
 Abstract- We present a novel technique for  inter facing between
a neural network simulation and living neurons. In two
exper iments we demonstrate how such hybr id in vitro – in virtu
networks can be used to investigate neuronal function and to
test model predictions.
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I. INTRODUCTION

The in vitro preparation of acute and cultured brain tissue is
widely and successfully used to study neuronal processing at
the level of single neurons and synapses. Due to their
isolated condition, however, the investigation of their
functional interplay with an active network is strongly
limited. At the same time, in virtu neural network
simulations have reached a state where it is now possible to
investigate moderately realistic network models of high
complexity. Such model studies lead to predictions which, in
turn, can be tested experimentally. Here, we present two
complementary approaches for embedding real cortical
neurons into the virtual surrounding of a simulated cortical
network. We show that a cortical cell that receives input
from a large scale network model exhibits spiking statistics
which are consistent with the model prediction. In a real-
time application, similar to [1], we incorporate a living
neuron into a hybrid synfire network model to restore stable
propagation of synchronous activity. For the technical
realization we developed and calibrated a setup for
interfacing between computer simulation and
electrophysiology in soft real-time.

II. METHODOLOGY

A. Electrophysiology

Acute slices from rat (P15-18) somatosensory cortex
were prepared following standard procedures. In vitro
whole-cell patch recordings (pipette resistance 2-6 MΩ)
were obtained from visually identified layer V pyramidal
neurons. Intracellular membrane potential was monitored in
bridge mode while synthetic synaptic currents were injected
through the same electrode using an Axoclamp 2B amplifier
(Axon Instruments). Both signals were sampled at 10-20kHz
using a CED 1401 with Spike 2 data acquisition software
(Cambridge Electronic Devices, UK).

B Simulation
Simulations were performed using the simulation

software NEST/SYNOD1 which provides a convenient

                                                          
1 http://www.synod.uni-freiburg.de

environment for performing medium to large size neural
network simulations. In the real-time application we directly
used C code based on NEST/SYNOD.

Neurons were modeled as leaky integrate-and-fire (I&F)
neuron with a resting potential of –70mV and a voltage
threshold for spike initiation set to –50mV. The membrane
time constant was 10ms. Each spike event resets the
membrane potential to its resting value, and is followed by a
refractory period of 2ms. Postsynaptic currents (PSCs) were
modeled as α-functions with a rise time of 0.3ms. If not
stated otherwise, the peak amplitude of the excitatory PSC
was set to yield a peak amplitude of +0.14mV for a single
postsynaptic potential (PSP), the inhibitory PSP amplitude
was scaled by a factor g equal to or larger than 1. For
numeric integration we used a time grid with constant
spacing [2] of 0.1ms in the offline application and 0.5ms in
the online application.

C. Timing and Interfacing

We developed a low-cost interface (Fig.1) between a
typical electrophysiological in vitro setup and a computer
simulation in real time2. We use a single standard PC with a
dual processor board (2xPIII-500), 1GB of RAM and Linux
as operating system for both, numeric network simulation
and control of the communication lines via the I/O card PCI-
1200 (National Instruments) and open source device drivers
for Linux  (www.comedi.org).

We used a timing algorithm which was adequate to meet
the soft real-time condition. This means that every time step
must only approximate the desired temporal resolution ∆t
with a predefined precision. In our case we required a short
term average accuracy of 95% for an average across the past
100 time steps.

                                                          
2 A detailed documentation is provided on
http://www.biologie.uni-freiburg.de/research/realtime/
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Fig. 1. Setup for real-time interfacing.
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Within each experimental time step, the timing
algorithm reads the system clock twice, before and after the
current simulation step, and waits until the time interval ∆t is
completed before initializing the next step. If the actual time
interval between two read outs is larger than the desired
interval, the timing process compensates with less waiting
time during the following steps.

Each experimental step involves the read out of the
current value for the membrane voltage of the real neuron,
followed by a threshold spike detection. The momentary
current value to be injected into the neuron is translated into
a current command voltage for the Axoclamp amplifier
which reliably controls the current drive. Both analogue
signals are low-pass filtered at 2-5kHz, depending on the
temporal resolution ∆t. This setup may readily be used for
dynamic current clamp since the actual membrane voltage is
acquired in each single time step.

D. Experimental Application

We designed two different experiments that combined a
computer simulation of a cortical network model with a
living neuron in the cortical slice preparation.

