
Abstract. Neuronal activity in the mammalian cortex
exhibits a considerable amount of trial-by-trial variabil-
ity. This may be reflected by the magnitude of the
activity as well as by the response latency with respect to
an external event, such as the onset of a sensory
stimulus, or a behavioral event. Here we present a novel
nonparametric method for estimating trial-by-trial dif-
ferences in response latency from neuronal spike trains.
The method makes use of the dynamic rate profile for
each single trial and maximizes their total pairwise
correlation by appropriately shifting all trials in time.
The result is a new alignment of trials that largely
eliminates the variability in response latency and
provides a new internal trigger that is independent of
experiment time. To calibrate the method, we simulated
spike trains based on stochastic point processes using a
parametric model for phasic response profiles. We
illustrate the method by an application to simultaneous
recordings from a pair of neurons in the motor cortex of
a behaving monkey. It is demonstrated how the method
can be used to study the temporal relation of the
neuronal response to the experiment, to investigate
whether neurons share the same dynamics, and to
improve spike correlation analysis. Differences between
this and other, previously published methods are
discussed.

1 Introduction

Neural activity in the cortex measured during repeated
experimental trials exhibits two distinct aspects of
variability. The first aspect is expressed in the variable
shape of the neural activation that follows a stimulus
(Bach and Krüger 1986; Vogels et al. 1989; Arieli et al.
1996; Shadlen and Newsome 1998) or accompanies a

motor action (Vaadia et al. 1988; Lee et al. 1998; Oram
et al. 2001; MP Nawrot, A Riehle, A Aertsen, S Rotter
2002, submitted). The second aspect concerns the
temporal relation of the neuronal activation profile with
respect to the time frame of the experiment. This type of
variability is more distinctly expressed in recordings
from prefrontal (Radons et al. 1994; Seidemann et al.
1996), parietal (Seal et al. 1983; Requin et al. 1988), and
motor areas (Vaadia et al. 1988), where both the
processing of sensory inputs and the planning and
execution of motor behavior is reflected in the neuronal
activation patterns. In sensory areas, by contrast, the
neuronal response is often tightly locked to the sensory
stimulus, and thus latency variability is small (Rich-
mond et al. 1990).

We describe here a novel nonparametric method for
estimating the trial-by-trial differences in the temporal
latency of dynamic spike responses. The majority of
previously published methods (Ellaway 1978; Seal et al.
1983; Commenges and Seal 1985; Davey et al. 1986;
Churchward et al. 1997; Baker and Gerstein 2001) are
based on parametric models and rely on the estimation
of one or more parameters during an initial period of
stationary firing (see also Discussion). A nonparametric
method related to ours has been described by Sanderson
(1980).

In contrast to most other methods, the procedure
described here does not attempt to estimate the absolute
latencies of changes in neural firing rate as measured
with respect to some external trigger event. Rather, for a
set of N trials our method yields N � 1 relative latencies
corresponding to an optimal alignment of all N trials
such that latency variation is minimized. The improved
trial-averaged response may then, if desired, be used to
determine the absolute mean latency with a different
method. The previously estimated relative latencies
provide a quantification for the variance of the response
latency.

We used surrogate data for the calibration of our
method. The data were simulated by means of rate-
modulated gamma processes. The underlying dynamic
rate followed a phasic-tonic response profile, paramet-
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rized by response strength, response width, and back-
ground rate.

The application of our method is illustrated for a pair
of neurons that were simultaneously recorded from the
primary motor cortex of a behaving monkey. It allowed
us to determine the temporal relation of the neural ac-
tivity to various external trigger events. The analysis of
neuronal interaction by means of crosscorrelation and
the joint peristimulus time histogram (JPSTH) is im-
proved through elimination of latency variability, al-
lowing for a better estimate of the trial-averaged
predictor. Preliminary results were presented in abstract
form (Nawrot et al. 1999b).

2 Methods

2.1 Estimation of trial-by-trial latency differences

We assume an ensemble of N spike trains as the outcome
of N experimental trials. All trials are aligned in time with
respect to some external trigger event (Fig. 1b), e.g., the
onset of a sensory stimulus or a behavioral event, such as
pushing a button. We will first consider the case of one
single unit, and then extend the method to the combined
analysis of several simultaneously recorded units.

2.1.1 Estimation of single-trial rate profiles. In the first
step, we obtain single-trial rate estimates by applying the
method of kernel estimation (Parzen 1962; Silverman
1986; Nawrot et al. 1999a; Paulin and Hoffman 2001).
For each of the N trials we obtain a rate profile

kðtÞ :¼
Xl

i¼1

Kðt � tiÞ

where t1; . . . ; tl are the corresponding spike times. As the
kernel function KðtÞ we chose a symmetric triangular
kernel according to

KðtÞ ¼
1

6j2 ð
ffiffiffi
6

p
j � jtjÞ for jtj �

ffiffiffi
6

p
j

0 otherwise

�

with standard width j and unit area.
The performance of single-trial rate estimation de-

pends essentially on kernel width j, which determines
the time resolution. Here, we used an unsupervised
method as described in Nawrot et al. (1999a) to find the
optimal value for j. We applied this method to each trial
separately and then used the average width to finally
estimate each of the N single-trial rate profiles using a
single kernel. Figure 1c shows three exemplary estimates
from simulated spike data. An alternative method for
determining the optimal kernel width is described in
Paulin and Hoffman (2001).

2.1.2 Maximization of total pairwise crosscorrelation.
Our goal is to determine the trial-by-trial differences in
latency such that their compensation leads to an
‘‘optimal’’ temporal alignment of trials. A suitable
alignment criterion for pairs of trials was found to be
the maximal overlap of the single-trial rate functions.
The N -fold crosscorrelation of all individual rate profiles
seems to be a natural generalization of this approach.
However, the corresponding optimization problem is
computationally very costly, and impractical for typical
trial numbers in the range of tens to hundreds. To
circumvent this problem we propose here an alternative
method involving three steps of analysis.

