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Abstract— Insects show a rich repertoire of goal-directed
and adaptive behaviors that are still beyond the capabilities of
today’s artificial systems. Fast progress in our comprehension
of the underlying neural computations make the insect a favor-
able model system for neurally inspired computing paradigms
in autonomous robots. Here, we present a robotic platform
designed for implementing and testing spiking neural network
control architectures. We demonstrate a neuromorphic real-
time approach to sensory processing, reward-based associative
plasticity and behavioral control. This is inspired by the
biological mechanisms underlying rapid associative learning
and the formation of distributed memories in the insect.

I. INTRODUCTION

The nervous systems of animals employ efficient stochas-
tic computations to obtain fast and reliable estimates of the
world state and to predict consequences of their potential
actions. Neural computation bears a number of interesting
features such as parallel processing, sparse codes, adapta-
tion and plasticity on multiple time scales and distributed
memories. Developing neuromorphic computing paradigms
that mimic nervous system function is an emerging field of
research that fosters our model understanding of the bio-
logical system and targets technical applications in artificial
systems.

Insects provide favorable and well-studied model systems
for neurally inspired computations. Despite their limited neu-
ronal resources they exhibit surprisingly complex behaviors.
Their capabilities of exploration, reliable navigation, pattern
learning, and social interactions are desirable features in
autonomous robots.

Our focus here is on computations that underlie learning
and memory formation in the insect. Classical conditioning
has been heavily studied in various insect models, notably
in the fruit fly and in the honeybee. Investigation at the
behavioral and the neural circuit level is improving our model
understanding at different levels of abstraction [1], [2], [3],
[4], [5], [6], [7].

Spiking neural networks (SNNs) provide biologically real-
istic models of neural computation. They allow us to test our
theories of nervous system function. Concomitantly, comput-
ing with SNNs bears a number of interesting key features
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that are lacking in conventional computing paradigms. These
comprise inherent parallel processing, distributed cellular
mechanisms of adaptation and robustness, distributed mem-
ory, and low energy consumption. These factors make SNNs
attractive for a number of potential applications, including
artificial mini-brains for autonomous robots.

To date, the number of studies on autonomous robots
that have employed SNNs is still very limited and have
primarily focused on peripheral stages of sensory processing
or on pattern generation for peripheral motor control [8],
[9]. Our goal is to design SNNs that perform sensory-
to-motor transformations including the central control of
behavioral states and the ability to learn and adapt in complex
environments. In order to test biological realistic neural
network models with a robotic approach we here developed a
platform that supports interfacing real-time SNN simulations
with the robotic hardware sensors and actuators. We tested
our platform with a simple SNN model that is able to form
associations between visual sensory input and reward by a
mechanism of synaptic plasticity.

II. PLATFORM

A. Robotic platform and sensors

Figure 1 gives an overview of the robotic platform and
sensors. We used a DfRobotShop Rover V. 1.5 [10] (Rover)
which is a versatile mobile tank using the Arduino Uno
[11] prototyping platform equipped with a ATMEGA328p
microcontroller. It uses two tank tracks, each connected to
a DC gear motor for which speed and direction can be
controlled. The Rover also features an analog light sensor
and a temperature sensor.

For visual processing we used a HaViMo-a vision process-
ing module v. 2.0 [12]. It is equipped with a CMOS camera
chip and a ATMEGA8 microcontroller that performs image
processing. The module supports two color-based image
processing methods: online region growing and gridding. The
color values are calibrated and then stored in a built-in look-
up table.

The communication between the Arduino platform and
iqr, the SNN simulator (see II-B), was done via WiFi.
A DfRobot WiFi shield for Arduino [13] was used and
connected to a virtual serial port on our PC. The SNN
simulator read sensory data from the virtual serial port and
sent back motor commands.

B. Simulation environment

To control the Rover we use iqr [14], a free open-source
SNN simulator (released under the Gnu Public License). It
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Fig. 1: Robotic platform overview as described in II-A.

has a graphical interface for designing neural networks and
comes with tools for online visualization for analysis of data.
Simulations can be controlled in real-time and it is possible
to adjust most of the parameters of a model at run-time.
More importantly, it has an open architecture, which makes
extensions possible.

We added a neural module which simulates an adaptive
integrate and fire neuron, and a modulatory synapse module.
We extended the existing Arduino module in order to be able
to read and write values with pulse width modulation as well
as analog values.

Conversion of the sensory data into spike trains depends
on whether sensory data is read from the analog sensors or
the camera. The camera output is processed on the Arduino
board and is sent to the simulator as 1 or 0, depending
on whether or not a colored region was found. It is then
translated into spike trains in iqr by generating regular
distributed spike times as long as the value remains 1 and
no spikes during epochs of value 0. Creating a spike train
for the analog sensor input is done inside the iqr Arduino
module. There, the values read from the sensor have to reach
a predefined threshold to stimulate spiking of the sensory
neuron.

III. NEURAL NETWORK MODEL

A. Network architecture

Figure 2 gives an overview of the neural network archi-
tecture used to control the Rover. Each population consists
of a number of adaptive integrate and fire neurons. The
architecture of the learning network is inspired by the model
of olfactory learning in the fruit fly [15] and the honeybee
[18]. Here, color is used instead of odors. The color receptor
neurons (CRN), one tuned to red and one tuned to blue,
project to a group of projection neurons (PN) that excite the
Kenyon cells (KC) in the mushroom body. The KC output
converges onto a single extrinsic neuron (EN). The KC-EN
synapses are plastic and form the basis for the association
between the conditioned stimuli and the unconditioned stim-
ulus.
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Fig. 2: The neural network architecture from sensory in-
put to motor output. Red(blue) connections indicate excita-
tory(inhibitory) synapses, green connections indicate mod-
ulatory synapses, that are adjusted during reinforcement.
Numbers under each group indicate the number of neurons.
Detailed description of the network in section III-A.

