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Meyer A, Galizia CG, Nawrot MP. Local interneurons and
projection neurons in the antennal lobe from a spiking point of view.
J Neurophysiol 110: 2465–2474, 2013. First published September 4,
2013; doi:10.1152/jn.00260.2013.—Local computation in microcir-
cuits is an essential feature of distributed information processing in
vertebrate and invertebrate brains. The insect antennal lobe represents
a spatially confined local network that processes high-dimensional
and redundant peripheral input to compute an efficient odor code.
Social insects can rely on a particularly rich olfactory receptor
repertoire, and they exhibit complex odor-guided behaviors. This
corresponds with a high anatomical complexity of their antennal lobe
network. In the honeybee, a large number of glomeruli that receive
sensory input are interconnected by a dense network of local interneu-
rons (LNs). Uniglomerular projection neurons (PNs) integrate sensory
and recurrent local network input into an efficient spatio-temporal
odor code. To investigate the specific computational roles of LNs and
PNs, we measured several features of sub- and suprathreshold single-
cell responses to in vivo odor stimulation. Using a semisupervised
cluster analysis, we identified a combination of five characteristic
features as sufficient to separate LNs and PNs from each other,
independent of the applied odor-stimuli. The two clusters differed
significantly in all these five features. PNs showed a higher sponta-
neous subthreshold activation, assumed higher peak response rates
and a more regular spiking pattern. LNs reacted considerably faster to
the onset of a stimulus, and their responses were more reliable across
stimulus repetitions. We discuss possible mechanisms that can explain
our results, and we interpret cell-type-specific characteristics with
respect to their functional relevance.

honeybee; electrophysiology; cluster analysis; response latency; co-
efficient of variation; Fano factor; olfaction

SENSORY COMPUTATION IN THE nervous systems of both inverte-
brates and vertebrates is organized in local networks containing
microcircuits that integrate local feed-forward and recurrent
connections and constitute functional subunits of the global
sensory network. Understanding the computational principles
of these microcircuits is a key to a deeper understanding of
sensory processing and perception (Chou et al. 2010; Shepherd
2010). As a common principle, microcircuits are built from
synapses between two general types of neurons, local interneu-
rons (LNs) and projection neurons (PNs). Neurites of LNs are
spatially confined to a local brain structure, while PNs connect
between brain structures. Both network connectivity and the
individual morphological and physiological properties of LNs

and PNs define the function and reflect the specific processing
demands of a particular sensory system.

Primary olfactory centers, the vertebrate olfactory bulb and
the analog invertebrate antennal lobe (AL), perform complex
local computations (Olsen and Wilson 2008a; Sachse et al.
2006; Strowbridge 2010) that reflect the high dimensionality of
the chemical olfactory space (Guerrieri et al. 2005; Haddad et
al. 2008; Schmuker and Schneider 2007; Wilson and Mainen
2006) as well as the complex temporal dynamics of natural
odor stimuli (Meyer and Galizia 2012; Nagel and Wilson 2011;
Riffell et al. 2009; Stopfer et al. 2003). At the heart of these
computations are the glomeruli, prominent examples of sen-
sory microcircuits. In these spherical structures of high synap-
tic density, peripheral input from olfactory sensory neurons
(OSNs) converges onto LNs and PNs. In the present study, we
explore differences in in vivo response properties between LNs
and PNs in the primary olfactory center of the honeybee.

In the invertebrate, structural complexity of the AL correlates
with the complexity of odor-guided behavior in individual spe-
cies. Anatomical complexity is particularly pronounced in social
insects such as bees and ants (Galizia and Rössler 2010; Kelber et
al. 2010; Martin et al. 2011; Zube and Rössler 2008). The LN
network interconnects different glomeruli and thus plays an es-
sential role in olfactory information processing (Abraham et al.
2004; Chou et al. 2010; Flanagan and Mercer 1989; Galizia and
Kimmerle 2004; Kazama and Wilson 2009; Krofczik et al. 2009;
Meyer and Galizia 2012; Olsen and Wilson 2008b; Sachse and
Galizia 2002). The number of LNs largely determines the degree
of network connectivity and hence its computational capacity. In
the honeybee �4,000 LNs outnumber PNs almost fivefold, pro-
viding for an exceptionally dense interneuron network (Galizia
2008; Rybak 2012). Despite the obvious importance of the in-
terneuron network, we know surprisingly little about its detailed
involvement in sensory computation (Galizia and Rössler 2010,
2008; Nawrot 2012; Rössler and Brill 2013).

For our analyses, we combined independently obtained data
sets from in vivo intracellular recordings of olfactory neurons
in the honeybee AL. A subset of cells could be identified
unambiguously as either LN or PN. We defined a number of
electrophysiological response features and used a semisuper-
vised clustering method to identify the combination of features
that allowed for the most successful classification of the mor-
phologically identified neurons as either LN or PN. Character-
istic differences between all neurons in the PN cluster and
those in the LN cluster indicate their differential role in com-
puting the spatio-temporal odor code that is conveyed to
central brain structures.
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MATERIALS AND METHODS

Data Sets

Analysis of odor-evoked activity patterns was performed on intra-
cellular recordings from 80 AL neurons. The data pool comprised
three independently obtained data sets, which were previously pub-
lished in peer reviewed journals (Galizia and Kimmerle 2004; Krof-
czik et al. 2008; Meyer and Galizia 2011) as well as one set of data
(n � 10), which was part of a published dissertation (Meyer 2011).
The same recording technique was used in all cases, but stimulus
protocols differed in details. To eliminate effects that may be caused
by differences in stimulus timing, we cut all trials, irrespective of
genuine stimulus duration (800–2,000 ms) to a length of 500 ms pre-
and 800 ms poststimulus onset. The sampled odorant space largely
overlapped between studies (Fig. 1). Binary mixtures and tertiary
mixtures were only tested in single studies, but were composed from
components within the overlapping odorant space. Some odorants as
well as complex, natural mixtures were tested in only few neurons.
Stimulus concentration was in a biological relevant range between
10�1 and 10�2. In all cases, a continuous flow-olfactometer was used
for stimulation to reduce mechanical artifacts. Pure air and mineral oil
served as control stimuli.