For N trials our optimization problem has N � 1
degrees of freedom. In other words, for the optimal
alignment we may choose the time course of trial 1,
say, as a reference (s1 :¼ 0) and then apply the N � 1
shifts sopt2 ; . . . ; soptN to the remaining trials. For each pair
(i; j) of trials we calculate the crosscorrelation sepa-
rately:

Cijðsj � siÞ ¼
Z

kiðsi þ sÞkjðsj � sÞ ds
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Fig. 1. Method for estimation and elimination of trial-by-trial
response latency variations. a Peristimulus time histogram (PSTH)
and b raster display of underlying spike trains for 20 trials in an
observation interval of 800 ms. c Estimated single-trial rate profiles
for three selected trials. d For each pair (i; j) of trials we calculate the
crosscorrelation of rates as a function of the time lag sij. Fitting of a
parabolic function to each of the correlogram peaks allows us to
determine the set of N � 1 relative latencies that maximize the total

pairwise crosscorrelation (see text). Compensating for these latencies
results in realigned response profiles e, f and a much improved PSTH
estimate g that matches the underlying rate function (black line) used
for the simulation of the single-trial responses. The saliency of the
response peak in the PSTH was quantified before and after
realignment by the modulation index g that measures the relative
difference in entropy of the area-normalized PSTH from a completely
flat PSTH with the same number of bins (see Methods)

322



depending on the relative time lag sj � si between the ith
and jth trial, as shown in Fig. 1d. For practical reasons,
the maximum time lag m was restricted to half the length
of the observation interval. In the second step, we fit a
parabolic function pijðsÞ to each of the NðN � 1Þ=2
crosscorrelation functions (Fig. 1d) in a small neighbor-
hood around smax

ij where the correlation is maximal.
Finally, we compute the sum P of all parabolas. This
function is quadratic in the N � 1 variables
s ¼ ðs2; . . . ; sN Þ and possesses a unique global maxi-
mum. This maximum defines the shifts for the optimal
alignment of all trials.

2.1.3 Multiple simultaneous recordings. In case we want
to study higher-order interactions of two or more
simultaneously recorded channels of spike activity, we
must assume that all observed neuronal processes
operate on the same time axis. Thus, when eliminating
relative latencies, we must preserve the joint time axis.
We can then either rely on the estimation of the relative
latencies for one preferred neuron (or channel) with
particular salient response profiles or take into account
the data of all n neurons. To implement the latter, we
chose the following procedure: we performed the single-
trial rate estimation and the calculation of all pairwise
trial crosscorrelations independently for each neuron. In
the next step, we summed the correlation functions
across all neurons, each with equal weight. All subse-
quent steps are the same as for one neuron. This
approach is by no means the only way of jointly
estimating the latency variations in multiple neurons
(see, for example, Baker and Gerstein 2001). A more
detailed investigation of alternative methods, however,
is beyond the scope of this paper.

2.2 Calibration

To calibrate our method for estimating trial-by-trial
differences in latency, we used surrogate data from
stochastic point process simulations. We repeatedly
generated spike trains according to a fixed dynamic rate
profile. For all trials of an ensemble we introduced
latencies that were independently drawn from a Gauss-
ian distribution. An error measure was used to quantify
the deviation between actual and estimated latencies,
and its dependence on various parameters.

2.2.1 Simulation. We used stochastic point process
models for simulating spike train data. We mostly
employed nonhomogenous Poisson processes (Cox and
Isham 1980; Teich et al. 1997; Nawrot et al. 1999a)
where all points, or spike times, occurred independently
of each other with an average rate intensity that changed
in time according to a given rate profile qðtÞ. In
additional simulations we used rate-modulated gamma
processes (Reich et al. 1998; Baker and Lemon 2000;
Baker and Gerstein 2000; Barbieri et al. 2001) of integer
order k. Realizations for this model can be achieved by
first simulating the nonhomogenous Poisson process

with k-fold rate and then eliminating all but every kth
spike. Thus, the Poisson process is a special gamma
process with order k ¼ 1.

2.2.2 Dynamic rate functions. We employed a family of
rate profiles qðtÞ that model realistic peristimulus time
histograms (PSTHs) typically encountered in vivo, as
used earlier in Nawrot et al. (1999a). The rate function is
comprised of a stationary background rate b, which
accounts for spontaneous activity, and an additional
phasic response profile with the time course of a beta
function:

bsðtÞ :¼
1
s ðe�

t
2s � e�

t
sÞ for t 	 0

0 for t < 0:

�

This function is normalized to unit area and has a decay
time constant that is twice the rise time constant s. The
standard width of the beta function is

w ¼
ffiffiffi
5

p
s

which is used for parametrization. Finally, we define the
following family of rate functions:

qb;A;wðtÞ :¼ bþ A 
 bwðt � t0Þ

where t0 denotes the response onset. The factor A
corresponds to the area under the phasic response profile.
It determines the number of excess spikes that can be
expected during the response in addition to the back-
ground spikes. We chose A > 0 to model an excitatory
response. Figure 1g shows an example with background
rate b ¼ 10 Hz, an expected number of A ¼ 20 response
spikes, and a response width of w ¼ 100 ms. The
simulations were performed for a variety of realistic
choices of parameter combinations (b, A, w).

2.2.3 Measure of performance. For each ensemble of
trials we first repeated the simulation N times using
exactly the same rate profile. We then randomly drew
N � 1 relative latencies from a normal probability
distribution with standard deviation r, restricted to the
symmetric interval that accounts for 99% of its area.
From this ensemble of simulated spike trains we then
estimated the relative latencies. The error � of estima-
tion was quantified by the standard deviation of the
differences between the actual latencies (which are
known here) and the estimated latencies. We simulated
500 ensembles with N trials each for several combina-
tions of simulation parameters. Based on such ensem-
bles (see example in Fig. 2) we obtained a good
estimate of the mean error ���, which we used as the
measure for mean performance. Moreover, we deter-
mined the reliability of the latency estimation by the
standard deviation of errors SDð�Þ across all ensembles.
Clearly, the variance of estimation depended on the
number of trials per ensemble. We chose N ¼ 20 trials,
unless stated otherwise. This is a realistic number that
applies even in the case of complex experimental
paradigms.
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2.3 Modulation index

The error measure � can be applied only in the case of
surrogate data, where the ‘‘true’’ latencies are known. In
the case of real data we need other indicators that allow
one to assess the goodness of the estimate. Typically, the
realignment of trials according to the estimated latencies
sharpens the trial-averaged response profile calculated
with the PSTH.

