal process [25,14,5]. The
fixed interval distribution implies a constant rate of spike
occurrence. The rate-modulated renewal process gener-
e front matter r 2006 Elsevier B.V. All rights reserved.
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alizes this concept to incorporate time-varying firing rate.
The attractiveness and wide use of the mathematical
renewal model is due to its simplicity which allows for
analytic treatment and the calculation of accurate experi-
mental predictions for statistical measures of interval and
count statistics. At the same time, renewal models are
suited for efficient numeric simulation. In this paper, we
asked whether the spiking process of neocortical neurons is
compliant with the renewal assumption. While these
assumptions may be generally questioned, testing for the
independence of inter-spike intervals (ISIs) is usually
impaired by modulations in spike rate that may strongly
influence the serial interval statistics. We therefore ana-
lyzed cortical spike trains from stationary spontaneous
activity conditions. Specifically, we tested the null hypoth-
esis of the mutual independence of ISIs in two different
experimental conditions. First, spontaneous activity was
recorded intracellularly in vivo from neurons in the
somatosensory cortex of anesthetized rats. Second, we
performed a set of in vitro experiments in rat layer 5
pyramidal neurons with injection of noise current that
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mimicked synaptic input bombardment of defined stochas-
tic nature. Preliminary results have been published in
abstract form [21].

2. Methods

2.1. In vivo intracellular recordings

Intracellular recordings were made from neocortical cells
in S1 of Long-Evans rats (8 weeks or older) using sharp
electrodes ð602120MOÞ (Fig. 1). The animals were initially
anesthetized with urethane (1 g/kg) and supplementary
doses of ketamine–xylazine (20 and 2mg/kg i.p.). We
carefully selected data from N ¼ 8 cells which exhibited
long periods of continuous depolarization and stationary
spontaneous spiking devoid of the strong membrane
potential fluctuations (up/down states) usually observed
during urethane anesthesia [13]. Spike rate (avg.
10:4� 4:5 per second) was constant in six cells but showed
moderate slow modulation in two cells (Neurons 1 and 7 in
Fig. 4a). To correct this we estimated the rate function with
low time resolution (� 4 s, [19]) and subsequently demo-
dulated the spike train [23,20].

2.2. In vitro noise current injection

Acute slices (400mm) were obtained from S1 of Long-
Evans rats (P15-28). Somatic patch clamp recordings
(226MO) were made from N ¼ 8 regular spiking layer 5
pyramidal neurons (for details see [3]). Current traces of
300 or 1200 s duration were synthesized as superposition of
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Fig. 1. (a) Intracellular voltage trace recorded in vivo covering 2 s of

spontaneous activity. (b) The length of each interval is scattered against

the length of the following interval to demonstrate their negative

correlation. Gray histogram shows empirical ISI distribution. (c)

Conditional mean (filled circles) in 40ms steps and control (open squares)

averaged across 100 random interval shufflings.
independent EPSCs and IPSCs (decaying exponentials,
30pA, 3ms and 6ms). Input was purely excitatory (E) or
balanced with inhibition (E/I, ratio 2:1). Excitatory time
series were modelled by a Poisson process or a gamma
process of order g ¼ 0:25 (temporally clustered but serially
independent inputs). Inhibitory inputs were Poisson. Current
amplitude (nominal þ100 pA) was adjusted for individual
cells to obtain spike rates of 5–10 (average 7:7� 2) per
second. The first 50 s of recording were discarded from the
analysis to avoid potential onset transients.

2.3. Spike train analysis

We quantified correlation of ISI pairs by the Spearman
rank order correlation coefficient SRCk of order k where
each ISI is replaced by its rank among all intervals. The
SRC1 refers to the linear correlation between ranks of
immediate neighbors, the kth-order SRCk refers to the
correlation of pairs ISI i=ISI i�k with k � 1 intervals in-
between. Significance of the SRC to be non-zero was
established using the t-statistics. To compute the average
SRC we used Fisher’s z-transform. For the conditional
mean CM ISIs were separated according to their length
into classes of 40ms width. For each class we then
computed the mean of the following intervals [27].
Serial correlation is sensitive to rate non-stationarities

[17,12]. Slow enough modulation evokes positive serial
correlation of nearby ISIs. We tested individual in vitro

experiments for non-stationary rate using the test suggested
in [12]. Briefly, for the sequence of n� 1 ISIs we calculated
n�m short term averages mi from consecutive samples of
m ¼ 15 ISIs and tested the null-hypothesis of normally
distributed mi with parameters of mean hISIin and standard
deviation sðISIÞn=

ffiffiffiffi
m
p

. We found a significant number of
outliers (P ¼ 5%) in 16 of total 33 recordings.
To calculate the Fano factor (FF) we divided a given

spike train into equal length counting intervals. Each
interval contained on average 10 spikes to avoid significant
bias effects due to short intervals [22,20].