For details of data acquisition and tested odor sets, refer to the
original works by Meyer and Galizia (2011), Meyer (2011), Krofczik
et al. (2008), and Galizia and Kimmerle (2004). Based on morpho-
logical data from post hoc staining, a subset of cells could be
identified as PNs (n � 23) or LNs (n � 9).

Data Preprocessing

Potent stimuli, i.e., stimuli that evoked responses, were identified
for each individual cell by visual inspection. Points in time at which
action potentials occurred were detected by thresholding the mem-
brane potential using Spike2 (Cambridge Electronic Design) or cus-
tom-written routines in R (www.r-project.org) based on the open-
source packages SpikeOMatic (Pouzat et al. 2004) and STAR (Pip-
pow et al. 2009). To describe subthreshold characteristics, we
removed all action potentials from the raw signal using a custom-
written routine in MatLab (7.10.0, The Mathworks).

Determination of Optimal Feature Set

Neural responses were analyzed in the response window Wresp �
[0 ms, 800 ms] following stimulus onset (t � 0 ms), and spontaneous
activity was analyzed in the baseline window Wbase � [�500 ms, 0
ms] immediately preceding stimulus onset (Fig. 2A). We defined a
total of nine electrophysiological features that describe different
properties of neural response activity. These features were computed
such that any effect of stimulus identity is minimized. The computa-
tion of each feature is detailed below. Our goal was to find an optimal
subset of features that allows separating the two morphological
classes of LNs and PNs. This combination of descriptors was found by
testing cell type classification for all possible feature combinations in
a repeated semisupervised clustering procedure. The core routine of
the semisupervised method was identical with the one detailed below
for the final clustering result. In brief, the selected combination of
descriptors was submitted to principal component analysis (PCA).
The number of principal components (PCs) was chosen such that
adding another PC did not substantially increase explained variance
(elbow-criterion). Clustering was performed on the determined num-
ber of PCs, and the number of clusters was fixed to two. We calculated
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Fig. 1. Overlap in stimulus space between studies. Odors used by the different
studies are organized according to their chemical group and molecular weight
(MW). Each circle corresponds to one odor. Circle size corresponds to the number
of tested cells (1–60), and hue to the percentage of cells that showed a response
to that odor. Red color indicates odors, which were used by more than one study;
gray, those that were tested only in a single setup. Tested odors and their MW are
as follows: alcohol: 6ol (MW 102), 7ol (MW 116), 8ol (MW 130), 9ol (MW 144),
Geraniol (MW 154); terpene: Citral (MW 152), Menthol (MW 154), Cineol (MW
156), Linalool (MW 224); aldehyde: 5al (MW 86), 6al (MW 100), 7al (MW 114);
ketone: 6on (MW 100), 7on (MW 114); ester: ISO (MW 130); alkane: 5an (MW
72); aromatic: MethylBenzeat (MW 136), Eugenol (MW 164); binary mix: 8ol/
7on (MW 122); tertiary mix: 9ol/6ol/7on (MW 125), cineol/5al/9al (MW 127),
6one/citral/eugenol (MW 123), 8ol/pepermint/7al (MW 133); complex mix: Li-
monene (MW 136), Henkel (MW 297), Rose Oil (MW 323), Orange Oil (MW
452). W
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Fig. 2. Estimation of physiological odor response features. A: single trace of
the intracellular membrane voltage recorded from one identified local interneu-
ron (LN). Wbase indicates the 500-ms prestimulus onset interval, which was
used to calculate baseline activity. Wresp indicates the 800-ms interval consid-
ered for response analysis. B: squared membrane potential from the trace in A
after spikes had been removed (subthreshold activity). The sum of this signal
over Wbase results in the baseline power Pbase. C: to estimate the mean cell
latency (blue line), spike-trains were first aligned within repeated odor stim-
ulations (red/green) and subsequently across stimuli. Single-trial latencies are
indicated by vertical gray bars. The coefficient of variation of the interspike
intervals (CV2) was calculated from consecutive pairs of interspike intervals
(horizontal gray bars). D: time-resolved firing rate profiles for two different
odor stimuli (red, green). For each stimulus, this is estimated by first pooling
all spikes from the aligned single trials and subsequent kernel estimation with
an alpha-shaped kernel. For details of physiological response feature estima-
tion, see MATERIALS AND METHODS.
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the separation quality of identified neurons in the two clusters using
Matthew’s correlation coefficient (Matthews 1975). By this proce-
dure, we identified a subset of five relevant features that yielded the
best separation of PNs and LNs. For analysis and visualization of the
data, we used Matlab.