Here we describe one way of quantifying this effect.
To this end we define the modulation index as a measure
that quantifies the deviation of any given histogram
from the uniform histogram with the same number of
bins, but with all bins having the same value. Consider a
PSTH comprised of l bins with entries ðh1; . . . ; hlÞ. We
first normalize it to unit area, i.e., we divide each of the
entries by the sum over all entries. The resulting histo-
gram may then be interpreted as a probability density
function. For each particular bin i the respective entry
then gives the probability pi of finding a spike within
that bin. We can now calculate the entropy of this dis-
tribution and divide it by the maximum entropy that
would be assumed by the uniform histogram with the
same number of bins. Subtracting this number from
unity leaves us with the definition of the modulation
index as

g :¼ 1�
�Xl

i¼1

pi log2 pi

�
= log2 l

which is a number in ½0; 1�. For a uniform histogram
with l bins we have pi ¼ 1=l for all i and, therefore,
g ¼ 0. By contrast, for a histogram with a single nonzero
entry, we obtain g ¼ 1.

2.4 Time-resolved Fano factor

The number of observed spikes within a fixed observa-
tion interval I varies across repeated trials. The Fano
factor is an established measure for this variability
across trials. Here, we define its empirical estimate

F̂FI ¼
Var (count)

Mean (count)

as the variance of counts observed across individual
trials of duration I , normalized by the mean count in
that interval. In the framework of point process theory,
the Fano factor is defined in the limit of infinitely long
observations. For a gamma process, the Fano factor is
then equal to the inverse of the order parameter k
(Tuckwell 1988). Thus, the special case of the Poisson
process has a Fano factor equal to unity. However, for
intervals I of finite length, the empirical estimate F̂F as
defined above exhibits a strong dependency on the
expected count within this interval (Cox 1967; Teich et
al. 1997; Ratnam and Nelson 2000; Chacron et al. 2001;
Nawrot et al., in preparation). An analytic expression
for this dependence can be found for a gamma process
with integer order (Cox 1967). For k > 1, the empirical
measure F̂FI lies in the range 1=k < F̂FI < 1, with a stronger
bias toward unity for lower expected counts in I (Naw-
rot et al., in preparation). In the special case of the
Poisson process, the Fano factor is 1, irrespective of the
length of the interval.

Here we employed a time-resolved version of the
empirical Fano factor F̂F ðtÞ computed for a moving time
window of fixed length (Oram et al. 2001). For nonsta-
tionary rates in the case of misaligned trials due to
variable trial-by-trial latencies, the time course of F̂F ðtÞ
will falsely indicate too high values in periods of strong
rate changes. This is demonstrated for an ensemble of
gamma data in Fig. 3a. After realignment of all N trials,
this effect is much reduced (Fig. 3b). Closer inspection
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Fig. 2. Performance of latency estimation for simulated data.
a Original latencies versus estimated latencies. The black dots show
the results of an application of our method for 500 ensembles of 20
trials each, with simulation parameters k ¼ 1, b ¼ 10 Hz, A ¼ 20,
w ¼ 100 ms. The open circles illustrate the latencies of the trials in the
example of Fig. 1. b Distribution of the error measure � for all 500
ensembles. On average, the error was ��� ¼ 20:4 ms, the standard width
of the original latency distribution was 75 ms. The reliability of the
error estimation was SDð�Þ ¼ 4:5 ms
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Fig. 3. Time-resolved Fano factor. a Before compensating for latency
differences, the empirical Fano factor estimated in a moving window
300 ms wide exhibits strong positive excursions due to the misalign-
ment of trials around times where the rate increases or decreases.
b The realigned ensemble yields a more stationary time course of F̂F ðtÞ.
The total time of observation is 800 ms, as in Fig. 1. The simulated
point process was a gamma process with order parameter k ¼ 4,
which generated more regular spike patterns than in the Poisson case
(Fig. 1); further simulation parameters were b ¼ 10 Hz, A ¼ 10,
w ¼ 100 ms, r ¼ 75 ms. The dotted line indicates the limiting case for
the Fano factor given by 1=k ¼ 0:25 (see text)
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reveals that after realignment the Fano factor is in-
creased on either edge of the observation interval. This is
due to the low (background) rate in these periods. The
low expected count of three spikes per window intro-
duces a bias of the Fano factor estimation toward 1.
Only during the period of high rate is this bias reduced,
and the curve approaches the limiting value of F ¼ 0:25
for a gamma process of order k ¼ 4 (dotted line). Oc-
casional excursions beyond the Poisson mark of F ¼ 1
are primarily caused by the variance of the Fano esti-
mator, due to the low number of trials and the small
window size, and possibly to residual latency fluctua-
tions that could not be eliminated.

In the case of neuronal data, for which we do not
know the ‘‘true’’ latencies, an overall reduction in F̂F ðtÞ
due to elimination of latency variations can be expected.
Baker and Gerstein (2001) demonstrated that minimiz-
ing the time-averaged variance of single-trial rate pro-
files can serve as an a posteriori criterion in an
alternative algorithm to estimate cross-trial latencies (see
Discussion). Here we suggest the time-resolved Fano
factor F̂F ðtÞ as a post hoc indicator for successful trial
alignment, which is independent of the criterion used for
the latency estimation itself.

2.5 Computational costs

For practical purposes we need to know the computa-
tion time T of the proposed algorithm, depending on
parameters like the number of trials per ensemble and
the temporal resolution of the experimental data. Our
method comprises two separate operations. First, we
determine the optimal kernel width j. Here, the
computational cost increases linearly with the number
of trials, the number of tested kernel widths, and the
number of neurons. Far more demanding is the second
operation of estimating the relative latencies. Here, the
pairwise calculation of the crosscorrelations for all
possible pair combinations of trials leads to an increase
in computation time proportional to the squared
number of trials, N2. For a sample set of 50 trials, an
observation interval of 1 s in length and a temporal
resolution of 1 ms, our algorithm required 2:2 s for first
estimating j on the base of 20 tested kernel widths and
then 21 s for determining all 49 per-trial latencies on a
1-GHz Pentium III.

All numerical calculations and point process simula-
tions were performed with Matlab (Mathworks Inc.).
Crosscorrelations were calculated using the ‘‘xcorr’’
function of the Signal Processing Toolbox of Matlab,
which employs a fast Fourier transform.