1) Our first example comprised the simulation of a large-
scale cortical network of about 100,000 model neurons
adopting the architecture of a locally connected random
network (LCRN) as described in [3]. In contrast to sparsely
connected random networks [4,5], and based on statistical
neuroanatomy, this 2-dimensional network topology
incorporates a statistical rule for local connectivity [6] with a
connectivity space constant of 0.3mm. The total network size
matches a monolayer of about 2 x 2mm rat neocortex with a
ratio of one inhibitory neuron per four excitatory neurons.
All neurons received additional Poisson input, the rate of
which serves as a control parameter for the inherent
dynamics of the network, the second parameter being the
inhibition weight g [3].

In a first step, we simulated several minutes of activity
and recorded membrane voltage and somatic current from a
sample of nine model neurons positioned on a regularly
spaced grid within the network. Subsequent to the simulation
and after appropriate scaling we injected the currents
recorded from the single model cells into the soma of a
pyramidal cell in vitro.

2) For a demonstration of the real-time capabilities of
our setup in a true hybrid network we chose to integrate a
living cell into a synfire chain model [7,8]. As illustrated in
Fig. 2, the chain consisted of 5 groups, each with a group
width of 10 neurons. The excitatory feedforward projection
from each group to the next was divergent-convergent and
complete; the fifth group projected back onto the first group,
thereby creating a cyclic chain. Each neuron independently
received additional Poissonian input from 10,000 neurons, of
which 88% were excitatory, firing at a rate of 1Hz, and 12%
inhibitory at 12.5Hz.

The number of neurons per synfire group was chosen to
be rather small compared to the typical group width of about
70-100 which ensured stable propagation in earlier
simulation studies [8]. We compensated for this size
reduction by a tenfold increase in synaptic efficacy for all
inter-group projections, resulting in a tenfold PSP amplitude
of 1.4mV per single PSC in comparison to 0.14mV for the
Poissonian background input. This is equivalent to assuming
a learned synfire chain with strongly potentiated synapses.

The ring design of our chain allowed us to keep the
number of groups small enough to ensure a satisfactory
temporal resolution of 0.5ms in real-time. Random numbers
for the Poissonian background had been gained and stored in
working memory before the start of the experiment. For
typical synaptic delays of approximately 2-3ms, a pulse
packet [8,9], i.e. the synchronous volley of in our case up to
ten spike events per neuron group, could travel the loop
within less than 20ms. We therefore artificially increased
each single synaptic delay to 20ms to allow the real neuron
to reach a state more close to the resting condition before it
again participated in the transmission of the travelling pulse
packet.

III. RESULTS

A. Calibration of the Soft Real-Time System

With the simulation of sparsly connected random
networks we calibrated our soft real-time system for two
parameters that were varied independently: the network size,
i.e. the number of simulated neurons, and the temporal
resolution ∆t of the experiment. The light gray patch in the
calibration plot of Fig. 3 signifies the region for which the
error in short term average temporal precision was below
5%. This allows for a rough estimate of the maximum
network size for a required time resolution, and vice-versa,
based on our hardware configuration. Generally, the limiting
parameters proved to be the number of explicitly simulated
elements (e.g. neurons or synapses) and the degree of
connectivity rather than, for instance, the number of
communication lines for interfacing with the in vitro
experiment.

in virtuin vitro

Fig. 2. Synfire chain model. The single gray neuron in the left group is
replaced by a pyramidal neuron in vitro.



B. Consistent Output Statistics in Model and Real Neuron

Similarly to sparsely connected random networks [10],
and depending on the inhibition weight g and the strength of
the external input, the LCRN exhibited four dynamical
network states, which are discerned by either global
asynchrony or synchrony of the network activity and by the
degree of firing irregularity [3].

Here, we were particularly interested in the regime
where the neurons in the network exhibited irregular firing
patterns with a high coefficient of variation (CV) of the
inter-spike interval in the range of 0.5-1, similar to what has
been observed in in vivo spike-train recordings from awake
animals (e.g. [11]).

Our question was whether the spiking statistics of real
cortical neurons were consistent to those of their simulated
counterparts. We therefore simulated the asynchronous
irregular and the synchronous irregular states, and recorded
the membrane potentials and somatic currents from a sample
of 9 neurons in each state. Since we used current-based
model neurons in our simulations, somatic currents for
synchronized inputs could easily become very large. In
particular, we observed unphysiologically strong inhibitory
events leading to current amplitudes of up to –15nA, which
only marginally. influenced the model neurons, but may
destroy a living cell. We therefore applied a linear
downscaling by a factor of 10 prior to the injection. The
temporal statistics and dynamics of the input, however, were
preserved.