Definition of Response Features

�R. Deflection from the baseline firing rate immediately following
stimulus application is the most common definition of evoked spiking
activity. Rate increase (decrease) is a measure for excitation (inhibi-
tion). The time-resolved firing rate profile was estimated based on
trial-aligned and trial-averaged spike-trains following the method
described in Meier et al. (2008). In brief, first, the derivative of each
single trial spike-train of a given cell under stimulation with a
particular odor was estimated by convolving the spike-train with an
asymmetric Savitzky-Golay filter (Savitzky and Golay 1964) (poly-
nomial order 2, width 300 ms, Welch-windowed). Second, all single-
trial derivatives were optimally aligned by maximizing their average
pairwise cross correlation (Nawrot et al. 2003) (Fig. 2C). Third, the
newly aligned spike-trains were merged. Fourth, the alignment pro-
cedure was repeated for the merged spike-trains that resulted from
different odors. To estimate the average rate function of the input data,
the merged spike-train was normalized by the number of contributing
trials and convolved with an asymmetric alpha kernel k(t) � t � exp
(�t/�) (Parzen 1962) (Fig. 2D). �R was then defined as the difference
between the highest value of peak firing rate and the minimum rate
value encountered in any of the trials, irrespective of the odor. Thus
�R estimates the maximal modulation depth of firing rate across time
and odors. Optimal kernel width � was estimated on the basis of the
empirical data by application of a heuristic method detailed in Nawrot
et al. (1999).

Rbase. Spontaneous activity during the prestimulus interval Wbase

quantifies a neuron’s baseline firing in the absence of a driving
stimulus. The average spontaneous rate profile was estimated for each
odor as detailed above and subsequently aligned and averaged be-
tween odors. Baseline activity was then defined as the mean firing rate
within 500 ms prestimulus.

L. L describes the positive time interval between stimulus onset and
onset of neural response. Trial-averaged absolute latency and relative
trial-to-trial latencies were estimated with one of three methods based
on the cell’s firing pattern. 1) Latencies with excitatory responses
were estimated based on the derivative of the trial-aligned firing rate
(Meier et al. 2008; Krofczik et al. 2008). The trial alignment proce-
dure was conducted as described above. By convolution of the
summed across-odor spike-train with the same asymmetric Savitsky-
Golay filter that was used for the alignment procedure, an estimate
about the derivative of the cell’s average firing rate was obtained. The
cell-specific absolute latency was defined as the time point of the first
maximum encountered in the derivative (Fig. 2C). 2) Latencies of
inhibitory responses were estimated identically but using an inverted
Savitsky-Golay filter to detect the maximum of the negative slope. 3)
Latencies of cells that had very low spontaneous activity and which
responded to stimulation with a membrane depolarization accompa-
nied by one single or very few spikes were estimated based on the
pooled original spike-trains and not aligned. Spikes denoting a re-
sponse were generally well timed. An additional alignment usually
introduced faulty shifts as a consequence of the generally low spiking
activity. The response latency (L) was thus defined as the peak-time of
the rate, which in these conditions essentially resembled the first spike
latency. Rate was estimated as detailed above.

To normalize absolute latencies for differences in odor delivery
times in the different data sets which arise from differences in the
experimental setup, we preceded as follows. At any one time we
subtracted the shortest latency within each individual data set from all
other latency estimates within the same data set. To avoid zero
latency, we added the arbitrary duration of 6 ms to the L of each cell.

�L. The alignment procedure detailed above returned relative time
shifts for each individual trial, indicating the variable latencies
(Nawrot et al. 2003). The standard deviation � of trial-to-trial shifts
provides a measure for the across-trial latency variability.

CV2. The coefficient of variation (CV) of the interspike intervals
indicates a neuron’s spike-time irregularity (Nawrot 2010) (Fig. 2C).
The CV2 was introduced to quantify interval dispersion when firing
rate is not constant but modulated (Holt et al. 1996; Ponce-Alvarez et
al. 2010). It is defined locally as the variance of two consecutive
interspike intervals divided by their mean. We first calculated the
averaged CV2 for each single trial and then averaged over all trials,
irrespective of stimulus type.

FF. Fano factor (FF) is an established measure for spike count
variability (Nawrot et al. 2008) and defined by the ratio of the
across-trial variance and the trial-averaged spike count within Wresp.
We computed the FF for each stimulus separately and subsequently
averaged across odors.

Pbase. Spontaneous signal power (Pbase) of the membrane potential
(Fig. 2B) during the prestimulus interval Wbase quantifies the mem-
brane potential fluctuations in the absence of a driving stimulus. It is
computed within each trial as P � 1⁄T �0

T |s�t�|2 dt after removal of
action potentials and subsequently averaged across trials.

Pevok. Stimulus-related changes in signal power were computed
after removal of action potentials as detailed above within each trial.
The signal was baseline corrected by subtracting Pbase.

A. Area values describing de- and hyperpolarization were calcu-
lated for each individual trial of a given cell. From these values, the
positive extremum and negative extremum were chosen to character-
ize the cell. For this purpose, the signal was smoothed using a
Gaussian kernel (25-ms standard deviation). The area under/above a
threshold of average baseline voltage � 2 SDs was taken into account.