3. Results

3.1. Serial interval correlation in vivo

In a first set of experiments, we measured spontaneous
intracellular activity from cortical neurons in the somato-
sensory cortex of the anesthetized rat. A typical recording
is presented in Fig. 1. The depolarized membrane potential
and large voltage fluctuations reflected vivid synaptic
input. We analyzed the spontaneous spike activity of each
individual neuron for serial dependency of the ISIs. Fig. 1b
shows the resulting ISI distribution (gray histogram) for a
total of 989 spikes recorded during 90 s. From the scatter
diagram where we plotted the duration of the ith interval
against the duration of the ði þ 1Þst interval it becomes
evident that there is a tendency for long intervals to be
followed by shorter ones and vice versa. This finds
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Fig. 3. (a) Membrane voltage in vitro in response to the injection of an

excitatory shotnoise current. (b) Neighboring intervals are significantly

correlated with SRC1 ¼ �0:1. (c) Conditional mean (filled circles) in 40ms

steps shows negative slope. Symbols as in Fig. 1.
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expression in the significant (Po10�3) negative first order
serial correlation coefficient of SRC1 ¼ �0:2. The condi-
tional mean in Fig. 1c (filled circles) measures the duration
of the ði þ 1Þst interval (ordinate) in dependence on the
duration of the ith interval. The negative slope of this curve
again clearly expresses the negative serial dependency of
neighboring ISIs.

The negative first order serial interval correlation was
found in seven of eight cells (Fig. 2a) which showed very
similar strengths of correlation, with an average of �0:21.
In one cell the SRC1 was not significantly different from
zero (P40:05). None of the neurons, however, exhibited
significant serial correlation of higher order and the
average correlation was close to zero for all orders k41
and in all neurons (Fig. 2b). Thus, non-zero serial
correlation in vivo was restricted to immediately neighbor-
ing intervals.

3.2. Serial interval correlation in vitro

Somatic noise current injection in vitro enabled us to
provide individual layer 5 pyramidal cells with synthetic
input with predefined stochastic parameters. We modelled
time series of excitatory and inhibitory input events as
realisations of two independent renewal processes. Thus,
individual synaptic input currents arrived with constant
rate and without serial correlations. The noisy input
resulted in a depolarized membrane potential, large voltage
fluctuations and spike activity similar to what we observed
in vivo (compare Fig. 1a and Fig. 3a).

We considered stable recordings only (n ¼ 17, see
Methods) and calculated the SRCk for all orders k ¼

1; 2; . . . ; 10 for each individual spike train. The example of
Fig. 3 exhibited a significant (Po10�3) negative first order
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Fig. 2. Serial interval correlations in vivo. (a) First order serial correlation

coefficient for eight individual neurons. Significance indicated by 2

(Po0:01) or 3 (Po10�3) stars. (b) Distribution of correlation coefficients

across all eight neurons for different serial order k ¼ 1; 2; . . . ; 10. Gray

boxes delimitate the lower and upper quartile, black lines mark the

median. Whiskers extend to 1:5 times inter-quartile range, black dots mark

outliers.
serial correlation of SRC1 ¼ �0:1, while no significant
correlation of order k41 was detected. A negative SRC1

was measured in all except one out of 17 experiments, and
found to be significant in 13 cases (Po0:05) with an
average correlation of �0:065. Grouping all experiments by
the individual neuron, we find that all cells exhibited an
average negative correlation of neighboring ISIs as shown
in Fig. 4a. Higher order average correlation was close to
zero (Fig. 4b) and individual values SRCk for k41 were
significantly different from zero at the 5% significance level
in about 3% and 9% of all cases for negative and positive
correlation, respectively.
We recorded neurons in four different input conditions

(see Methods). As shown in Fig. 4c, balancing excitation
with inhibition (E/I) lead to a decreased average SRC1 as
compared to the case of pure excitation (E), irrespective of
input clustering. Changing the excitatory input statistics
from Poisson (gray bars) to a clustered process (white bars)
slightly increased the average value of SRC1.

3.3. Effect on second order count statistics

We investigated the effect of the observed negative serial
correlation of ISIs on spike count variability, as measured
by the Fano factor FF , in relation to the interval variability
as measured by the squared coefficient of variation CV 2.
For a given point process, count and interval variability are
not independent. For a renewal process, and in the limit of
long observation intervals, it holds that FF ¼ CV 2 [10].
The more general analytic expression

lim
T!1

FF ¼ CV 2 1þ 2
X1
i¼1

SRCi

 !
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Fig. 5. Impact of serial interval correlation on spike count variability.

(a) Distribution of FF from 1000 surrogate spike trains where intervals

were randomly shuffled to destroy serial correlation and empiric estimate

(FF ¼ 0:13, vertical line) for the same example neuron as in Fig. 1.

