
Neural Networks 21 (2008) 1085–1093
Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2008 Special Issue

FIND — A unified framework for neural data analysis
Ralph Meier a,∗, Ulrich Egert a,b, Ad Aertsen a, Martin P. Nawrot c,d,a
a Bernstein Center for Computational Neuroscience, Albert-Ludwigs-University, Freiburg, Germany
b Department of Microsystems Engineering, Faculty of Applied Sciences, Albert-Ludwigs-University, Freiburg, Germany
c Neuroinformatics and Theoretical Neuroscience, Institute of Biology – Neurobiology, Freie Universität Berlin, Germany
d Bernstein Center for Computational Neuroscience, Berlin, Germany

a r t i c l e i n f o

Article history:
Received 2 November 2007
Received in revised form
7 June 2008
Accepted 17 June 2008

Keywords:
Coefficient of variation
Gamma process
Point process simulation
Spike train analysis
Neural activity data analysis
Open source toolbox
Mushroom body
Visual cortex
Rat
Honey bee

a b s t r a c t

The complexity of neurophysiology data has increased tremendously over the last years, especially due
to the widespread availability of multi-channel recording techniques. With adequate computing power
the current limit for computational neuroscience is the effort and time it takes for scientists to translate
their ideas into working code. Advanced analysis methods are complex and often lack reproducibility on
the basis of published descriptions. To overcome this limitation we develop FIND (Finding Information
in Neural Data) as a platform-independent, open source framework for the analysis of neuronal activity
data based onMatlab (Mathworks). Here, we outline the structure of the FIND framework and describe
its functionality, our measures of quality control, and the policies for developers and users. Within FIND
we have developed a unified data import from various proprietary formats, simplifying standardized
interfacing with tools for analysis and simulation. The toolbox FIND covers a steadily increasing number
of tools. These analysis tools address various types of neural activity data, including discrete series of
spike events, continuous time series and imaging data. Additionally, the toolbox provides solutions for
the simulation of parallel stochastic point processes tomodelmulti-channel spiking activity.We illustrate
two examples of complex analyses with FIND tools: First, we present a time-resolved characterization of
the spiking irregularity in an in vivo extracellular recording from a mushroom-body extrinsic neuron
in the honeybee during odor stimulation. Second, we describe layer specific input dynamics in the rat
primary visual cortex in vivo in response to visual flash stimulation on the basis of multi-channel spiking
activity.

© 2008 Elsevier Ltd. All rights reserved.
1. Motivation

In parallel to the tremendous technical progress in data acqui-
sition (e.g. large number of simultaneous electrode recordings),
there is a growing need for new computational tools to analyze
and interpret the resulting large data flow from experiments and
simulations. While there is undeniable progress in novel analy-
sis methods, implementations are difficult to reproduce based on
print publications or they are hidden in ‘in-house’ software collec-
tions which are often ill-documented and thus hardly accessible.
Since computing power is nowadays affordable, the current

limit for computational analysis is how quickly and reliably
scientists can translate their ideas into working code (Wilson,
2006). Moreover, neuroscientists are usually not trained as
software engineers and have to cope with problems in the

∗ Corresponding author. Tel.: +49 761 203 2786; fax: +49 761 203 2860.
E-mail addresses:meier@biologie.uni-freiburg.de (R. Meier),

aertsen@biologie.uni-freiburg.de (A. Aertsen).

0893-6080/$ – see front matter© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2008.06.019
increasingly complex design of analysis software (Baxter, Day,
Fetrow, & Reisinger, 2006).
As a contribution to overcome these problems, we are

developing the open source platform-independent FIND toolbox to
address the urgent need of a unified, well-documented framework,
interfacing standard electrophysiology data sources and to collate
various analysis and simulation tools. FIND stands for Finding
Information in Neural Data, builds on the Neuroshare interface
definition and is shared with the neuroscience community. To
enable the incorporation of new algorithms, FIND provides the
possibility to extend the collection of algorithms and data formats
with new ones by supplying templates to integrate existing
code into the toolbox. The open source idea allows concise
review of methods and algorithms, and opens possibilities for
enhancements. We expect that this will facilitate the development
and distribution of new data analysis techniques among the
scientific community.

2. Concept

FIND implements a unified import of multiple proprietary
data formats, based on the Neuroshare Project (http://neuroshare.

http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:meier@biologie.uni-freiburg.de
mailto:aertsen@biologie.uni-freiburg.de
http://neuroshare.sourceforge.net
http://neuroshare.sourceforge.net
doi:10.1016/j.neunet.2008.06.019
doi:10.1016/j.neunet.2008.06.019
doi:10.1016/j.neunet.2008.06.019
doi:10.1016/j.neunet.2008.06.019
doi:10.1016/j.neunet.2008.06.019
doi:10.1016/j.neunet.2008.06.019
doi:10.1016/j.neunet.2008.06.019
doi:10.1016/j.neunet.2008.06.019


1086 R. Meier et al. / Neural Networks 21 (2008) 1085–1093
Fig. 1. Schematic overview of the FIND framework. Currently, data acquisition with different products results in files with numerous proprietary data formats for neural
data (top row). The FIND framework provides unified data import to read these and various open data formats (Read). The imported data is represented in a unified manner
within the Matlab programming environment (Store). On this level, FIND supports browsing the existing data set and the selection of a subset of data for further processing.
Then analysis functions can be called using a GUI and/or directly from the command line (Select and Call). Our approach includes full interchangeability between GUI calls
and programmed scripts using the function calls. All calls generated are passed through a unified interface (Adapt) to call the actual analysis-functions that process the data.
On the next level (Analyse), we provide high-level analysis functions. Interaction between several high-level analyses and cascading of data processing steps is supported
by the unified data representation. For all steps, we offer template functions and documentation to facilitate and encourage the addition of further methods to the FIND
framework. For a full list of functions currently available, see the project website http://find.bccn.uni-freiburg.de.
sourceforge.net), but also includes import routines for data formats
not covered by the Neuroshare interface. Physiological data
from different acquisition systems: Alpha Omega, Cambridge
Electronic Design, Multi Channel Systems, NeuroExplorer, Plexon,
Tucker-Davis Technologies, Cyberkinetics and others as well
as data from network simulations environments (e.g. NEST:
www.nest-initiative.org, Morrison, Mehring, Geisel, Aertsen, and
Diesmann (2005); and PyNN: http://neuralensemble.org/trac/
PyNN) are now accessible through one interface and can be
analyzed using identical methods. This allows the verification
of results across experiments and laboratories and enables the
direct comparison of simulation results with electrophysiological
measurements.
We are hosting a professional software development platform

including a software repository (using the Trac Project, http:
//trac.edgewall.org/) to allow developers of algorithms used in
neuroscience to add/incorporate their tools within the FIND
framework. To facilitate this process we developed templates for
functions and templates for graphical user interfaces (GUIs), and
specified application interfaces (API) for data storage and function
calls. A review board controls the addition of software (i.e. in most
cases analysis tools) to ensure quality of the code and plausibility
of the tools provided. In addition, we evaluate and propagate the
functionality of the FIND toolbox in parts of our teaching and
training program in computational neuroscience at the German
Bernstein Centers for Computational Neuroscience. In the future,
we will provide curricula and training material based on FIND.
Full information on functionality, software updates and access
to recent releases, a list of contributors and partners, and our
invitation to join the team of developers can be found on the FIND
website http://find.bccn.uni-freiburg.de.