Cluster Analysis

Collecting descriptive values to characterize evoked activity results
in a multidimensional data space. Several descriptors derive in part
from the same origin and may hence be correlated and carry partly
redundant information. PCA allows the reduction of a set of possibly
correlated variables into a smaller set of uncorrelated variables called
PCs (Pearson 1901) that still retain the major information content.
Using PCA in the present data set allowed reduction of five descrip-
tors to the first three PCs. These were sufficient to explain 75% of the
underlying variance. Since the original variables differ in the scale on
which observations were made, data were normalized using z-scores
before it was subjected to the PCA algorithm. To explore possible
grouping of neurons according to the PCs of their evoked activity
characteristics, unsupervised clustering using Ward linkage with Eu-
clidean distances was performed. The incremental method aims to
reduce the variance within a cluster by merging data points into
groups in a way that their combination gives the least possible
increase in the within-group sum of squares (Ward 1963). The
distance d between two groups (r,s) is defined as:

d�r, s� �� 2nrns

nr � ns
�x�r � x�s�2

where || ||2 denotes the Euclidean distance, �xr and �xs are the centroids
of clusters r and s, respectively, and n refers to the number of elements
in each cluster. The algorithm was provided by the Matlab Statistics
Toolbox.

To test whether clustering performed on PC input yields informa-
tion, which allows describing neuron differences in terms of direct
measurable characteristics, we performed a Wilcoxon rank sum test
on the features between the two clusters.
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RESULTS

Classification of PNs and LNs Can Be Achieved Based on
an Optimal Set of Electrophysiological Response Features

We initially defined 9 distinct measures of electrophysiology
to describe the response properties of each of the 80 AL
neurons in our data set (see MATERIALS AND METHODS; Table 1).
To classify LNs and PNs (Fig. 3A), we applied a semisuper-
vised clustering method based on all possible combinations of
electrophysiological features. We evaluated the classification
performance based on the separation of morphologically iden-
tified LNs and PNs as a measure for model quality (see
MATERIALS AND METHODS). By systematic variation of the feature
set and of the dimension of the PC space, we found that several
subsets of our measures were sufficient to separate identified
LNs and PNs significantly above chance level. We aimed at
finding that constellation, in which the best classification could
be achieved based on a minimal set of input features. The most
efficient solution allowed for a correct classification of 29 out
of 32 identified neurons, corresponding to a Matthew’s corre-
lation coefficient of 0.78. This optimal solution is based on the
first three PCs (75% explained variance, Fig. 3F) from a
combination of five response features (Fig. 2): �R, L, CV2 as
a local measure of interspike interval variability, trial-by-trial
response variability as measured by the FF, and the signal
power of the spontaneous subthreshold membrane potential
(Pbase). In an attempt to visualize functional stereotype, we
arranged one randomly selected spike-train from each neuron
(Fig. 3B) according to their relationship in the cluster tree (Fig.
3C). Judging from this account, it appears that neurons in the
PN cluster have a tendency to display aphasic-tonic response
characterized by high rate changes. LN cluster neurons, in
comparison, tend to display phasic responses but with much
smaller rate changes. Despite this trend, which may be ob-
served in dense spike-histograms, it becomes evident that
classification of single spike-trains as observed during an
experiment is hard to accomplish. To visualize separation of
the PN and LN dominated clusters more clearly, we plotted all
cells in the three-dimensional PC space (Fig. 3D). The two
clusters largely separate from each other, but do show an area
of overlap, in which misclassification is more likely to appear.
To further quantify cluster quality, we compared the distribu-
tion of distances of individual elements to the cluster centers
within and between the clusters (Fig. 3E). Distances within
each of the clusters are clearly shorter than between the
clusters.

LNs and PNs Differ Significantly in Their Odor Response
Features

We could show that, based on the PCs of five electrophys-
iological measures, neurons clustered in two groups, one of
which is clearly dominated by PNs, the other by LNs (Fig. 3).
Hence, all nonidentified neurons in those clusters may be
considered as putative PNs and LNs, respectively. Next we
asked if this clustering is reflected in significant differences in
the input feature space, i.e., the actual odor response measures.
Indeed, we found that the PN and the LN dominated clusters
differed significantly in each of these measures (Wilcoxon rank
sum test, Table 2; Fig. 4A). Neurons in the PN cluster typically
showed higher dynamic �R when responding to a stimulus.

This is in good accordance with the observed tendency for
phasic-tonic response patterns (Fig. 3B). The responses of LNs
typically follow stimulus onset with shorter response latencies
than PNs. The difference in median latencies between LNs and
PNs is considerable with 65 ms. Interestingly, latencies in both
clusters show a broad distribution across neurons. Particularly,
response onsets in the subset of identified LNs varies between
quartiles by about 200 ms (1st quartile � 36 ms, 3rd quartile �
235 ms). Response onsets in the subset of identified PNs is
significantly less variable with an interquartile distance of
about 100 ms (1st quartile � 74 ms, 3rd quartile 170 ms,
one-tailed Ansari-Bradley test, P � 0.046). The higher CV2
for neurons allocated to the LN cluster illustrates that these
cells are characterized by more irregular or burstlike spike
responses, while cells of the PN cluster show more regular
response trains. A higher FF indicates responses from PN
cluster neurons to be more variable across trials.

Differences in all five features between neurons in the LN
and PN cluster transfer to the subset of morphologically iden-
tified neurons (Fig. 4B, Table 2). This reassures that electro-
physiological characteristics are truly stereotyped properties of
LNs and PNs, respectively. Change in response-related firing
rate (�R) and CV2 in particular are significantly different (P �
0.05), even for the small sample size of identified LNs (n � 9)
and PNs (n � 23). For L, FF, and Pbase, differences in median
for morphologically identified LNs and PNs are in accordance
with the respective differences measured on the basis of the
complete set of neurons (Table 2).