3 Results

3.1 Calibration results

In this section we investigate the performance of the
proposed method for latency estimation in terms of the
error measure �. First, on the basis of Poisson simula-

tions we will determine how mean performance and
reliability depend on the parameters (b;A;w) of the rate
profile. Second, we will see how these results change
when we alter the order k of the gamma process, which
controls its statistical properties. We then explore the
dependence on the number of trials N within each
ensemble and the scaling behavior in the case of n
simultaneously recorded neurons. Finally, we test the
performance in the presence of additional trial-by-trial
variability, introduced by fluctuations of rate amplitude
across trials. Unless stated otherwise, the following
results are based on point process simulations of 500
ensembles of 20 trials each for each of the parameter
combinations.

3.1.1 Dependence on rate parameters. For simplicity we
first investigate the case of zero background firing
(b ¼ 0) corresponding to a neuron that has no sponta-
neous activity and generates spikes only in response to a
stimulus. In this case, the performance of the algorithm
shows a rather simple dependence on the remaining two
rate parameters A and w. Keeping the response strength
A fixed, the mean error of estimation ��� increases linearly
with the increase in response width w, as demonstrated
in Fig. 4b. Conversely, if w is kept fixed and the number
of expected response spikes A is increased (Fig. 4a), the
mean error decreases according to a power law ��� / A�m,
with m ranging between 0:5 and 0:6 for all tested
parameter pairs.

When a constant background firing rate (b > 0) is
added to the response profile, the picture becomes more
complicated. Generally, the Poissonian background
adds noise to the single-trial rate estimates and, hence,
leads to a decreased performance. In Figs. 4c and 4d we
repeat the analysis of Figs. 4a and 4b for a relatively
high background rate of b ¼ 20 s�1. In the case of a
weak response of A ¼ 5 spikes, the algorithm produces
equally large errors for all four response widths in
Fig. 4c. Similarly, in Fig. 4d and for A ¼ 5 (top curve)
the error approaches the width r ¼ 75 ms of the initial
latency distribution (dashed line) when increasing the
response width. This saturation is a desired effect of the
algorithm in cases where the single-trial rate estimate
cannot faithfully capture the weak and broad response
on a high background. Then, many trial-by-trial laten-
cies are effectively estimated to be zero, i.e., the original
alignment remains unchanged in many cases, and thus
the mean error ��� across many ensembles approaches the
standard error of the original latency distribution.

Generally, the width of the residual latency variations
after trial realignment quantified by � is essentially in-
dependent of the distribution of the original latencies
(not shown), i.e., the performance of the algorithm is
independent of the width r.

Note that the calibration results presented in Figs. 4
through 6 demonstrate parameter dependencies that are
universal in their shape. The absolute scaling of errors ���,
however, is influenced by additional parameters of the
method, in particular the length of the observation in-
terval I and the maximal time lag of the crosscorrelation
function. Based on prior knowledge about the temporal
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structure of the data, the observer can make an educated
guess regarding the position of the responses within
trials as well as on the range of per-trial latencies that
can be expected. This allows one to confine the obser-
vation interval. The shorter this interval, the weaker will
be the distorting influence of background firing on the
optimized single-trial rate estimation and on the detec-
tion of the peaks in the pairwise crosscorrelation func-
tions. To ensure comparable calibration results, we
chose a fixed observation interval of 1 s throughout this
paper.

3.1.2 Reliability of latency estimation. So far we have
investigated the average performance in terms of ���,
calculated as the mean error across 500 ensembles.
Considering the variance of the errors enables us to
assess the reliability of the estimator. It turns out that
the standard deviation exhibits an approximately linear
dependence on the mean error ���, independently of the

rate parameters. This is demonstrated in Fig. 5 for a
large variety of rate parameter combinations ðb;A;wÞ. A
linear fit on double-logarithmic scale yields a slope of
1:06.

3.1.3 Dependence on gamma-order k. When increasing
the order parameter k of the gamma process starting
from 1 (Poisson), we know that the number of spikes per
trial becomes less variable (see Methods). Thus, we can
expect that, due to the associated reduction in variability
of the single-trial rate estimates, the performance in
estimating the relative latencies will improve. This effect
is indeed observed in Fig. 6a for three example response
profiles (b;A;w). The mean error ��� decreases with
increasing gamma order roughly as 1=

ffiffiffi
k

p
. Even more

substantial is the reduction of the standard deviation of
estimation SDð�Þ shown in Fig. 6b. Generally, for each
value of k the relation between mean error and standard
deviation of errors remains approximately linear (not
shown), independent of the rate parameter combina-
tions, as found earlier for the Poisson process (Fig. 5).

3.1.4 Multiple simultaneously recorded neurons. How
does the joint estimation of latency variations in several
simultaneously recorded neurons affect the quality of the
estimation? To investigate this question we first cali-
brated our method for an increasing number of up to ten
neurons, where all neurons were simulated with identical
rate functions. The results are shown in Fig. 6c, again
for the same three response profiles used throughout the
subplots of this figure. The mean error decreased
approximately reciprocally to the square root of the
number of neurons n. Similarly, the reliability increases
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Fig. 4. Performance of latency estimation for different combinations
of rate parameters. a, b Zero background firing (b ¼ 0). a The mean
error of the estimate decreases rapidly with increasing response
strength for fixed response widths of w ¼ 25; 50; 100; 200 ms (bottom
to top). b Conversely, keeping the expected number of response spikes
fixed to A ¼ 5; 10; 20; 50 (top to bottom), the error increases
approximately linearly with the response width. c, d Fixed back-
ground firing at 20 s�1, other parameters as in a, b. On the high

Poisson background, a faithful estimation of latencies is only feasible
for large (AJ10) or narrow (wK100 ms) responses. (e, f) Perfor-
mance as a function of background rate. e Response equals A ¼ 20
spikes on average, response widths as in a, c. f Responses with a fixed
width of w ¼ 50 ms yield a mean error of estimation that increases
linearly with the background rate, only for a weak response (A ¼ 5,
upper graph) the error is always high, irrespective of the background
rate
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Fig. 5. Reliability of latency estimation. Standard deviation of errors
vs. the mean error across the ensemble of 500 trials for all parameter
combinations ðb;A;wÞ shown in Fig. 4a–d. There exists an approx-
imately linear relation between both parameters (see text)
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while SDð�Þ decreases with n. If, however, the rate
parameters of the neurons differ (simulated here by
random assignment of values), then the inclusion of a
single neuron for which an estimation of latencies is
particularly difficult may confound both performance
and reliability of the estimation procedure. In Fig. 6c, d,
this is shown for one selected ensemble of neurons where
the inclusion of one such ‘‘problematic’’ neuron (here:
neuron no. 5) spoils both the mean and the standard
deviation of errors. This particular neuron had been
simulated with a small response of A ¼ 5 spikes,
superimposed on a high background level of b ¼ 20
spikes per second.