3. Design and community interaction

In this sectionwebriefly outline thedesign structure of the FIND
framework (Fig. 1). A central element is the unified data import
and representation of many different data formats. This makes
the analysis tools independent of the hard- and software used
for data acquisition. In addition, the storage in a unified format
readily offers a means for the standardized exchange of neural
activity data. The tools collected in the FIND toolbox interface to
the data in a standardized fashion. Individual tools are represented
by individual Matlab functions with a standardized input and
output format. On top of the basic functions, a graphical user
interface (GUI) provides easy access to data and tools, also for
the programming novice. Quality management is introduced by a
technical review process of contributed tools before public release.
Participation in the FIND community should result in a win–win
situation for both, developers andusers.Weoutline the FINDpolicy
which finds its expression in guidelines for developers and for
users to serve their mutual interests.

3.1. Data import and internal data representation

In a first step, neural activity data and meta-information can
be imported frommany proprietary (via the Neuroshare Interface)
and open (e.g. MEA-Bench format http://www.danielwagenaar.
net/meabench/) data formats. The information thus retrieved is
subsequently represented within the Matlab environment in a
unified structure, open for further additions. As defined in the
Neuroshare API (Neurshare Consortium, 2004), four basic data
entities exist within this structure: Analog, Event, Segment and
Neural. Their properties can be described in brief as:

• An Analog entity contains continuous data, e.g. recordings
of the voltage variable sampled over a certain time interval.
One analog entity contains a single recording channel, i.e. one
continuous time series.
• An Event entity contains points in time atwhich a specific event,
e.g. a particular stimulus occurred. These entities consist of a
time stamp and a label per event. Spike times are NOT stored
here — they are stored as a Neural entity.
• A Segment entity contains a specific part of an analog entitywith
a specific duration that starts at a certain point in time, e.g. cut-
outs of all spike wave-forms from one analog entity.

http://find.bccn.uni-freiburg.de
http://neuroshare.sourceforge.net
http://neuroshare.sourceforge.net
www.nest-initiative.org
www.nest-initiative.org
www.nest-initiative.org
http://neuralensemble.org/trac/PyNN
http://neuralensemble.org/trac/PyNN
http://neuralensemble.org/trac/PyNN
http://neuralensemble.org/trac/PyNN
http://neuralensemble.org/trac/PyNN
http://trac.edgewall.org/
http://trac.edgewall.org/
http://trac.edgewall.org/
http://trac.edgewall.org/
http://trac.edgewall.org/
http://trac.edgewall.org/
http://find.bccn.uni-freiburg.de
http://find.bccn.uni-freiburg.de
http://find.bccn.uni-freiburg.de
http://find.bccn.uni-freiburg.de
http://find.bccn.uni-freiburg.de
http://www.danielwagenaar.net/meabench/
http://www.danielwagenaar.net/meabench/
http://www.danielwagenaar.net/meabench/
http://www.danielwagenaar.net/meabench/
http://www.danielwagenaar.net/meabench/


R. Meier et al. / Neural Networks 21 (2008) 1085–1093 1087
• A Neural entity contains special data that was derived from
the original data set and is defined as a neural signal. Thus
far, spike times of one single-unit or one multi-unit channel is
considered as a neural signal and stored as one neural entity.
Multiple single-unit recordings are consequently represented
as separate cellswithin the neural entity class. Further additions
consisting of analog and segment data as substructures within
the neural entity are possible.

3.2. External data representation and storage

FIND supports the import of data in various proprietary formats
and represents it as a unified data structure within Matlab. We
implemented an export of this structure to the Hierarchical Data
Format (HDF5). HDF5 is a unique technology suite enabling the
management of very large and complex data collections. It is
widely in use in many scientific areas (e.g. weather forecasts and
particle physics). The major advantages of the HDF5 technology
suite (see e.g. http://hdf.ncsa.uiuc.edu/index.html), are (i) it is a
completely portable file formatwith no limit on the number or size
of data objects in the collection, (ii) it is distributed as a software
library that runs on a range of computational platforms, from
laptops to massively parallel systems, and it implements a high-
level API with C, C++, Fortran 90, Java and Python interfaces, (iii)
it has a rich set of integrated performance features that allow for
access time and storage space optimizations, and finally (vi) there
is a variety of tools and applications for managing, manipulating,
viewing, and analyzing thedata in the collection.Most importantly,
the HDF5 data model, file format, API, library, and tools are open
source and distributed without charge.
An HDF5 file has a hierarchical structure and appears to the

user as a directed graph, conceptually similar to the UNIX type
file system, i.e. it can consist of ‘‘folders’’ and ‘‘files’’. A Data set,
which corresponds to files, comprises collections of scalars or
arrays. Moreover, HDF5 is unique in its ability to physically and
conceptually separate data (including raw data and stored analysis
results) from metadata (stored as data attributes), even if they are
merged in the same file entity.
Benefiting from this structure, FIND additionally provides tools

for merging and consolidation of data sets exported to HDF5.
This allows for efficient storage and easy access to large data
collections. Moreover, analysis of such a collection can make use
of the hierarchical data structure of HDF5, e.g. by the concurrent
analysis of all branches and leaves of a given hierarchical tree
that share certain properties. In effect, the use of HDF5 provides
many beneficial features that are similar to those offered by
a conventional data basing system, but does not require the
installation and administration of dedicated data base servers and
software

3.3. Addressing the need for different programming languages by
using plug-ins

There are numerous analysis methods that are computationally
expensive and are, thus, difficult to implement for large data
sets. Fortunately, distributed computing, i.e. the use of computing
clusters, can be used as a measure to reduce these problems.
Usually, such clusters are not specifically designed to work with
Matlab. Therefore, we developed a Python-based plug-in to FIND
that is operating on the HDF5 data structure (details see above).
This plug-in uses open MPI (www.open-mpi.org, (Gabriel et al.,
2004)) to send analysis packages to the nodes of the cluster. The
results of the calculation are then stored within the same HDF5
structure that holds the original raw data. A detailed example of
this approach was outlined elsewhere (Meier, Garbers, Haeussler,
Egert, & Aertsen, 2008).
Fig. 2. Levels of function access and release within the FIND framework. We have
established three stages of code addition to FIND. On the first level (developers’
version) prototypes are submitted and included into the FIND framework. Within
this version, adaptation to the FIND standards, testing and documentation are
accomplished. After passing the review of an editorial board the functions are
offered to the public as a release version. The full support of all functions available
using the GUI is the highest level of abstraction offered by our framework. Stability
and coverage of the functionality increases with higher levels within FIND. We
warmly welcome contributors, developers and users of the FIND toolbox for all
levels mentioned.