DISCUSSION

Based on intracellular recordings from a mixed neuron
population in the honeybee AL, we explored characteristic
differences between LNs and PNs. Electrophysiological mea-
sures are established means by which neurons are typified if
morphological information is unavailable (Ascoli et al. 2008;
Connors and Gutnick 1990; Markram et al. 2004). Clustering
analyses have been used repeatedly in vertebrates to typify
neurons on the basis of morphological and electrophysiological
features, and to characterize their specific functional properties
within microcircuits (McCormick et al. 1985; Ruigrok et al.
2011; Suzuki and Bekkers 2006, 2011; Wiegand et al. 2011).
In our approach, we clustered cells solely based on physiolog-
ical response measures to separate two morphologically well-
described classes of LNs and PNs in the honeybee AL. Using
the morphological class identity available for a subset of all
cells allowed us to assess classification accuracy and to opti-
mize the clustering approach with respect to the number of PCs
and the particular combination of features. We found a combina-
tion of five out of nine odor response features to be indicative of
the morphological cell type. How can we interpret these charac-
teristic physiological differences in a functional context?

PN Properties Are Well Suited to Convey a Combinatorial
Rate Code

A considerable level of spontaneous activity and a strong
and odor-specific modulation of the firing rate have been
described as characteristic for honeybee PNs, but less typical
for LNs in independent comparative studies (Abel et al. 2001;
Müller et al. 2002; Sun et al. 1993). Pronounced baseline
activity may arise from cell-intrinsic excitability or auto-rhyth-
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Table 1. Individual feature values for all neurons

Cell ID FF CV2 Rbase, Hz Revok, Hz L, ms �L, ms Pbase, V2 Pevok, V2 A Morphology Subgroup Glomerulus Paper

01072009a 0.159 0.368 4.475 12.921 158 41 0.078 1.504 0.040 Meyer
01072009b 0.071 0.333 3.516 9.389 143 33 0.249 1.043 0.016 Meyer
01092009a 0.737 0.733 0.662 11.729 117 9 0.095 1.710 0.050 Meyer
01092009b 3.483 0.679 1.676 29.198 72 22 0.217 1.629 0.216 Meyer
02092009a 0.200 0.318 0.589 10.397 118 28 0.170 1.524 0.169 Meyer
02092009b 0.469 0.750 4.783 14.178 142 30 0.370 0.493 0.340 PN ml-APT T1-43 Meyer
3032009 0.022 0.354 4.710 11.054 92 25 0.235 1.060 0.000 Meyer
4062008 1.884 0.402 5.377 51.569 77 13 0.287 0.987 0.000
7062009 0.033 0.644 1.764 13.547 171 17 0.201 1.423 0.304 Meyer
8072009 1.409 0.698 0.371 10.878 88 23 0.179 1.927 0.179 Meyer
8102009 0.557 0.689 0.518 8.549 169 29 0.155 1.549 0.113 Meyer
9092009 0.677 0.458 1.840 47.809 80 9 0.189 1.629 0.130 Meyer
10062009 1.335 0.430 2.147 32.229 150 19 0.276 1.719 0.159 Meyer
11022009 0.017 0.116 14.836 15.704 81 4 0.139 2.207 0.242
11122008 1.808 0.584 2.752 8.442 166 13 0.210 1.130 0.055
13012009 0.143 0.353 2.320 8.047 98 20 0.258 1.181 0.104
14102009 0.127 0.786 0.783 8.594 127 22 0.103 1.373 0.026 Meyer
15042009 0.560 0.263 0.993 8.639 64 14 0.212 1.250 0.105 LN hetero T1-19 Meyer
16092009 0.063 0.560 1.675 22.613 69 6 0.361 1.246 0.151 Meyer
18022009 0.623 0.481 1.294 14.946 100 13 0.178 1.626 0.182 LN homo T1
22042009 0.154 0.497 1.333 9.234 63 7 0.159 1.830 0.177 Meyer
22092009 0.012 0.131 6.823 14.508 86 27 0.131 2.354 0.231 Meyer
22102008a 0.250 0.713 2.832 9.083 103 0 0.237 0.883 0.157
22102008b 1.886 0.549 2.641 65.331 122 55 0.126 2.218 0.215
26082009a 1.075 0.395 0.296 17.876 108 13 0.084 1.291 0.086 Meyer
26082009b 0.037 0.295 2.166 9.489 121 32 0.146 1.035 0.000 Meyer
27012009a 1.275 0.968 0.833 7.167 161 26 0.188 0.751 0.181
27012009b 0.028 0.171 10.400 14.454 142 61 0.100 4.854 0.296
30062009a 0.421 0.795 1.154 10.560 99 17 0.095 1.930 0.264 Meyer
30062009b 0.040 0.268 14.502 17.864 61 39 0.071 4.225 0.247 Meyer
30092009 1.324 0.727 2.603 14.726 79 32 0.202 1.571 0.047
000307_2 20.026 0.109 0.000 49.705 223 46 0.009 44.131 0.467 PN l-APT T1-36 Galizia
000317_a 2.104 0.376 12.729 11.629 212 17 0.385 1.009 0.053 PN l-APT T1-35 Galizia
000317_aneg 10.928 0.323 1.176 5.041 284 56 0.297 1.592 0.306 PN l-APT T1-35 Galizia
000317_b 2.469 0.803 2.293 8.885 48 17 0.328 0.914 0.147 Galizia
000406_1 3.219 0.302 1.200 8.411 165 16 0.118 2.404 0.208 PN l-APT T1-38 Galizia
000406_2 7.375 0.601 0.554 1.530 231 48 0.119 5.599 0.315 Galizia
000414_1 0.646 0.298 0.897 3.857 279 53 0.153 1.097 0.108 LN hetero T1-29 Galizia
000418_3 0.422 0.336 7.127 2.621 296 33 0.080 1.254 0.000 LN hetero T1-51 Galizia
000426_1 1.293 0.574 0.135 59.965 130 44 0.131 8.900 0.296 LN hetero T1-36 Galizia
000504_1 1.115 0.588 0.333 7.485 171 21 0.055 3.545 0.273 LN hetero T1-12 Galizia
01092005a 10.685 0.191 0.185 136.613 343 69 0.210 1.408 0.188 Krofczik
01092005b 0.215 0.362 0.626 100.171 352 49 0.145 1.502 0.223 Krofczik
02092005a 0.945 0.102 2.981 84.634 260 16 0.183 1.443 0.214 LN ? ? Krofczik
02092005b 2.390 0.309 0.877 84.365 257 21 0.194 1.523 0.159 PN l-APT T1-33 Krofczik
03052005a 4.012 0.336 1.777 64.066 368 66 0.204 1.211 0.147 Krofczik
03052005b 3.662 0.376 1.711 87.250 342 51 0.294 1.086 0.225 Krofczik
04072006a 0.007 0.215 0.000 129.422 220 0 0.552 0.799 0.469 PN l-APT T1-42 Krofczik
05012006a 0.176 0.360 0.976 32.876 228 26 0.206 1.276 0.105 Krofczik
05012006b 0.775 0.352 0.556 12.802 261 36 0.194 1.318 0.197 Krofczik
05052006a 1.349 0.802 0.601 3.709 290 31 0.050 2.684 0.204 LN ? ? Krofczik
08012004a 1.259 0.284 1.033 92.394 320 60 0.150 1.617 0.140 Krofczik
08122005a 1.334 0.115 0.000 147.690 303 36 0.031 7.650 0.374 PN m-APT T2-06 Krofczik
10022005b 6.205 0.054 0.948 86.905 343 19 0.057 2.039 0.271 PN m-APT T2-02 Krofczik
10062006a 0.106 0.107 0.000 13.037 288 20 0.291 1.689 0.283 PN m-APT T3-45 Krofczik
10062006b 0.227 0.176 0.000 28.021 273 14 0.608 0.805 0.462 PN m-APT T3-18 Krofczik
10092004a 3.478 0.520 0.000 12.137 519 27 0.053 3.790 0.261 LN ? ? Krofczik
10112005a 1.772 0.603 0.138 71.071 305 32 0.273 1.320 0.139 Krofczik
11012005a 5.388 0.741 0.304 90.607 235 35 0.141 1.612 0.130 PN m-APT T2-03 Krofczik
11062006a 1.338 0.355 0.000 14.530 542 17 0.261 1.029 0.156 PN m-APT ? Krofczik
11062006b 1.785 0.547 2.869 32.724 247 44 0.394 0.805 0.283 Krofczik
11062006c 2.667 0.350 3.860 7.263 346 73 0.254 1.078 0.122 Krofczik
14032006a 2.957 0.071 0.000 28.267 360 29 0.146 1.458 0.211 PN m-APT T3-16 Krofczik
14092004a 5.206 0.174 0.000 43.714 393 43 0.137 2.139 0.247 PN l-APT T1-39 Krofczik
15062006b 4.512 0.258 0.000 10.806 362 66 0.316 0.840 0.190 PN m-APT T3-31 Krofczik
15092004a 0.690 0.115 0.000 64.864 502 41 0.209 1.277 0.155 PN l-APT T1-09 Krofczik
16062006b 3.470 0.151 0.667 135.654 277 42 0.243 1.196 0.155 Krofczik
18042005a 1.315 0.875 0.000 52.308 370 92 0.107 2.088 0.215 Krofczik