The camera output serves as sensory input (either blue
or red) to the network. The reinforcement signal is a short
flash of light sensed by the light sensor. The output of
the learning network is fed to a simple motor network
consisting of four neuron groups. Two of them (MN) directly
control the motors. Additionally, they each project onto
a group of neurons (MI) that inhibit the opposing motor
neuron group. Thus, only one motor is running at any
given moment, creating a search behavior by spontaneous
changes in rotational direction. Once the network has learned
to associate a visual sensory input with the reinforcement
through strengthened KC-EN synapses, the EN inhibits the
mutual inhibition of the motor network upon presentation of
the reinforced conditioned stimuli (CS+), making the Rover
move forward (both motors are active).

B. Adaptive integrate and fire neuron

The best known model of spiking neurons is the integrate
and fire neuron. We implemented an adaptive integrate and
fire neuron module in iqr that adds spike-rate adaptation to
the model and is described by:

τm
dV
dt

= EL −V − rmgs f a(V −Es f a)+RmIe. (1)

Equation 1 is equipped with an adaptation conductance
gs f a which is incremented with every spike the neuron
fires. This introduces an outward current that drives the
membrane potential V towards the reversal potential Es f a.
When no spikes are fired, gs f a decreases exponentially. Rm
is the specific membrane resistance, τm is the membrane time
constant, rm is the specific membrane resistance, EL is the
reversal potential and Ie is the stimulating current.



C. Local plasticity rule

The modulated synapse module implements a condition-
ally reward-modulated Hebbian plasticity [16] where the
weights of the synapses are changed according to the fol-
lowing equations:

∆w = e(t) ·OCT ·α (2)

w(t +1) = w(t)+(1−w(t)) ·∆w. (3)

In equation 2 OCT is the octopaminergic signal, that is
either 0 or 1, depending on whether the reward is presented
or not, and α is the learning rate. We used the input from the
light sensor as the reward signal. The eligibility trace e(t)
serves as a memory state variable.

e(t +1) = e(t)+(1− e(t)) ·αe (4)

It increases with each presynaptic spike by αe and decreases
exponentially when there is no presynaptic activity.

IV. CONDITIONING EXPERIMENTS

A. Experimental Setup

In a 110x100 cm arena two red and two blue targets were
placed in the corners (Figure 3). The camera was configured
to detect regions with red and blue colors, and the intensity of
the flash-light was calibrated. All experiments were recorded
using a webcam connected to a PC. At the start of an
experiment the Rover was placed in the middle of the arena
and started rotating as described in III-A. Before learning
took place, sensory inputs from the camera did not have any
effect on the motor network. After the Rover had detected at
least two targets, the experimenter selected the CS+. When
the Rover was pointing towards the selected target, a flash-
light was briefly turned on. This lead to spiking in the reward
sensor neurons and triggered an increase in the synaptic
weights (Eq. 2). After learning the association, the Rover
would search and approach a target of the same color.

B. Results

Figure 3 shows the paths the Rover took in two trials,
where red (Figure 3a) or blue (Figure 3b) were the CS+,
respectively. Figure 4 shows the spiking of the motor neuron
groups corresponding to the path taken in Figure 3a. Figure 4
shows, before the reinforcement the motors mutually inhibit
each other causing only one motor group to be active at
a time. After pairing the CS+ with the reward, the mutual
inhibition was inhibited whenever the CS+ was detected,
causing both motors to run in parallel.

V. CONCLUSION AND OUTLOOK

We developed a low-cost platform for real-time interfacing
a SNN simulator with sensors and actuators in order to
test biomimetic closed-loop robot control. We implemented
a simplified model of the insect sensory-to-motor network
combined with a biologically inspired synaptic learning rule
as a simple test case of our platform. This lead to a rapid
association of the object color with reward, reproducing the
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Fig. 3: The path of the Rover when the red (a) and the blue
(b) color is reinforced. Arrowheads indicate camera direc-
tion and detected color along the path. Yellow arrowheads
indicate reinforcement. Red and blue boxes indicate targets.
Gray boxes indicate reinforced targets.

experimental observation of rapid learning during a single
association trial in individual honeybees [4]. The ongoing
research in our lab aims at the implementation of more
sophisticated SNN models [15], [17], [18], which combine
elaborate sensory processing, reward-based learning and be-
havioral control in complex artificial scenes. We are planning
parallel experiments with insects and robots together with our
experimental partners.

The solution for the neural network simulation employed
here imposes two severe restrictions. Firstly, computational
power limits network complexity for real-time applications.
This might be overcome by new solutions for real-time
GPU simulation [19]. Secondly, wireless communication
and high energy consumption prevent application in a truly
autonomous system. On a longer perspective, matured neu-
romorphic hardware technology [20], [21], [22], [23], [24]
will offer a compact and energy-efficient approach for au-
tonomous robot control by artificial minibrains.
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Fig. 4: Spiking activity of motor neuron groups when red was CS+. Black ticks mark the spike output of selected neurons.
Detailed description in IV-B

SUPPLEMENTARY MATERIAL

Video: http://youtu.be/Qb_R_E4DPYs
iqr extensions package can be found at:
github.com/loairpa/iqrextensions.git
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