3.3.1. Application of tools
FIND provides access to the data at two different levels of

abstraction. At the basic level, FIND provides functions that
represent elemental algorithms for individual steps of data
analysis. These can be called at the command line or integrated and
combined in Matlab scripts and software projects. At the higher
level, FIND provides a GUI for easy and fast access to data analysis,
also for the inexperienced programmer. It allows the selection
of data to be loaded and the navigation through the accessible
data. Whenever a function to process data is called from the GUI
level, this generates a function call that could also be issued at
the command line and the function calls can be stored in a log-
file (FIND history). This functionality eases the transition from the
GUI usage to the level of automated and reproducible script-based
analyses.

3.3.2. Tool development and integration
To allow the addition of further tools to the FIND framework

we provide template functions. They specify the structure of the
GUIs, the interface, and contain functions to test the parameters
of the functions called as well as hierarchical error handling.
Guidelines on how to structure the documentation of new tools
are defined to ensure standardized calls and interfaces to the data
structure. Such guidelines guarantee long-term stability of the
FIND framework and ensure the interoperability of its tools. Note,
that we also devised guidelines for FIND users, in particular: users
should reference the functions used to analyse their data in their
publications and cite the original publications referenced in the
documentation of these functions. This is one of the rewards for
the developers and it will assure reproducibility of the findings
presented.

3.3.3. Quality management
As a measure to ensure a high quality of the tools and software

code in the FIND toolbox we installed a three-level structure of
the toolbox (Fig. 2). The first level (developers’ version) comprises
the highest functionality, but it is also the most unstable version.
At this level all testing and adaptation takes place. When the
developers are satisfied, the approval of amember of the separately
installed review board is required to allow any tool to ‘go public’.
After positive review, tools are included into the release version,
the second level in the hierarchy. Here, all functionality can be
used on the function level. On the final and third level, full support
of functionality of included functions is ensured within a GUI.
One important concept of the FIND framework is that everyone is
invited to join the developers’ team and will be granted access to
the currently developed functions. We expect that testing of the
software tools will be performed in close cooperation with other

http://hdf.ncsa.uiuc.edu/index.html
http://hdf.ncsa.uiuc.edu/index.html
http://hdf.ncsa.uiuc.edu/index.html
http://hdf.ncsa.uiuc.edu/index.html
http://hdf.ncsa.uiuc.edu/index.html
http://hdf.ncsa.uiuc.edu/index.html
http://hdf.ncsa.uiuc.edu/index.html
www.open-mpi.org
www.open-mpi.org
www.open-mpi.org


1088 R. Meier et al. / Neural Networks 21 (2008) 1085–1093
developers. For the exchange of reports, we have installed a bug
tracking and code annotation system that has proven its usefulness
in many open source projects (winner of the UK Linux & Open
Source Awards 2006).

3.3.4. Teaching and training
Today, the neurophysiological data obtained in ever more

complex experiments at the cellular as well as the systems
level require appropriate methods of analysis. Thus, within the
neuroscience community increasing importance is placed on high
quality teaching and training of model-driven approaches to data
analysis. FIND supports this in two ways. The FIND website
provides teaching material to be used for practical training in data
analysis and numerical data simulation. This material will include
self-contained exercises based on experimental data samples and
tools implemented in FIND. In addition, compact workshops on
data analysis with FIND address students and scientists with
hands-on experience in data analysis.

4. Functionality

Currently, the FIND toolbox is focused on single- and multi-
channel spike train characterization (e.g. Meier and Gruen
et al. (2007)). However, FIND also offers specialized tools to
analyze continuous time series such as local field potentials
(LFP), electroencephalography (EEG), intracellular voltage and
current recordings, etc., as well as non-specialized tools, e.g. for
information theory based analyses. Generally, we aim at the
inclusion of additional tools for any type of electrophysiological
(e.g. the MEA-tools, http://material.brainworks.uni-freiburg.de/
research/meatools; Egert et al. (2002)) and neural imaging data.
To create reference datasets, the FIND toolbox provides several

tools for simulating stochastic point process models. These are
particularly helpful for testing and calibrating new tools of
analysis or even complex analysis scripts. In the next section we
demonstrate some of the functions available in the FIND toolbox
in two different analyses of example data sets. An updated list of
all currently released functions and GUIs is available on the FIND
website.

5. Examples of analysis with FIND

To illustrate the functionality of FIND we exercise step by
step two examples of data analysis using functions in FIND: The
first example estimates dynamic changes of inter-spike-interval
statistics to characterize stimulus-driven dynamic changes in
spiking irregularity in a certain insect neuron type. The second
example illustrates the layer specific response latencies to sensory
input in the primary visual cortex of the rat. Where applicable, we
refer to other analysis tools available within FIND to demonstrate
the effects of interaction of different data processing tools. The
complete data sets analyzed in this section alongwith documented
software scripts is publicly available on the FIND website for
reproduction of the results and hands-on experience with FIND
tools. All computations were made under Matlab version 7.1.

5.1. Odor-response dynamics of spiking irregularity in a mushroom-
body extrinsic neuron of the honeybee

The activity of spiking neurons in vivo naturally exhibits
variability on various short and long time scales. An individual
spike train observed under spontaneous activity conditions shows
a typical irregular temporal pattern of individual action potentials.
This observation has led to the notion of stochastic spiking, and it
has introduced the analysis and modeling of spike trains within
the framework of point process theory (e.g. Dayan and Abbott
(2001), Johnson (1996), (Perkel, Gerstein, & Moore, 1967a, 1967b)
and Tuckwell (1988). One prominent example of point processes
used in theoretical neuroscience is the class of renewal processes.
It assumes that the inter-spike interval (ISI) can be modelled as a
random variable that is independently and identically distributed
(IID) according to some pre-defined interval distribution. The
variance of this distribution indicates the variability of ISIs.
Empirically, we can estimate statistical parameters of the

experimental ISI distribution. The coefficient of variation

CV = sd(ISI)/µ(ISI) (1)

with the standard deviation sd of ISIs normalized by the mean µ
of ISIs, is often used to measure spike train irregularity. It indicates
variability on a short time scale, determined by the mean interval
µ. In practice, the application of the CV is limited to cases of a
stationary rate. A time-varying firing rate modulates the interval
length, violating the assumption of a fixed ISI distribution. Thus
the CV estimated from such a spike train is not a useful measure
to describe the randomness of the underlying spiking process.
In our experiments, however, we typically observe neurons in
stimulus-response conditions or during behavioral or mental tasks
associated with pronounced changes of the firing rate. Thus, it
is of interest to investigate whether single neuron variability is
increased or reduced during such rate responses. Several measures
that are local in time have been derived from the CV to be
able to measure temporal changes of interval variability (Davies,
Gerstein, & Baker, 2006; Holt, Softky, Koch, & Douglas, 1996;
Miura, Okada, & Amari, 2006; Shin et al., 2007; Shinomoto, Miura,
& Koyama, 2005). Here, we take a different approach. We first
transform the experimental time axis to a new time axis where the
empirical firing rate becomes constant. We call this new time axis
‘operational time’, a term that has previously been introduced for
the special case of a non-homogenous Poisson process. In a second
step, we apply the time-resolved analysis of the CV in a sliding
window. As an example data set for this analysis, we chose a single-
unit recording from the alpha lobe of the honeybee mushroom
body. The data analyzed in this section was kindly provided by
Martin Strube and Randolf Menzel at the Freie Universität Berlin,
Germany. Preliminary results have been published in abstract form
(Nawrot & Benda, 2006).