3.1.5 Dependence on number of trials. From any method
of estimating variations in response latency we would
require that its performance be independent of the
number of trials, whereas we can expect a higher
reliability for a larger sample size. Both effects are
indeed demonstrated in Fig. 6e, f.

3.1.6 Performance in the presence of trial-by-trial non-
stationarities of firing rate. So far we have simulated
neuronal spike train data by means of stochastic point
processes with a rate function that was fixed across
trials. In this case, and in the absence of variations in
response latency, the resulting degree of trial-by-trial
variability in the number of spikes depended solely on
the stochastic nature of the point process model (see
Methods).

To test our method under more stringent conditions,
with additional sources contributing to a larger trial-by-
trial variability in spike count, we introduced two sep-
arate types of cross-trial nonstationarity in firing rate.

First, we varied the background rate on a trial-by-trial
basis while keeping the response strength fixed. In each
trial i, the actual background rate bi was drawn ran-
domly from a uniform distribution on ½b� Db; bþ Db�
around its mean b, where Db is given in percent of b. In
effect, the variance of spike count, as measured in re-
peated trials, increases with increasing width of the
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Fig. 6. (a) Mean performance of latency estimation is improved for
gamma processes less variable than the Poisson process. The mean
error decreases with increasing order parameter k according to a
power law approximately as 1=
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. The legend gives the values of the

negative exponent for a linear fit on a double-logarithmic scale. The
same rate parameters are used for the three examples (�, m, () in all
plots a–d. b The reliability of the error estimation improves along with
the mean performance as k is increased. c Increasing the number n of
simultaneously recorded neurons in a combined analysis reduces the
mean error, again approximately as 1=
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p
, and d increases reliability if

all neurons respond with identical rate parameters (b;A;w). If these
parameters are randomly assigned (�), both mean and variance of the
error may increase again when including neurons with latency
variations that are particularly hard to estimate. e As expected, the
mean performance is independent of the number of trials N .
f However, a larger sample of spike trains reduces the variance
of the estimation. Rate parameters of examples: � b ¼ 10 s�1;
A ¼ 10; w ¼ 100 ms; m b ¼ 10 s�1; A ¼ 20; w ¼ 100 ms; ( b ¼
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Fig. 7. Performance in the presence of additional trial-by-trial
nonstationarity in rate. a Mean performance of latency estimation
and b reliability are independent of the degree of nonstationarity in
background rate b. c Nonstationarity of the response strength A
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by-trial variations. d The reliability of the error estimation decreases
strongly with larger variations in response amplitude. The total range
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response strength A, respectively (see 3.1.6). Symbols as in Fig. 6
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uniform distribution. The results of our calibration are
summarized in Fig. 7a, b. Both the mean performance
and the reliability of the estimation were unaffected by
the additional nonstationarity of the background firing
rate, even for variations up to �100% of the mean value
b. Second, we varied the response strength A, and thus
the amplitude of the superimposed phasic response,
while keeping the background fixed. To this end the
response strength Ai of trial i was drawn randomly from
a uniform distribution ½A� DA;Aþ DA� around the
mean A, with DA given in percent of A. Such nonsta-
tionarity impairs the mean performance as well as the
reliability of the latency estimation for response ampli-
tude fluctuations larger than 50% of the mean response
strength, as shown in Fig. 7c, d.

3.2 Application to experimental data

In this section we demonstrate the application of our
method to experimental data. We investigated a pair of
neurons recorded simultaneously with two separate
electrodes in the hand area of the primary motor cortex
of a behaving monkey (Macaca mulatta). Details of the
experimental paradigm have been described elsewhere
(Grammont and Riehle 2002). In short, the monkey
performed a delayed hand-reaching task from the
central resting position to one out of six targets arranged
equidistally in a circle. During each trial, two signals
were presented to the animal. The first, the preparatory
signal (PS), provided prior information about the target
to be pointed after the second, the GO signal. Two delay
durations (600 and 1200 ms) were presented at random
with equal probability. Only sucessfully completed trials
were used for further analysis.

In the subsequent analysis, all trials of equal direction
and equal delay were grouped together, yielding 2� 6
trial ensembles for each neuron, with an average trial
number of N � 20. As an initial trigger for the alignment
of all trials within an ensemble we chose the appearance
of the GO signal at time t ¼ 0.

3.2.1 Elimination of trial-by-trial differences in laten-
cy. To estimate the relative latencies of these neurons,
we chose an observation interval of 800 ms duration,
starting 100 ms prior to the appearance of the GO
signal. The upper raster plot in Fig. 8a shows the single
spike trains for neuron 1 as recorded during N ¼ 19
experimental trials with the same movement direction
and for short delays. The simultaneous recording of
neuron 2 is shown in Fig. 8b. The observation interval
of 800 ms is indicated by the gray shadings on either
side. For each direction and each delay period the
application of our algorithm resulted in N � 1 latencies
relative to the first trial. Compensating for these relative
latencies resulted in the realigned ensembles of the lower
raster plots in Fig. 8a, b. Accordingly, the gray bound-
ary is now jagged, indicating the shifts applied to each
trial.

How can we know whether our algorithm produced
meaningful results? Since the ‘‘true’’ underlying latencies

in the activity relative to external time are not measur-
able, there is no way to directly assess the performance
of our estimation. Thus, we must rely on indirect evi-
dence for a successful estimation. The visual comparison
of the raster displays may serve as a first subjective
judgement of the success of the realignment procedure
(Fig. 8a, b). Similarly, we can observe that the rate
profile in the PSTH has sharpened. We can quantify the
sharpness of the measured response by calculating the
modulation index g. As indicated in Fig. 8c, d, for both
neurons the realignment of trials led to a substantially
higher value g2 than the original alignment with g1. The
insets in the lower panel show the distribution of the
modulation index g as calculated for 1000 random per-
mutations of the trial order of the estimated relative
latencies. As expected, already the original alignment to
the GO signal yielded a fairly high value g1, compared to
the values obtained for random shufflings of the esti-
mated latencies. Nevertheless, the value for the realigned
trials g2 is much higher, demonstrating the significance
of the improvement as measured by the modulation in-
dex.