Continued
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mic activity in the absence of input, or from ongoing network
input (Llinas 1988). Baseline activity in AL neurons was
recently shown to depend on continuing OSN input even in the
absence of overt stimuli and not on auto rhythm (Joseph et al.
2012). PNs form numerous synapses with both LNs and a large

number of converging OSNs (Distler and Boeckh 1997; Gali-
zia 2008). During odor stimulation, PNs are the object of
strong afferent OSN input and recurrent local network input.
According to our analysis, PNs expressed prominent rate
modulations (Fig. 4), with typical peak rates in the order of

Table 1.—Continued

Cell ID FF CV2 Rbase, Hz Revok, Hz L, ms �L, ms Pbase, V2 Pevok, V2 A Morphology Subgroup Glomerulus Paper

20102005a 12.843 0.072 0.000 139.517 302 22 0.062 5.300 0.389 Krofczik
25062006a 0.466 0.399 0.329 66.701 309 56 0.286 1.004 0.173 PN l-APT T1-22 Krofczik
27062006a 0.611 0.383 2.704 82.978 341 20 0.275 1.058 0.256 Krofczik
27062006b 2.799 0.620 3.536 146.331 381 43 0.200 1.092 0.157 Krofczik
28052006a 4.793 0.236 3.483 6.687 376 23 0.531 0.920 0.116 PN m-APT T3-64 Krofczik
28062006a 3.237 0.408 0.651 32.724 351 42 0.264 0.906 0.092 PN m-APT T3-09 Krofczik
990924_2 0.600 0.300 0.000 33.051 207 173 0.309 1.038 0.074 Galizia
991103_1 9.558 0.270 6.355 7.171 146 29 0.318 1.196 0.113 Galizia
991109_1 19.686 0.127 0.489 10.399 208 10 0.220 1.541 0.141 Galizia
Anja1 25.026 0.171 1.111 89.310 276 13 0.140 1.464 0.129 PN m-APT T3-09 Krofczik
Anja4 0.866 0.441 2.055 44.239 362 61 0.322 1.094 0.299 PN m-APT T3-68 Krofczik
Backpack11d 15.693 0.196 0.000 52.329 384 334 0.169 1.167 0.111 PN m-APT T3-56 Krofczik