5.1.1. Experiments
Several different odors were presented to the antennae of

a harnessed honey bee (apis melifera) for 3s during repeated
trials to investigate stimulus specificity and trial-by-trial response
reliability in mushroom body extrinsic neurons (Strube, Stiller,
Nawrot, & Menzel, 2007). A custom-built stimulation setup
(adopted from Galizia, Joerges, Küttner, Faber, and Menzel
(1997)) was used to inject a small volume from an odor
chamber containing 10 µl of 10x-diluted odor in paraffin oil
on filter paper into a constantly delivered air stream. Details
of the in vivo preparation and recording method are described
elsewhere (Okada, Rybak, Manz, & Menzel, 2007). In brief,
extracellular differential recordings were performed from three
thin polyurethane-coated copper wire electrodes (Okada, Ikeda,
& Mizunami, 1999) inserted into the ventral region of the alpha
lobe of the mushroom body at the border of the peduncle. Raw
signals were recorded, band-pass filtered between 0.1–9 kHz, and
digitized at 20 kHz (Lynx-8 Amplifier system, Neuralynx, Tucson,
AZ, USA). A template-based spike sorting was performed (Spike2
software, Cambridge Electronic Design, Cambridge, UK).

5.1.2. Rate estimation
The raster plot in Fig. 3(a) depicts all 66 single-trial spike

trains in response to peppermint during the first 800 ms of

http://material.brainworks.uni-freiburg.de/research/meatools
http://material.brainworks.uni-freiburg.de/research/meatools
http://material.brainworks.uni-freiburg.de/research/meatools
http://material.brainworks.uni-freiburg.de/research/meatools
http://material.brainworks.uni-freiburg.de/research/meatools
http://material.brainworks.uni-freiburg.de/research/meatools
http://material.brainworks.uni-freiburg.de/research/meatools


R. Meier et al. / Neural Networks 21 (2008) 1085–1093 1089
Fig. 3. Time-resolved inter-spike interval statistics during odor presentation. (a) Repeated measurements of spiking activity from a single mushroom body alpha-lobe
extrinsic neuron of the honeybee in response to N = 66 repeated stimulations with the same odor (peppermint). Each tick marks the time of occurrence of one spike, each
row of spikes represents one experimental trial. The presentation of the odor stimulus with onset at time t = 0 is indicated by the gray shading. (b) Trial-averaged rate
function, estimated using an alpha-shaped convolution kernel with an optimal kernel width of σ = 8 ms (inset). (c) Illustration of the time-unwarping method. Event times
in experimental time (top) are translated into event times in operational time (right) according to the integrated rate function (black curve). The gray shading again indicates
the odor stimulation. Operational time has no units, but counts indicate the number of expected events, i.e. for the operational time interval [0, 10] we expect on average
10 spikes per trial. The stimulus onset time t ′ = t = 0 serves as a reference in both time frames. (d) All 66 single-trial spike trains in operational time. The rate of spike
events is now normalized to unity. (e) Time-resolved CV(t) of the inter-spike intervals in experimental time. CV(t ′)was first measured in operational time and subsequently
presented in experimental time, using the inverse time transformation t ′ → t to warp the time axis. The results of three different methods of estimation are shown (see
text). The red curve represents the average of the trial-to-trial estimated CVi; the blue curve gives the CV based on the pooled ISIs from all trials. The black curve assumes
a gamma renewal model fitted the ISI distribution (shown in f ), where CV = 1/sqrt(α). (f) This time-resolved fit of a gamma distribution to the ISIs pooled from all trials
gives the gamma order α of the model. For comparison, the gray dashed line indicates the gamma order of a Poisson process. (g) The time-resolved histogram of the ISI
distribution in experimental time (normalized to area= 1).
odor presentation (gray shading), aligned to stimulus onset (valve
opening time) at t = 0. We obtained an estimate of the time-
varying and trial-averaged rate function in Fig. 3(b) using the
method of kernel convolution (Nawrot, Aertsen, & Rotter, 1999;
Parzen, 1962). We chose a kernel of asymmetric shape, the
so-called alpha-function, as depicted in the inset of Fig. 3(b),
which is implemented in the FIND function makeKernel. The
crucial parameter for obtaining a good rate estimate is the kernel
width which determines the time resolution of the estimate. We
applied an automatic method to determine the optimal kernel
width as described in Nawrot et al. (1999). This is implemented
in the function optimizeKernelWidth. To generate a kernel of
predefined shape and width it calls the functionmakeKernel. We
parameterized the kernel width by the standard deviation σ of
the associated distribution (Nawrot et al., 1999). The optimum
kernel width was determined here as σ = 8 ms, which was
subsequently used to construct the optimized rate estimate shown
in Fig. 3(b). To obtain a trial-averaged estimate of the rate, we
first constructed a discrete array representation (time resolution
0.5 ms) of each single trial spike train. Averaging across all trials
results in a discrete representation of the average spike train. We
convolved this array with the kernel array using Matlab’s filter
function.

5.1.3. Time warp
In a next step, we transformed the experimental time axis

t where all single spike trains are aligned with respect to the
temporal marker of the stimulus onset at time t = 0 to the
operational time axis t ′, defined as the time frame where the trial-
averaged event rate is constant, i.e. λ(t ′) ≡ 1. We will briefly
outline this procedure and refrain from a detailed description of its
mathematical basis. For an in-depth description of the theoretical
concept of time rescaling and the underlying assumptions we
refer to previous publications (Brown, Barbieri, Ventura, Kaas, &
Frank, 2001; Johnson, Tsuchitani, Linebarger, & Johnson, 1986).
The method as implemented in FIND and as outlined here has
previously been described and applied by Reich, Victor, and Knight
(1998) and by Nawrot et al. (2008).



1090 R. Meier et al. / Neural Networks 21 (2008) 1085–1093
We define the transformation of time by the integral over the
trial-averaged rate function λ(t) up to the time t

t ′ = Λ(t) =
∫ t

0
dsλ(s) (2)

where λ(t) describes the explicitly time-dependent intensity
function of the process. Obviously, for our set of experimental
spike trains we cannot know the ‘true’ stimulus related response
rate function λ(t). Instead, we may use the empirical trial-
averaged estimate in Fig. 3(a), assuming that it was a reasonably
good approximation. To give an intuitive picture of the time
transformation: We warped the time axis such that we straighten
out the rate function until it becomes constant, i.e. we need to
stretch time where the rate is high and compress time where
the rate is low. The schematic drawing in Fig. 3(c) visualizes
this transformation for individual spike times. In the top panel
we indicate the spike times of the first experimental trial, each
by a single tick mark. The monotonic black curve in the central
panel depicts the integral Λ(t) over the rate function in Eq. (2)
as a function of experimental time t . To translate an individual
experimental spike time (horizontal axis) into the associated spike
time in operational time (vertical axis) we need to pass it through
the transformation, as indicated by the blue lines. In FIND we
applied the function unWarpTime to each single trial to perform
this transformation numerically. The spike raster in Fig. 3(d) shows
the resulting spike trains for all 66 trials in operational time.