(b) Empiric FF of spike count versus CV2 of ISIs for individual neurons in

vivo. Open symbols show empiric estimates; filled symbols show geometric

mean across 1000 surrogates. Triangles refer to neuron 8 which did not

exhibit significant ISI correlation.
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Fig. 4. Serial interval correlation in vitro. (a) Average first order

correlation coefficient (gray bars) for individual neurons. Triangles mark
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accounts for serial correlation of order i [10,22,7]. In the
case of our in vivo recordings we found significant first
order ISI correlation in seven of eight neurons with an
average correlation coefficient of SRC1 ¼ �0:21 which
implies that FFoCV 2. The predicted ratio of FF=CV 2 �

0:6 is in good agreement with the average ratio of the
empiric estimates where FF=CV 2 ¼ 0:68 (cf. Fig. 5). As a
control we generated surrogate renewal spike trains form
the original spike trains by randomly shuffling all ISIs. This
destroyed serial correlation and established renewal statis-
tics where FF � CV 2 for all neurons as shown in Fig. 5b.
4. Discussion

Our results indicate that neocortical pyramidal neurons
exhibit weak to moderate negative serial interval correla-
tion of order 1, but no significant correlation of order 2 or
higher. We conclude that the spiking process of cortical
neurons violates the renewal assumption of independently
distributed intervals. In agreement with the theoretical
prediction, we could show that the observed serial
correlation in vivo lead to a considerable reduction of the
spike count variability in comparison to the renewal-based
prediction. This has been previously demonstrated for
electrosensory fibres in the weakly electric fish [22,7]. We
can expect that both the strength and the order of serial
interval correlation will depend on the actual firing rate.
Here, we only analyzed stationary recordings with moder-
ate rates of about 7–10 spikes per second. Future in vitro

experiments will address the effect of different rate levels
on serial interval correlation.
Up to now, there were surprisingly few attempts to

investigate serial interval statistics in neocortical neurons.
This may partly be due to the fact that a typical
experimental setting implies a modulation of the firing
rate which complicates serial analysis and which leads to
long-ranged positive serial interval correlation [24,18,20].
In addition, extracellular recordings are subject to spike
sorting errors which can be expected to have considerable
impact on serial spike train statistics. Nakahama et al. [17]
analyzed single unit activity in cat somatosensory cortex
during a similar spontaneous state of ‘quiet wakefulness’.
They also report short-ranged serial dependency and
estimated low Markov orders (typically 0 or 1) resulting
in weak but strictly positive (� þ0:05) first order serial
correlation. Similar results were obtained by Baddeley et al.
[1] in VI cells recorded in anesthetized cats and IT cells in
the awake monkey. Negative first order serial interval
correlation has previously been reported in other systems,
in particular for neurons in the lateral superior olive (LSO)
[27] and for electrosensory fibres in the weakly electric fish
[22,7].
What could be the benefits of a negative serial interval

correlation in terms of neural coding? The lower spike
count variability effectively reduces the noise level of rate
signals [22,7,4,11] and permits an increased information
capacity for rate fluctuations on time scales that are longer
than the mean ISI [6]. Recently, Lüdtke et al. [15] showed
that short-term synaptic plasticity on time scales that
match the mean ISI can retain serial correlation of afferent
inputs and, in principle, could be exploited to further
improve the detection of weak input signals on a noisy
background.
What are the causes for the observed negative serial

dependency in cortical neurons? The temporal structure of
the afferent inputs provide a possible extrinsic source for
serial output correlation. Slow modulations of the overall
input, however, will cause positive correlation of the ISIs.
Also, short and long ranged autocorrelation of colored



ARTICLE IN PRESS
M.P. Nawrot et al. / Neurocomputing 70 (2007) 1717–1722 1721
input noise exclusively produces positive correlation in the
output of the I&F neuron [16,14]. We cannot rule out,
however, that the detailed temporal structure of the
network input in vivo significantly contributed to the result
of a negative SRC1 in our data. The major neuron-intrinsic
factor are the afterhyperpolarization (AHP) currents
responsible for spike-frequency adaptation (for references
see [26,2]). Detailed biophysical models that incorporate
physiologically motivated AHP currents have been shown
to reproduce short-ranged negative serial interval correla-
tion. In particular, the interplay of slow intracellular
calcium dynamics and calcium-dependent potassium chan-
nels can mediate a cumulative AHP effect as has been
demonstrated for compartmental models of cortical
pyramidal cells by Wang [26] and for the LSO neuron by
Zacksenhouse et al. [27].

The I&F model can be modified to incorporate a
decaying threshold memory to reproduce negative serial
correlation (e.g. [8,7,4,9,15]). Both types of models operate
on physical time and thus serial correlation order will be
dependent on the actual output rate of the neuron [2].
Simplified versions introduce a threshold memory of fixed
length i that introduces serial correlation only up to order i,
irrespective of the rate [6].
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