LN, local interneuron; PN, projection neuron; FF, Fano factor; CV2, coefficient of variation of the interspike intervals; Rbase, spontaneous activity during the
prestimulus interval; Revok, evoked rate; L, positive time interval between stimulus onset and onset of neural response; �L, standard deviation of trial-to-trial
shifts; Pbase, baseline power; Pevok, stimulus-related changes in signal power; A, area values. Where available, morphological subgroups and innervated glomeruli
are indicated. For hetero LNs and 1-ml PN, only the most strongly innervated glomerulus is indicated. For the one identified homo LN, the area corresponding
to the innervation by the sensory input (T1-T4) is given. Missing information about morphologically identified neurons is indicated by question marks and arises
from low staining quality or ambiguous documentation. The right-most column indicates the original publication in which the electrophysiological data was
published: Meyer et al. (2012); Galizia and Kimmerle (2004); Krofczik et al. (2008).
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50–100 Hz. The PN population is thus well suited to project a
spatio-temporal rate code to the higher brain centers. Evidence
for the existence and behavioral relevance of a combinatorial
odor rate code in the PN ensemble has been provided by a
number of recent extracellular single-unit recordings (e.g.,
Brill et al. 2012; Strube-Bloss et al. 2012).

Irregular Spiking and Short Latencies Reflect the
Modulatory Function of LNs

The LN network provides the substrate for mediating a
nonlinear transformation between AL input and output in flies
and bees (Bhandawat et al. 2007; Meyer and Galizia 2011; Ng
et al. 2002; Olsen and Wilson 2008; Sachse et al. 2006;
Schmuker 2012). A prerequisite is the widely ramified LN
morphology that interconnects many different glomeruli, inte-
grating information from different genetic receptor types. The
high CV2 of LNs (Fig. 4, Table 1) likely is a physiological
reflection of this intertwined connectivity. Spike time irregu-

larity arises from two events: when inhibitory input counteracts
excitatory input (Nawrot et al. 2008; Shadlen and Newsome
1998; Stevens and Zador 1998; Vreeswijk and Sompolinsky
1996), or when the excitatory inputs arrive in an irregular
fashion, e.g., through integration of inputs with different spike-
train statistics (Farkhooi et al. 2011; Renart et al. 2010), and
output irregularity is particularly high when both conditions
apply (Bures 2012). Irregular LN output is likely a conse-
quence of heterogeneous input from both excitatory (OSNs and
PNs) and inhibitory (LNs) sources (Galizia and Rybak 2010;
Malun 1991). In addition, the superposition of inputs from
several coactivated glomeruli likely makes excitatory input
irregular.

A striking result of our analysis is the faster response time of
LNs with a median L of only �60 ms compared with �120 ms
for PNs (Table 2). Fast LN responses coincide with the previ-
ous observation of an equally fast reduction of the membrane
potential in single PNs (Krofczik et al. 2008) and indicate that
LNs can efficiently modulate PN output through fast lateral
inhibition. The distribution of individual latencies is rather
broad in both neuron populations (Fig. 4). Single PNs can
respond much faster than the population average. This obser-
vation is interesting in light of the recent findings by Strube-
Bloss et al. (2012) that AL neurons responded, on average,
later to odor stimulation than mushroom body output neurons,
which are situated two synapses downstream of PNs. Meyer
and Galizia (2011) tested responses of AL neurons to a mixture
with two components. They found elemental neurons that
showed fast responses dominated by, and temporally locked to,
the dominant mixture component. In contrast, configural neu-
rons that represented the novel mixture quality showed longer
response latencies. Together, this may indicate that a fast

Table 2. Median values of physiological response features

PN LN P PN LN P

n 41 39 23 9
�R, Hz 60 11 �0.001 43.7 8.6 �0.01
L, ms 127 63 �0.01 137 76 0.5
CV2 0.3 0.52 �0.001 0.236 0.48 �0.05
FF 2.1 0.56 �0.001 2.96 0.94 0.12
Pbase, V2 0.21 0.16 �0.05 0.261 0.15 0.1

n, No. of cells. �R, difference between the highest value of peak firing rate
and the minimum rate value encountered in any of the trials. Columns 1 and 2
show medians of cluster populations; columns 4 and 5 show medians for
identified cell populations. P indicates P values (Wilcoxon rank sum test) for
difference in median of the corresponding PN and LN populations.

PN LN
1

100

∆ 
R

 [
H

z]

0

350

L
 [

m
s]

0.1

1

   
   

 C
V

2

0.01

10

F
F

0

0.65
P

b
as

e [
V

2 ]

PN LN
1

100

∆ 
R

 [
H

z]

0

350

L
 [

m
s]

0.1

1

   
   

 C
V

2

0.01

10

F
F

0

0.65

P
b

as
e [

V
2 ]

A

B

Fig. 4. LN and PN differences in physiological response features. A: box-plots illustrate the distribution of feature values for cells in the PN (light red) and in
the LN dominated cluster (light blue) for the set of 5 optimal features, as indicated. The two cell populations differ significantly in all 5 features (Wilcoxon rank
sum test; *P � 0. 05, **P � 0. 01, ***P � 0. 001). B: box plot of feature values for the subpopulations of morphologically identified PNs (n � 23) and LNs
(n � 9). The two cell populations differed significantly in the case of �R and CV2 (Wilcoxon rank sum test; *P � 0. 05, **P � 0. 01). For the remaining features,
the differences and medians are consistent with those of the cluster populations in A. Light red and light blue horizontal bars indicate medians of the populations
of clustered neurons in A. Note that y-axes for �R, CV2, and FF are scaled logarithmically.