5.1.4. Time-resolved estimation of CV
After the transformation of all spike times to operational time

we are now in the position to estimate the CV of ISIs (Eq. (1)) in
a sliding window in operational time t ′ where the firing rate is
constant and, thus, does not distort the interval distribution. The
choice of the window width is a trade-off: For smaller windows
we gain temporal resolution, for larger windows we reduce the
variance of the estimator and the bias of the estimator caused by
short observation windows (Nawrot et al., 2008). Here, we chose
a width of w′ = 5 in operational time, i.e. a window that covers
on average 5 intervals per trial. We then slid the window along
operational time and in each of n time steps measured the CV by
two alternative methods, resulting in the blue and red curves in
Fig. 3(e), respectively. The first method collected in all 66 trials
all intervals that fell within the observation window of length w′,
which yielded, on average, 66 × 5 = 330 intervals. Fig. 3(g)
depicts the time-resolved histogram of ISIs. From these intervals,
we calculated the CV. The second method computed for each trial
i separately CVi across all ISIs within the observation window.
Subsequently we averaged across all 66 CVi values to obtain the
trial averaged CV. For each method we, thus, obtained a discrete
vector CV(t ′) of length n in operational time.
To compare the CV to other dynamic variables of the

experiment, e.g. the firing rate of the neuron, the stimulus times,
or the behavioral dynamics associated with the experimental
paradigm, it is, however, desirable to present the time-resolved
vector CV(t) in experimental time.We therefore back-transformed
the time vector T ′ = t ′1, . . . , t

′
n, which is equally spaced in

operational time, using the inverse transformation of Eq. (2) to
translate it into a vector T = Λ−1(T ′) in experimental time. In
FIND this is implemented in the function warpTime. Note that
the resulting time points t1, . . . , tn are not equidistant. We then
plotted the vector CV(t ′) against T to visualize dynamic changes of
the CV(t) in real time (Fig. 3(e)).

5.1.5. Dynamic changes of the gamma order
The model of a gamma renewal process (Cox & Lewis, 1966)

is a frequently used point process model to describe the statistics
of single neuron spiking (Barbieri, Quirk, Frank, Wilson, & Brown,
2001; Brown et al., 2001; Kuffler, Fitzhugh, & Barlow, 1957; Stein,
1965; Teich, Heneghan, Lowen, Ozaki, & Kaplan, 1997; Tuckwell,
1988). Its inter-event intervals are independently and identically
distributed according to a gamma distribution which is defined by
two parameters: the process rate and the so-called order α of the
gamma-process defining the shape of the distribution. The Poisson
process marks the special case of a gamma process of order α = 1
and has an exponential interval distribution. A gamma process of
order alpha < 1 exhibits a higher variability of the ISIs, whereas a
process of order alpha > 1 shows less variable ISIs and, thus, more
regular spike trains. The non-homogeneous gamma process is a
generalization that incorporates a dynamic rate function (Barbieri
et al., 2001; Brown et al., 2001; Nawrot et al., 2008; Reich et al.,
1998).We performed a time-resolved fit of the gammadistribution
to the empirical distribution of ISIs in operational time as pooled
from all trials, again in a moving window of width w′ = 5.
For this, we used the gamfit function in the statistics toolbox of
Matlab to obtain amaximum likelihood estimate ofα. The resulting
vector α(t) as a function of experimental time is shown in Fig. 3(f).
Observe that the estimated shape parameter is not constant over
time. Rather, it rises sharply during the initial phase of the neuron’s
odor response. For the gamma model we obtained the model-
based estimate of CV = 1/

√
α shown in Fig. 3(e) (black curve).

Fig. 3(g) depicts the time-resolved histogram of the empirical ISI
distribution as estimated in the moving window. The observed
dynamic change of the shape parameter α shows that the spiking
of this neuron could not be modelled by a rate-modulated gamma
renewal process which assumes that the order of the gamma
process is fixed, independent of the process rate.

5.1.6. Conclusion and interpretation
We found in this example of a mushroom body extrinsic

neuron that it dynamically reduces CV of ISIs during the initial
phasic period of its phasic-tonic stimulus response. Estimation
of CV on a trial-by-trial basis (Fig. 3(e), red curve) generally
yielded lower values than CV based on the pooled across-trial
interval distribution (blue curve). This might indicate that a non-
trivial trial-by-trial variability of the spike rate led to an increase
of the variance of the ISI distribution (Nawrot et al., 2008).
The observed inverse relation of irregularity and rate may have
different origins. On the one hand, neuron-intrinsic mechanisms
could be responsible, e.g. an absolute refractory period of the
neuron leads to an increasing regularization with increasing rate
(Johnson, 1996). We could show elsewhere (Farkhooi, Strube, &
Nawrot, submitted for publication) that this neuron type typically
exhibits negative serial interval correlation. This indicates the
presence of a mechanism for spike-frequency adaptation, which in
turn could have a similar regularizing effect. On the other hand,
the stimulus related reduction of interval variability might also
be a consequence of an altered, possibly oscillatory structure of
the input from the presynaptic Kenyon cells following stimulus
onset, as has been previously suggested in the locust (Cassenaer
& Laurent, 2007; Laurent & Naraghi, 1994)

5.2. Layer-specific stimulus response latency in the rat visual cortex

In this example, we analyzed the temporal pattern of activity
onset across electrodes in different cortical layers in response
to visual bright full-field stimulation. For this, we used a tool
for the automatic alignment of waveforms based on pair-wise
cross-correlation and aligned the time derivatives of multi-unit
spike rates. The same tool has been applied in a recent study
(Krofczik, Menzel, & Nawrot, submitted for publication). The data
analyzed in this section was kindly provided by Clemens Boucsein
and Dymphie Suchanek, Bernstein Center for Computational
Neuroscience, Albert-Ludwigs-University Freiburg, Germany.



R. Meier et al. / Neural Networks 21 (2008) 1085–1093 1091
Fig. 4. Layer-specific response latency in rat primary visual cortex in response to optical full field stimulation. (a) The recovered positions of the tips of 7 electrodes (dots)
within the indicated cortical layers. White lines indicate the boundaries of the layers. (b) The spike density histogram for all trials (N = 37) aligned to stimulus onset (time
t = 0 in experimental time) for each electrode (light gray – low firing rate, dark: high firing rate). (c) The multi-unit activity rate profile for each electrode estimated using a
smoothing Savitzky–Golay filter (half-width: 10 ms, order 0). (d) The first derivative of the firing rates (Savitzky–Golay filter, half-width 20 ms, order 1). These profiles were
used for the autoAlign procedure. (e) The firing rates (as in (c)) after alignment of rate derivatives. Note that the time axis for each trace is now relative to a zero mean shift
(see text). (f) Absolute latencies of the maximal increase in firing rate for each electrode.
5.2.1. Experiments
To study response latencies of neuronal populations in the

visual cortex of the anesthetized rat, repeated full-field bright flash
stimuli of 200 ms duration were applied to the contra-lateral eye
using a white LED. In brief, an adult Sprague–Dawley rat was
anesthetized with urethane. Supplementary doses of ketamine
and xylazine were added every 30–50 min. An 3 × 4 array
(540µm inter-electrode distance) of glass-coated single platinum-
tungsten electrodes (Thomas Recording, Giessen, Germany) was
used to record from different cortical layers II-VI. Each electrode
was lowered independently until it reached a predefined cortical
depth. Signals were band-pass filtered between 0.1–5 kHz and
amplified (Multi Channel Systems, Reutlingen, Germany). After
the experiment, DC current was passed through the electrodes
for silver deposition. After tissue fixation, brains were sliced
with a vibratome (100 µm vibroslice, Campden instruments,
Loughborough, UK) and a standard silver intensification was
applied (HQ silver, Nanoprobes, Yaphank, NY). Electrode positions
were recovered with a conventional microscope and sections
containing silver deposits were counterstained with cresyl violet
to determine laminar borders.
Spike detection: Multi-unit activity was detected using the
spikeDetection method implemented in the FIND toolbox. From
the rectified signal of each recording channel, it calculates the
median m. Spike times are determined as the times where the
signal crosses the threshold n×m. For the current data set we used
n = 8 for all electrodes. We here analyzed 7 electrodes for which
the recording layer could be unequivocally recovered (Fig. 4(a))
and which showed MUA responses to the visual stimulation.