Further, we may investigate the changes in trial-by-
trial variability by means of the time-resolved Fano
factor. As seen in Fig. 8e, f, the strong excursions in F̂F ðtÞ
around times of strong rate modulations are mostly
abolished as a result of the realignment. Calculation of
the Fano factor for the complete observation interval
would yield only a negligible change since the overall
spike counts change only minimally due to minor in-
creases or decreases at the borders of observation. It is
thus important to choose a short enough sliding window
so as not to average out the rate modulations. In other
words, the width of the counting window should roughly
equal the time constant of rate modulation j, estimated
in the first step of our algorithm (see Methods). To avoid

a time-consuming visual inspection of the F̂F ðtÞ curves,
we can calculate the reduction in mean Fano factor over
time (61% and 45% in Figs. 8e and 7f, respectively) as a
characteristic parameter to assess the quality of the la-
tency estimation. We note in passing that, while neu-
ron 1 with a Fano factor of about 1 satisfies the expected
variability of a Poisson process, neuron 2 has a distinctly
lower Fano factor, indicating considerably less vari-
ability than expected for Poisson (MP Nawrot, A Rie-
hle, A Aertsen, S Rotter 2002, submitted).

3.2.2 Simultaneously recorded neurons. It is well known
that the changes in activity of neurons in the motor
cortex may be related to either stimulus presentation and
movement preparation or to movement execution, or
they may show an intermediate behavior (e.g., in parietal
area 5: Seal et al. 1983; Requin et al. 1988; in motor
cortex: Riehle and Requin 1989; Riehle 1991; Miller
et al. 1992; Riehle et al. 1994, 1997; Zhang et al. 1997; in
prefrontal cortex: Radons et al. 1994; Seidemann et al.
1996; in frontal eye fields: Bruce and Goldberg 1985).
This presumably reflects the differential involvement of
individual neurons in different stages of processing, from
extracting relevant information about the stimulus to
preparing a movement and initiating and controlling its
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execution. Thus, when observing two or more cells at a
time, it is not at all obvious whether and to what degree
such neurons are temporally related. In the first
application of our method, we addressed this question
by making use of the relative latencies estimated
separately for each neuron. These latencies provide an
‘‘internal’’ trigger for each neuron, independent of
external cues. Figure 9a shows a scatter diagram of the
individual per-trial latencies of neuron 1 vs. those of
neuron 2 for all 12 ensembles of trials. The strong
correlation of the two variables (r ¼ 0:94) in this case
reflects a tight temporal coupling in the occurrence of
the respective neuronal responses and, thus, of the two
neurons’ time frames. To further quantify this similarity,
we aligned all trials according to the internal trigger

events of one neuron and then measured the standard
deviation of latency differences in the other one. For our
example and across all trials from all 12 ensembles, this
yields a relatively small number of 20:1 ms compared to
the estimated time constant of rate modulations of
j � 40 ms. This indeed strongly suggests that these two
spatially separate neurons were involved in a single,
task-dependent dynamic process with a common tem-
poral frame of reference.

3.2.3 Distinction between preparation and execution-re-
lated neural activation. Here we illustrate the application
of our method to the question of whether the neurons’
activity is temporally related to the visual GO signal or,
rather, to movement onset (MO). Having established
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realigned to eliminate response variability (lower panel). The saliency
of the response peak in the PSTH was quantified by the modulation
index g, which is increased through trial realignment by about 27%
and 16% in neuron 1 and 2, respectively. Inset: chance distribution of
modulation index g2 calculated from randomly assigning the relative
latencies to trial numbers. e, f The time-resolved Fano factor before
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elimination of the estimated latency variations clearly reduced the
Fano factor throughout the 800 ms of observation
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that both our example neurons share the same time
frame, we can now estimate the latency differences
jointly for both neurons (see Methods). Figure 9b shows
the scatter diagram of the joint trial-by-trial latencies
against the reaction times (MO-GO) for all 12 trial
ensembles. The high correlation between these two
variables indicates that the two neurons are related to
movement execution, rather than to movement prepa-
ration, i.e., their activity is better locked to movement
onset than to the GO signal or the preparatory signal
(PS), respectively. Thus, MO would have been a
more adequate external alignment trigger than GO
(Fig. 8a, b). We may quantify the relatedness to any
available external trigger by measuring the standard
deviation of per-trial latencies relative to that trigger
(Commenges and Seal 1985). In the example of Fig. 8a,
this yields values of 65:6 ms for GO and 28:8 ms for
MO. For the jointly estimated latencies, the average
across all 12 ensembles yields 61:2 ms for GO and
25:5 ms for MO. Again, this clearly indicates that the
changes in activity are better related to movement
execution than to signal presentation.

In the next step, we consider whether the ‘‘residual’’
latencies relative to the behavioral event MO are due
solely to the statistical properties of the observed spiking
process and, hence, can be considered as random fluc-
tuations. Alternatively, they might signify that the neu-
ral activity is temporally locked to another external (or
internal) event that has not yet been considered. If we
assume again that both neurons share the same time
frame, then the differences in per-trial latencies esti-
mated separately for each neuron (Fig. 9a) should be of
stochastic origin. For our example pair of neurons, these
differences of cross-neuron latencies yield an average
standard deviation of 20:1 ms across all trials and all
ensembles. The spread of residual latencies (25:5 ms) is
of comparable size and might, thus, indeed represent a
variability due to the random properties of the spiking
process. Therefore, in this case it is unlikely that we
could find a trigger event that matches the observed la-
tencies better than movement onset.

3.2.4 Improved correlation analysis. The classical shuffle-
corrected crosscorrelogram (Perkel et al. 1967) and other
methods for investigating precise temporal correlations
among multiple neurons (e.g., Gerstein et al. 1985;
Aertsen et al. 1987, 1989) are all based on the general
assumption that for each neuron the spike count in each
bin is identically distributed and independent across
trials.