2471RESPONSE PROPERTIES OF ANTENNAL LOBE NEURONS

J Neurophysiol • doi:10.1152/jn.00260.2013 • www.jn.org



population of uniglomerular PNs carries an initial rapid odor
code. Recurrent projections from the mushroom body to the
AL (Hu et al. 2010) could modulate a secondary delayed odor
code (Strube-Bloss et al. 2012). In line with this idea, resent
results indicate that different families of PNs may exhibit
different response latencies (Brill et al. 2013; Rössler and Brill
2013). It has been suggested that the early phasic stimulus
response component establishes a latency code of odor identity
in the insect (Brill et al. 2012; Krofczik et al. 2008; Kuebler et
al. 2011), which might be required for rapid behavioral action.
A late and persistent odor code might support the refined
percept of the stimulus environment, e.g., mixture composition
and concentration of individual elements (Fernandez et al.
2009; Strube-Bloss et al. 2012), and it might underlie the
formation of associations.

Properties of AL Neurons Differ Between Species

Throughout species, the AL is organized in a glomerular
fashion and built from the same elements: OSNs, PNs, and
LNs. However, numbers and wiring of these constituents
differs vastly between species. As a consequence, PNs and LNs
may well exhibit different physiological properties in different
species. The AL of the Tobacco Hornworm Manduca sexta has
regular spiking LNs and shows irregular, burstlike activity in
PNs (Lei et al. 2011), opposite to our findings. In Drosophila,
populations of both regular and irregular spiking LNs have
been described (Chou et al. 2011; Seki et al. 2010). In the
cockroach, neurons were identified that produce sodium spikes
(Husch et al. 2009). In the locust, only nonspiking interneurons
were found so far (Laurent 1993). An explanation for these
physiological variations might be found in the species-specific
architecture. About 160 glomeruli in the honeybee AL are
connected with �4,000 LNs (Withöft 1967) but give output via
only �800–900 PNs (Rybak 2012). Honeybee LNs innervate
subareas of glomeruli in which OSN input is concentrated, as
well as subareas in which PN neurites dominate (Fonta et al.
1993), and LNs are likely to form inter- as well as intraglo-
merular connections (Meyer and Galizia 2011). In other prom-
inent insect models for olfaction, LNs are less numerous than
PNs, and the overall degree of connectivity is much smaller
[Drosophila: �50 glomeruli (Stocker 1994), 150–200 PNs
(Stocker 1997), 100 LNs (Ng et al. 2007); locust: 830 PNs
(Leitch and Laurent 1996), 300 LNs (Anton and Homberg
1999); moth: �60 glomeruli (Sanes and Hildebrand 1976b),
740 PNs, 360 LNs (Homberg 1988)]. Naturally, these differ-
ences in architecture are not only reflected in physiological
properties of single neurons, but impact the entire network
function at the level of odor and odor mixture encoding, which
seems necessary for the species-specific adaption to environ-
mental constraints (Martin et al. 2011).

The Diversity of AL Neurons Within Species

LNs and PNs establish two anatomically and morphologi-
cally well-defined classes of AL neurons. However, both dis-
play considerable within-class diversity. In some species, PNs
subdivide in morphological subgroups (Galizia and Rössler
2010). In most hymenoptera, including the honeybee, PNs
subdivide into three morphological families (Rössler and Zube
2011). LNs can show various different morphologies within a
species (Chou et al. 2010; Christensen et al. 1993; Dacks et al.

2010; Flanagan and Mercer 1989; Fonta et al. 1993; Seki and
Kanzaki 2008; Seki et al. 2010; Stocker et al. 1990). In the
honeybee, so-called homogeneous and heterogeneous LNs rep-
resent two major subgroups. However, even morphologically
similar LNs may be further differentiated according to, for
instance, their histochemistry (Chou et al. 2010; Dacks et al.
2010; Kreissl et al. 2010; Nässel and Homberg 2006; Ng et al.
2007; Schäfer and Bicker 1986). The existence of different
families is supported by the diversity of LN physiology (Chou
et al. 2011; Husch et al. 2009; Meyer and Galizia 2011; Sachse
et al. 2003; Seki et al. 2011) that finds expression in the
variances of individual response properties within the LN
group of our data set (Fig. 4) and explains why we could not
achieve 100% accuracy of classification (Fig. 3). In future
work it will be desirable to extend the present approach to
extract communal features of known subgroups such as homo
and hetero LNs or PN families. Application to a large data set
of extracellular recordings from two types of uniglomerular
PNs (Brill et al. 2013) show that this approach is transferable
to extracellular spike-train data (Meyer et al. 2012). While our
current analysis still provides a limited picture of honeybee LN
and PN physiology, it provides for the first time systematic
differences of their response physiology. Such detailed knowl-
edge is essential to foster realistic models of neural computa-
tion that can explain the complex spatial and temporal process-
ing of peripheral olfactory information in the primary olfactory
center.
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