5.2.2. Estimation of firing rates and their derivatives
In a first step, we estimated the trial-averaged multi-unit

rate function for each channel separately. We again used the
method of kernel convolution as described above, however,
with a symmetric Savitzky–Golay filter kernel ((Press, Flannery,
Teukolsky, & Vetterling, 1992; Savitzky & Golay, 1964), order 0,
width w = 10 ms). This was obtained by the FIND function
makeSavGol. Fig. 4(c) shows the resulting firing rate profiles for
all channels. Color indicates the layer of the respective recording
electrode (Fig. 4(f)). How canwe define the response onset for each
individual electrode? One possibility would be to use a threshold
detection method. Another option is to define the onset by the
maximum slope of the rate increase after stimulus onset at t =
0, i.e. the point in time where the time derivative of the rate
function is positive and maximal. In a further step we therefore
estimated the temporal derivative of the spike rate from the trial-
averaged spike train, using a centered asymmetric Savitzky–Golay



1092 R. Meier et al. / Neural Networks 21 (2008) 1085–1093
filter (order 1, width w = 20 ms). In each step of the numeric
convolution, the asymmetry of the filter automatically results in an
estimate of the slope of the rate for all data points that fall within
the kernel window. For most channels, the derivatives showed a
marked peak during the early response (Fig. 4(d)).

5.2.3. Estimation of temporal delays between channels
The central step of our analysis estimates the relative time-

delays between the responses on individual channels. The method
used is implemented in the FIND function autoAlign and is
explained in detail elsewhere (Nawrot, Aertsen, & Rotter, 2003).
Here, we used it to align the derivatives of the multi-unit firing
rates. However, the method can be used for the alignment of any
data vectors in time or space. In brief, we normalized the estimated
rate derivative for each channel by its integral. We then calculated
the cross-correlation for each pair (i, j) of derivatives for different
relative time lags t , resulting in 12 ∗ N ∗ (N − 1) cross-correlation
functions CC ij(tij). A parabolic function pij(tij)was fitted to the peak
of each individual function CC ij(tij). The sum P(t) =

∑
i,j pij(tij)

is a parabolic sum with N − 1 degrees of freedom and we can
numerically determine its unique maximum for N − 1 relative
time delays τk. We arbitrarily set the Nth delay τN = 0 and then
subtracted from each delay the mean delay to obtain N delays τ ′k
with zero mean. Then we shifted each single channel spike train
in time by the interval ∆tk = −τ ′k to optimally align all spike
trains. The center of mass of the average derivative profile after
alignment remains unchanged with respect to the initial state as
the mean shift is zero. We repeated this procedure iteratively until
the total sum of resulting shifts reached some lower threshold. In
our example, after the second run the total sum of resulting shifts
was already smaller than 5 ms and we terminated the iteration.
The firing rates estimated from the aligned spike trains are shown
in Fig. 4(e). The time t = 0 now no longer indicates the time
of stimulus onset, but rather the average onset time. The method
implemented in autoAlign yields N − 1 relative shifts. It can, thus,
be used to align data without knowledge of any external event or
trigger, but we cannot infer the absolute latency with respect to an
external trigger.

5.2.4. Estimation of the absolute latencies
To finally calculate the absolute latencies of response onset

with respect to the stimulus onset for each channel, we estimated
an absolute value for the mean latency across all channels,
and then subtracted for each channel the relative shifts τ ′k as
computed in the previous step. To do this, we averaged the
aligned spike trains from all channels and then applied the
function estimateLatencyByDerivative in FIND. It first estimates
the derivative, again using an asymmetric Savitzky–Golay filter as
explained above, and then detects its peak. In our example, the
average latency was estimated to be 104 ms. To this value, we
added the individual relative latencies−τ ′k to obtain the individual
values for all 7 channels (Fig. 4(f)). Unfortunately, we could not
readily compute confidence intervals for these latencies due to
limitations of the present data set. In principle, the reliability of
the layer specific onset dynamics could be estimated by repeated
analysis over recordings in different animals. A second possibility
would be to quantify inter-trial variability. However, single-trial
spike rates in our example were quite low and, thus, rate functions
and the subsequent latencies could not be safely estimated on a
single trial basis.

5.2.5. Conclusion and interpretation
By selection, one can choose between a smoothing and a time-

derivative Savitzky–Golay filter by adjusting the order of derivative
of the filter polynomial. During the alignment procedure the
correlation functions were normalized, which in effect equally
weighs each profile and, thus, makes it independent of individual
firing rates. The single channel latencies were obtained from the
alignment in two steps: We first calculated the N − 1 possible
relative latencies between individual channels; only in a second
step, the absolute latencies of rate onsetwere determined from the
trial averaged activity. This sequence increases the reliability of the
estimate, because we use the N-fold amount of data compared to
a single channel onset detection. Our preliminary results for the
present data indicate that after visual stimulation the firing rate of
multi-unit activity tends to increase earlier in layer IV of the rat
primary visual cortex than in layers V and VI. This is in line with
the concepts of layer specific processing of sensory information
in the visual cortex established in different species (e.g. Hirsch
et al. (2002), Hirsch andMartinez (2006), Kenan-Vaknin and Teyler
(1994), Mitzdorf and Singer (1978), Nowak, Munk, Girard, and
Bullier (1995), Heimel, Van Hooser, and Nelson (2005)).