As shown in Figs. 4b and 4c for two neurons recorded in
either condition, the values of CV around unity agreed well
for model and real neurons. This means that the output of a
cortical pyramidal cell in vitro driven with a realistic
stationary background input from a large cortical network is
highly irregular. By contrast, for Poissonian input, i.e. for
shot noise injection, the same cell type exhibited a more
regular firing, as demonstrated in Fig. 4a.

In analogy to earlier studies [11] we also measured the
Fano factor (FF), i.e. the ratio of count variance and mean
count across consecutive intervals of equal length. The
theory of renewal processes predicts that, on average, it
should hold that FF=CV2. As shown in Fig. 4, this is indeed
the case for all three conditions, i.e. the cortical neuron´s
spiking showed a good agreement with a renewal process at
this level of second order statistics, independent of the values
of either FF or CV.

C. Cortical Neuron Stabilizes Synfire Propagation

The synfire experiment as explained in the method
section was carried out in three different settings, each for a
total duration of 5 minutes.

First, we repeatedly simulated the full chain with ten
I&F neurons per group (Fig. 2), each time with a different
initial condition for the Poissonian background. At the start
of each experiment, all neurons in the first group
simultaneously received a strong excitatory input to `ignité
the synfire chain. In all of in total 500 repetitions we
observed stable transmission of coincident spiking for the
full duration of five minutes. Within this time, the pulse
packet cycled about 3,000 times through the ring-chain.

If we, however, eliminated a single neuron from one
group, indicated by the gray neuron in Fig. 2, we observed
unstable propagation. In more than 90% of the total 500
runs, synchronous activity eventually died out before the end
of the experiment (Fig. 5a). In 90 (18%) of these cases, the
transmission failed to complete the first cycle. Thus, for a
single missing I&F neuron, the propagation of synfire
activity under these conditions was vulnerable and did not
reach the attractor where propagation is stable [8].

Fig. 3. Calibration of the soft real-time system. For the parameter range
indicated by the  light gray region a soft real-time accuracy of 95% is
achieved. Black line: linear fit to the boundary values.
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Fig. 4. Spike count variability (FF) and spike-train irregularity (CV2) for (a) shotnoise injection in pyramidal neurons in vitro (N=19 cells), (b) network input as
generated in the asynchronous irregular state and (c) in the synchronous irregular state. The open symbols in (b,c) indicate results from the in vitro injection in 2
different neurons. The filled symbols mark the results for the corresponding model cell. Black dots indicate different model neurons recorded simultaneously.
Gray shadings indicate 95% and 99% confidence region for the equality of FF and CV2 obtained from gamma-simulations [11].
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In a third setting, we replaced the missing 10th model
neuron by a real neuron in the acute slice preparation. This
again led to a stable propagation of the pulse packet activity
throughout the total duration of 5 minutes. Fig. 5 shows one
second of membrane potential (b) and injected current (c) for
a cortical neuron as monitored in whole-cell patch
configuration during the course of the experiment. In the
current trace, the synchronized input in form of large
compound EPSCs can be clearly distinguished from the
background. It varied slightly in size and shape, mainly due
to a varying number of presynaptic neurons contributing to
the input volley, whereas there was only little change due to
the jittering of input spike times which remained well within
±1ms. Within the 1s shown in Fig. 5b, each single input
volley immediately lead to the generation of an output spike,
and propagation prolonged for full 5 minutes, while for
identical initial conditions but in the configuration with only
9 neurons in the first group, propagation terminated after 66
cycles.

IV. DISCUSSION AND CONCLUSIONS

We have shown that a real-time interface between living
neurons in vitro and a computer simulation in virtu can be
easily achieved with standard equipment. Further
improvement in terms of temporal resolution and accuracy
can be achieved by implementing a real-time kernel for
Linux. Our experimental applications have demonstrated the
usefulness of this technique for testing predictions from
theoretical model studies. Thus, hybrid networks of this kind
have the potential to become a powerful tool to help clarify

the mechanisms underlying the computational process in
biological neural networks.

Instead of interfacing via intracellular current and
voltage signals, other means of interaction with living nerve
tissue could widen the scope of application. Dynamic
photostimulation [12], for instance, could be used to
stimulate a slice preparation and to evoke spatio-temporal
input patterns to single neurons, while network activity could
be monitored extracellularly by means of multi-electrode-
arrays (MEA)  [13].
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Fig. 5. Stability of pulse packet propagation through the synfire chain.
Elimination of 1 out of 10 neurons in the first group results in an unstable
propagation (a). Inclusion of a cortical neuron in the first group
reestablishes a stable condition where each input volley (c) triggers one
output spike (b). Vertical scale bars: 50mV, 1nA; horizontal scale: 100ms.
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