One possible violation of the null-hypothesis is, as
Brody (1999) correctly pointed out, brought about by
variations in trial-by-trial latency with respect to the
chosen trigger event (see also Baker and Gerstein 2001;
Grün et al. 2002). In that case, the PSTH obtained by
averaging across trials is an incorrect (usually blurred)
descriptor of the rate dynamics within a trial. Conse-
quently, the correlation dynamics predicted from such
incorrect rate descriptors must also be incorrect. We
demonstrate here how the estimation and subsequent
elimination of trial-by-trial latency variability can

improve the measurement of spike correlation by the
normalized JPSTH (Aertsen et al. 1989). First, using the
two trial ensembles shown in Fig. 8a, b with trials aligned
to GO (upper raster plots), we computed the JPSTH
matrix in Fig. 9c for 800 ms of observation, starting
100 ms prior to the GO signal. Each bin was 20 ms wide.
The matrix shows a broad pattern, suggesting a modu-
lation in the pairwise correlation of the two neurons.
Particularly salient is the feature of high correlation
(dark patch) toward the end of the trial, roughly sym-
metrical with respect to the main diagonal, leading to a
broad peak in the normalized shuffle-corrected cross-
correlogram shown in Fig. 9e. Likewise, the negative
dips in the crosscorrelogram would suggest an anticor-
relation for large time lags, also apparent in the two off-
diagonal regions (bright patches) of the JPSTH matrix.

Note, however, that the clear horizontal-vertical (in-
stead of diagonal) layout of the features in the JPSTH
matrix is a signature of incorrect normalization and,
hence, an indicator that excess correlation and/or
modulations thereof are probably delusive (Aertsen et
al. 1989). Instead, the temporal width of the correlogram
features (Fig. 9c, e) in this case most likely reflects the
temporal spread of latency fluctuations that we esti-
mated earlier (Fig. 8a, b).
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Indeed, after realigning trials such that the estimated
trial-by-trial variations in latency are eliminated, all
broad features in the recalculated JPSTH disappeared
(Figs. 9d, f). The sharp peak in the central bin of the
crosscorrelogram (Fig. 9f) remained, however, its height
being reduced approximately by the height of the broad
peak in Fig. 9e. It predominantly reflects the sequence of
dark bins along the early part of the main diagonal of
the JPSTH, indicating a correlation at zero time lag and
with a precision of 20 ms in the early part of the ob-
servation interval that clearly exceeds expectation.

4 Discussion

4.1 Calibration results

We presented a nonparametric method for eliminating
response latency variability across trials. For a given
ensemble of spike trains, it determines the alignment of
trials that maximizes the total pairwise correlation of
single-trial rate profiles.

Our method was calibrated by means of numerical
simulations of stochastic point processes. The resulting
calibration plots (Figs. 4–6) describe how its perfor-
mance depends on the relevant features of phasic rate
response profiles and how the stochastic nature of the
underlying point process influences its capability to
eliminate latency variations.

We demonstrated the application of our method for a
sample data set from a pair of neurons simultaneously
recorded in monkey primary motor cortex. We found
that compensation for the estimated trial-by-trial laten-
cies clearly reduced the time-resolved Fano factor in
both neurons, and eliminated broad features initially
present in the crosscorrelogram and the JPSTH, which
therefore must be attributed to the covariation in la-
tencies (Brody 1999).

The most important control parameter of the pro-
posed method is the length of the observation interval I .
To ensure comparability in our various calibrations we
used a fixed observation interval of 1 s. This was found
to be suboptimal in cases of narrow or weak responses.
Generally, this parameter should be chosen as small as
possible to minimize the influence of ‘‘noisy’’ back-
ground activity that is not part of the response. For a
given data set, an educated guess on location and length
of the optimal window can be inferred, for instance,
from the initial PSTH or from the estimated single-trial
rate profiles. In cases where strong latency variations are
expected, the method may be iterated using successively
shorter intervals.

4.2 Application to experimental data

The method presented is not limited to the analysis of
spike trains. In fact, the single-trial rate functions can be
replaced by any type of analog signal. Knott (2001)
successfully used our method to determine the spatio-
temporal spread of local field potentials in the hippo-

campus recorded with planar multi-electrode arrays in
organotypical slice cultures. The method may be further
adapted to meet specific needs. Instead of calculating
and maximizing the pairwise correlation, it might be
advantageous to use a different criterion, e.g., to seek
minimization of the mean squared difference in rate
calculated for each pair of trials. Similarly, it might be
desirable to align the first or second temporal derivative
of the signal rather than the signal itself (Fries et al.
2001).

Often it is of interest to estimate the absolute latency
of a response with respect to a sensory stimulus or a
behavioral event. In this case, one may first align all N
trials based on pairwise trial correlations using our
method and then, in a second step, apply an independent
method (e.g., Ellaway 1978; Commenges and Seal 1985;
Maunsell and Gibson 1992; Friedman and Priebe 1998,
1999) to estimate the absolute latency from the trial-
averaged response. The estimated trial-by-trial
differences in latency then readily quantify the jitter in
absolute latency.

4.3 Relation to other methods

Recently, Baker and Gerstein (2001) described three
alternative parametric methods to estimate trial-by-trial
latency differences. All three methods differ from our
nonparametric method in that they rely on the prior
estimate of some specific parameter that characterizes
the stochasticity of the underlying spiking process.

The first of the three, the firing rate variance method,
minimizes the mean squared difference between the
empirical estimate of the variance across single-trial rate
estimates and the rate variance as predicted from the
trial-averaged rate function, assuming a fixed ratio a of
variance and mean rate (as is the case for a gamma
process; see Methods). a is assumed to be a fixed pa-
rameter that can be estimated from the data over some
50 ms of ‘‘background activity’’. Two problems may
arise when estimating this parameter. First, for a finite
observation interval and finite rate, the parameter a (like
the Fano factor) exhibits a bias for low average spike
counts (see Methods). In fact, a is directly related to the
Fano factor, with a relation depending on the kernel
used for the rate estimation and on the time course of
the rate itself. Generally, it is advantageous to use count-
based measures such as the Fano factor, since for
stochastic point processes they permit a more direct
analytical treatment (Cox 1967; Teich et al. 1997; Gütig
et al. 2002; Nawrot et al., in preparation). In the case of
gamma processes, we found that reliable estimates for
the Fano factor are obtained for an average of seven to
ten (or more) spikes per trial, depending on k (Nawrot
et al., in preparation). In the case of a moderate back-
ground rate of ten spikes per second, this already
requires a rather long observation interval of about 1 s
of activity. A similarly long observation is required to
reliably estimate a. Second, the degree of rate-normal-
ized trial-by-trial variability and, thus, a may vary during
the trial (Fig. 8f). We recently found that neurons in the
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primary motor cortex of behaving monkeys exhibit
considerable context-related changes in Fano factor with
time, with values highest during phases of background
activity and lowest during the actual response (e.g.,
Fig. 8f, Nawrot et al. 2000; MP Nawrot, A Riehle, A
Aertsen, S Rotter 2002, submitted). Therefore, a modi-
fication of the algorithm of Baker and Gerstein (2001),
such that, rather than estimating a, one iteratively re-
duces the Fano factor using a nonparametric threshold
criterion to establish convergence, could be advanta-
geous.