6. Conclusions, discussion and outlook

FIND establishes a framework for a single code repository for
developing, exchanging and discussing code for the analysis of
neural data, and it includes a unified access to various proprietary
and free data formats. FIND is based on the Matlab programming
language for two major reasons, (i) it is probably the most
widely spread high level programming environment in theoretical
as well as experimental laboratories in systems neuroscience
today, and (ii) it provides an intuitive approach for students
and scientists that are not formally trained in any programming
language. Moreover, there already exists a large collection of
tutorials and courses on Matlab as well as Matlab-based courses
in the neurosciences. FIND wants to contribute to the general
effort within the computational neuroscience community towards
independently verifiable results. To achieve this goal, we believe it
is necessary to develop an open source platform that is transparent
and inclusive, and which provides effective means of quality
management. It should allow the exchange of and comparability
across data analysis methods. Central features of FIND comprise
(i) the unified data import, representation and storage allowing
for a standardized interfacing, independently of the experimental
hardware and software used, and (ii) the hierarchical toolbox
structure in combination with a review board that distinguishes
a developmental test stage, a release version with full and tested
functionality, and the graphical user interface granting easy access
with limited functionality. The FIND initiative is aware of the
difficulties in generating and maintaining a toolbox that will be
accepted by a larger community and, thus, guarantees a high and
sustained quality level.We outlined our strategy to ensure support
by contributors and acceptance with the users. This strategy also
includes the collaborationwith competent partners, i.e. individuals
and scientific labswith an internationally distinguished reputation
in the development of data analysis methods. In general, our
strategy aims to be in line with the goals and solution approaches
discussed at the first INCF workshop on sustainability (van Horn
& van Pelt, 2008). We consider FIND as a stepping-stone towards
a community-based data analysis and storage solution. Moreover,
the FIND initiative develops curricula for graduate courses on
the collection and analysis of neural activity data that make use
of the FIND framework. We invite developers of data analysis
methods and users that are looking for sophisticated solutions
to their data analysis problems to become members of the FIND
community.



R. Meier et al. / Neural Networks 21 (2008) 1085–1093 1093
Acknowledgements

We are grateful to Martin Strube and Randolf Menzel at
the Institute of Biology – Neurobiology, Freie Universität Berlin,
Germany for providing us with the honeybee data and to
Clemens Boucsein and Dymphie Suchanek at the Bernstein Center
for Computational Neuroscience Freiburg, Germany for making
available the rat cortex data. We thank all developers of FIND
and specifically Stefan Rotter for contributing the code for the
warpTime, the unWarpTime, and the makeSavGol functions used in
this paper. Furthermore, we thank Sonja Grün for supporting FIND.
The FIND framework is supported in parts by the German Federal
Ministry of Education and Research (BMBF) grant 01GQ0420 to the
BCCN Freiburg and 01GQ0421 to Multi Channel Systems, and the
6th RFP of the EU (grant no. 15879-FACETS and 012788-NEURO).
The contribution of M.N. is funded by the BMBF grant 01GQ0413
to BCCN Berlin.

References

Barbieri, R., Quirk, M. C., Frank, L. M., Wilson, M. A., & Brown, E. N. (2001).
Construction and analysis of non-Poisson stimulus-response models of neural
spiking activity. Journal of Neuroscience Methods, 105, 25–37.

Baxter, S. M., Day, S. W., Fetrow, J. S., & Reisinger, S. J. (2006). Scientific
software development is not an oxymoron. PLoS Computational Biology, 2(9),
e87.

Brown, E. N., Barbieri, R., Ventura, V., Kaas, R. E., & Frank, L. M. (2001). The time-
rescaling theorem and its application to neural spike train data analysis. Neural
Computation, 14, 325–346.

Cassenaer, S., & Laurent, G. (2007). Hebbian STDP in mushroom bodies facilitates
the synchronous flow of olfactory information in locusts. Nature, 448(7154),
709–713.

Cox, D. R., & Lewis, P. A. W. (1966).Methuen’s monographs on applied probability and
statistics, The statistical analysis of series of events. London: Methuen.

Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and
mathematical modeling of neural systems. MIT Press.

Davies, R. M., Gerstein, G. L., & Baker, S. N. (2006). Measurement of time-dependent
changes in the irregularity of neural spiking. Journal of Neurophysiology, 96,
906–918.

Egert, U., Knott, Th., Schwarz, C., Nawrot, M., Brandt, A., Rotter, S., et al. (2002).
MEA-tools: An open source toolbox for the analysis of multielectrode-data with
Matlab. Journal of Neuroscience Methods, 117, 33–42.

Farkhooi, F., Strube, M., & Nawrot, M. P. Serial correlation in neural spike trains:
experimental evidence, stochastic modelling, and single neuron variability
(submitted for publication).

Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., & Squyres, J.M. et
al. (2004). Open MPI: Goals, concept, and design of a next generation MPI
implementation. In Proceedings, 11th European PVM/MPI users’ group meeting .

Galizia, C. G., Joerges, J., Küttner, A., Faber, T., & Menzel, R. (1997). A semi-in-vivo
preparation for optical recording of the insect brain. Journal of Neuroscience
Methods, 76, 61–69.

Heimel, J. A., Van Hooser, S. D., & Nelson, S. B. (2005). Laminar organization of
response properties in primary visual cortex of the gray squirrel (Sciurus
carolinensis). Journal of Neurophysiology, 94(5), 3538–3554.

Hirsch, J. A., Martinez, L. M., Alonso, J. M., Desai, K., Pillai, C., & Pierre, C. (2002).
Synaptic physiology of the flow of information in the cat’s visual cortex in vivo.
Journal of Physiology, 540(Pt 1), 335–350.

Hirsch, J. A., & Martinez, L. M. (2006). Laminar processing in the visual cortical
column. Current Opinion in Neurobiology, 16(4), 377–384.

Holt, G. R., Softky, W. R., Koch, C., & Douglas, R. J. (1996). Comparison of
discharge variability in vitro and in vivo in cat visual cortex neurons. Journal
of Neurophysiology, 75, 1806–1814.

van Horn, J., & van Pelt, J. (2008). In 1st INCF workshop on sustainability
of neuroscience databases, 2007. Available at international neuroinformatics
coordinating facility secretariat Stockholm, Sweden.

Johnson, D. H., Tsuchitani, C., Linebarger, D. A., & Johnson, M. J. (1986). Application
of a point process model to responses of cat lateral superior olive units to
ipsilateral tones. Hearing Research, 21, 135–159.

Johnson, D. H. (1996). Point process models of single-neuron discharges. Journal of
Computation Neuroscience, 3, 275–299.

Kenan-Vaknin, G., & Teyler, T. J. (1994). Laminar pattern of synaptic activity in rat
primary visual cortex: comparison of in vivo and in vitro studies employing the
current source density analysis. Brain Research, 635(1–2), 37–48.

Krofczik, S., Menzel, R., & Nawrot, M. Odor and odor mixture encoding by antennal
lobe projection neurons in the honeybee (submitted for publication).

Kuffler, S. W., Fitzhugh, R., & Barlow, H. B. (1957). Maintained activity in the cat’s
retina in light and darkness. Journal of General Physiology, 40, 683–702.

Laurent, G., & Naraghi, M. (1994). Odorant-induced oscillations in the mushroom
bodies of the locust. Journal of Neuroscience, 14(5 Pt 2), 2993–3004.

Meier, R., Gruen, S., Boucsein, C., Aertsen, A., Boven, K. H., & Egert, U. (2007).
Characterizing neural network dynamics: Analyzing neural activity data using
the FIND – Toolbox. Soc. Neurosci. Abstr., Program No. 319.11.

Meier, R., Garbers, C., Haeussler, U., Egert, U., & Aertsen, A. (2008). Nonlinear
interdependencies in epileptiform network dynamics revealed with the FIND
toolbox using distributed computing FENS Abstr. Vol. 4. 150.22.

Miura, K., Okada, M., & Amari, M. (2006). Estimating spiking irregularities under
changing environments. Neural Computation, 18, 2359–2386.

Mitzdorf, U., & Singer, W. (1978). Prominent excitatory pathways in the cat visual
cortex (A 17 and A 18): A current source density analysis of electrically evoked
potentials. Experimental Brain Research, 33(3–4), 371–394.

Morrison, A.,Mehring, C., Geisel, T., Aertsen, A. D., &Diesmann,M. (2005). Advancing
the boundaries of high-connectivity network simulation with distributed
computing. Neural Computation, 17(8), 1776–1801.

Nawrot, M. P., Aertsen, A., & Rotter, S. (2003). Elimination of response latency
variability in neuronal spike trains. Biological Cybernetics, 88(5), 321–334.

Nawrot, M., Aertsen, A., & Rotter, S. (1999). Single-trial estimation of neuronal
firing rates: From single-neuron spike trains to population activity. Journal of
Neuroscience Methods, 94(1), 81–92.

Nawrot, M. P., & Benda, J. (2006). Two methods for time-resolved inter-spike
interval analysis. Berlin Neuroforum Abstracts, 62.

Nawrot, M. P., Boucsein, C., Rodriguez-Molina, V., Riehle, A., Aertsen, A., & Rotter, S.
(2008). Measurement of variability dynamics in cortical spike trains. Journal of
Neuroscience Methods, 169, 374–390. doi:10.1016/j.jneumeth.2007.10.013.

Neurshare Consortium (2004). The Neuroshare API. Version 1.3. http://neuroshare.
sourceforge.net/API-Documentation/NeuroshareAPI-1-3.pdf.

Nowak, L. G., Munk, M. H., Girard, P., & Bullier, J. (1995). Visual latencies in areas V1
and V2 of the macaque monkey. Visual Neuroscience, 12(2), 371–384.

Okada, R., Ikeda, J., & Mizunami, M. (1999). Sensory responses and movement-
related activities in extrinsic neurons of the cockroach mushroom bodies.
Journal of Comparative Physiology A, Sensory, Neural and Behavioral Physiology,
185, 115–129.

Okada, R., Rybak, J., Manz, G., & Menzel, R. (2007). Associative plasticity of
mushroom body-extrinsic neurons during olfactory learning in honeybees.
Journal of Neuroscience, 27(43), 11736–11747.

Parzen, E. (1962). On estimation of a probability density function and mode. Annals
of Mathematical Statistics, 33, 1065–1076.

Perkel, D. H., Gerstein, G. L., & Moore, G. P. (1967a). Neuronal spike trains and
stochastic point processes. I. The single spike train. Biophysical Journal, 7,
391–418.

Perkel, D. H., Gerstein, G. L., & Moore, G. P. (1967b). Neuronal spike trains and
stochastic point processes. II. Simultaneous spike trains. Biophysical Journal, 7,
419–440.

Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1992). Numerical
recipes in C: The art of scientific computing (2nd ed.). Cambridge: Cambridge
University Press.

Reich, D. S., Victor, J. D., & Knight, B. W. (1998). The power ratio and the interval
map: Spiking models and extracellular recordings. Journal of Neuroscience, 18,
10090–10104.

Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by
simplified least squares procedures. Analytical Chemistry, 36, 1627.

Shin, S.-L., Hoebeek, F. E., Schonewille, M., De Zeeuw, C. I., Aertsen, A., & De Schutter,
E. (2007). Regular patterns in cerebellar Purkinje cell simple spike trains. PLoS
ONE, 2(5), e485. doi:10.1371/journal.pone.0000485.

Shinomoto, S., Miura, K., & Koyama, S. (2005). A measure of local variation of inter-
spike intervals. Biosystems, 79, 67–72.

Stein, R. B. (1965). A theoretical analysis of neuronal variability. Biophysical Journal,
5, 173–194.

Strube, M., Stiller, S., Nawrot, M. P., & Menzel, R. (2007). Olfactory coding in the
honeybee brain III. Sparseness, reliability and reward conditioning in alpha-lobe
extrinsic neurons. In 7th Göttingen meeting of the German neuroscience society
Suppl. Neuroforum, 8(1), T20-3A.

Teich, M. C., Heneghan, C., Lowen, S. B., Ozaki, T., & Kaplan, E. (1997). Fractal
character of the neural spike train in the visual system of the cat. Journal of
Optical Society of America A, Optics, Image Science and Vision, 14, 529–546.

Tuckwell, H. C. (1988). Introduction to theoretical neurobiology: Vol. 2. Cambridge:
Cambridge University Press.

Wilson, G. V. (2006). Where’s the real bottleneck in scientific computing? American
Scientist , 94(1), 5–6. doi:10.1511/2006.1.5.

doi:10.1016/j.jneumeth.2007.10.013
doi:10.1016/j.jneumeth.2007.10.013
doi:10.1016/j.jneumeth.2007.10.013
doi:10.1016/j.jneumeth.2007.10.013
doi:10.1016/j.jneumeth.2007.10.013
doi:10.1016/j.jneumeth.2007.10.013
doi:10.1016/j.jneumeth.2007.10.013
doi:10.1016/j.jneumeth.2007.10.013
http://neuroshare.sourceforge.net/API-Documentation/NeuroshareAPI-1-3.pdf
http://neuroshare.sourceforge.net/API-Documentation/NeuroshareAPI-1-3.pdf
http://neuroshare.sourceforge.net/API-Documentation/NeuroshareAPI-1-3.pdf
http://neuroshare.sourceforge.net/API-Documentation/NeuroshareAPI-1-3.pdf
http://neuroshare.sourceforge.net/API-Documentation/NeuroshareAPI-1-3.pdf
http://neuroshare.sourceforge.net/API-Documentation/NeuroshareAPI-1-3.pdf
http://neuroshare.sourceforge.net/API-Documentation/NeuroshareAPI-1-3.pdf
doi:10.1371/journal.pone.0000485
doi:10.1371/journal.pone.0000485
doi:10.1371/journal.pone.0000485
doi:10.1371/journal.pone.0000485
doi:10.1371/journal.pone.0000485
doi:10.1371/journal.pone.0000485
doi:10.1511/2006.1.5
doi:10.1511/2006.1.5
doi:10.1511/2006.1.5
doi:10.1511/2006.1.5
doi:10.1511/2006.1.5
doi:10.1511/2006.1.5

	FIND --- A unified framework for neural data analysis
	Motivation
	Concept
	Design and community interaction
	Data import and internal data representation
	External data representation and storage
	Addressing the need for different programming languages by using plug-ins
	Application of tools
	Tool development and integration
	Quality management
	Teaching and training


	Functionality
	Examples of analysis with FIND
	Odor-response dynamics of spiking irregularity in a mushroom-body extrinsic neuron of the honeybee
	Experiments
	Rate estimation
	Time warp
	Time-resolved estimation of CV
	Dynamic changes of the gamma order
	Conclusion and interpretation

	Layer-specific stimulus response latency in the rat visual cortex
	Experiments
	Estimation of firing rates and their derivatives
	Estimation of temporal delays between channels
	Estimation of the absolute latencies
	Conclusion and interpretation


	Conclusions, discussion and outlook
	Acknowledgements
	References