The second, Bayesian method (Baker and Gerstein
2001), which is similar to the method described by Seal
et al. (1983) and Commenges and Seal (1985), employs a
Bayesian framework to estimate the absolute response
latency for each trial separately. It is based on the ex-
plicit assumption that the interspike intervals are gam-
ma-distributed. To this end it uses the gamma parameter
k, which is estimated from the interspike interval dis-
tribution rather than from the empirical Fano factor.
Again, estimating k is critical in two ways. First, the
empirical coefficient of variation of interspike intervals
yields a direct estimate of k ¼ 1=CV 2, but it exhibits a
negative bias for low average spike counts within the
observation interval (Nawrot et al., in preparation). This
bias is even stronger than that for the Fano factor. Thus,
again, a relatively long interval of constant background
activity prior to the actual response must be available.
Second, to increase the number of intervals for a reliable
estimation of k, one must pool intervals over multiple
trials. This implicitly assumes a gamma process with an
identical, stationary rate for each trial. This is not nec-
essarily the case in reality, however. In motor cortical
cells we found that, presumably due to nonstationary
network activity, the trial-by-trial variability in terms of
spike counts is much higher than expected from the in-
terspike interval distribution (Nawrot et al. 2000, 2001;
MP Nawrot, A Riehle, A Aertsen, S Rotter 2002, sub-
mitted). Thus, the firing rate can be quite different from
trial to trial, which – even in the case of a fixed gamma
parameter – will lead to an erroneous estimate of k. For
the Bayesian method, Baker and Gerstein (Fig. 3D,
2001) showed that, in the tested case of gamma simu-
lations with k ¼ 8 and for a steplike response profile, an
erroneous choice for the order parameter k led to a
relatively weak increase of the error in the estimated
absolute latencies. However, it is to be expected that
more stringent conditions, i.e., a more irregular process
(smaller value of k) and/or a nonstationary background
firing rate, will pose serious problems for the Bayesian
method of latency estimation.

The third, the rate change method (Baker and Ger-
stein 2001), first estimates the trial-averaged rate and
standard deviation over an initial baseline region. It then
measures the individual trial latencies by detecting the
crossing of a certain threshold above the base rate, de-
fined as the n-fold initial standard deviation. Two
problems can arise with this method. First, the trial-
averaged standard deviation in rate, like the Fano fac-
tor, exhibits a bias for small average count numbers,
necessitating relatively long intervals of baseline activity.

Second, if the degree of trial-by-trial variability in the
baseline region varies considerably across different
neurons, e.g., due to sources of variability other than the
neuron’s spiking statistics (MP Nawrot, A Riehle, A
Aertsen, S Rotter 2002, submitted), then the factor n for
determining the threshold criteria must be adjusted for
each neuron separately, requiring additional user inter-
vention. Otherwise, the method may lose sensitivity in
detecting single-trial responses in some neurons. In
contrast, the performance of the nonparametric method
presented here is essentially independent of the degree of
trial-by-trial variability in background rate (Fig. 7).

A direct quantitative comparison of our calibration
results with those of Baker and Gerstein (2001) is un-
fortunately not possible since they used steplike re-
sponses while we focused on more realistic phasic
response profiles (Fig. 1). Moreover, they only used
simulations with gamma processes of order k ¼ 8
(equivalent to an expected Fano factor of 1=8). This
number is consistent with estimates of k from some
motor cortical neurons (Baker and Lemon 2000; Pauluis
and Baker 2000), where the authors employed a boot-
strap method to reproduce the empirical interspike in-
terval distribution using gamma simulations on the basis
of the kernel-estimated single-trial rates. In contrast,
however, the empirical estimates of trial-by-trial vari-
ability in the cortex in terms of spike counts suggest a
much lower gamma order k. The literature on variability
in the visual cortex reports typical Fano factor values of
around F̂F ¼ 1, implying Poisson statistics with k ¼ 1
(Vogels et al. 1989; Snowden et al. 1992; Gur et al. 1997;
Shadlen and Newsome 1998). In the motor cortex,
however, we found a broad spectrum of Fano factors,
with averages around or slightly above 1, but individual
values covering a large range between 0:1 and 10
(Nawrot et al. 2000; MP Nawrot, A Riehle, A Aertsen, S
Rotter 2002, submitted), depending on the behavioral
context. Therefore, we used predominantly Poisson
simulations (k ¼ 1) for calibrating our method.

Generally, we have found it useful to apply different
methods in parallel when analyzing experimental data.
This not only allows for cross validation of results, but
may also help to interpret differing results in case any of
the methods fail due to their individual weaknesses in
the face of some particular property of the data under
investigation.

4.4 Simultaneously recorded neurons

In general, we cannot assume that two or more simulta-
neously recorded neurons operate in the same temporal
frame, as is the case for the pair of neurons presented in
Figs. 8 and 9. It has been shown that in the motor cortex
(Riehle and Requin 1989; Riehle 1991; Miller et al. 1992;
Riehle et al. 1994, 1997; Zhang et al. 1997), as well as in
other areas, e.g., the prefrontal cortex (Seidemann et al.
1996) and area 5 of parietal cortex (Seal et al. 1983;
Commenges and Seal 1985; Requin et al. 1988), responses
of single neurons may be locked to either stimulus events
or to the animal’s movements. From this it is clear that in
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many cases the rate dynamics of different neurons, even
within the same cortical area, do not share the same
temporal frame of reference. Instead, separate cells may
be involved in different stages of the task-specific compu-
tational processing. Methods that quantify the trial-by-
trial differences in response latency between multiple
single neurons offer the opportunity to investigate the
relevant temporal relations in more detail and to study
their possible functional role in higher brain function.
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