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Fucke T, Suchanek D, Nawrot MP, Seamari Y, Heck DH,
Aertsen A, Boucsein C. Stereotypical spatiotemporal activity
patterns during slow-wave activity in the neocortex. J Neuro-
physiol 106: 3035–3044, 2011. First published August 17, 2011;
doi:10.1152/jn.00811.2010.—Alternating epochs of activity and si-
lence are a characteristic feature of neocortical networks during
certain sleep cycles and deep states of anesthesia. The mechanism and
functional role of these slow oscillations (!1 Hz) have not yet been
fully characterized. Experimental and theoretical studies show that
slow-wave oscillations can be generated autonomously by neocortical
tissue but become more regular through a thalamo-cortical feedback
loop. Evidence for a functional role of slow-wave activity comes from
EEG recordings in humans during sleep, which show that activity
travels as stereotypical waves over the entire brain, thought to play a
role in memory consolidation. We used an animal model to investigate
activity wave propagation on a smaller scale, namely within the rat
somatosensory cortex. Signals from multiple extracellular microelec-
trodes in combination with one intracellular recording in the anesthe-
tized animal in vivo were utilized to monitor the spreading of activity.
We found that activity propagation in most animals showed a clear
preferred direction, suggesting that it often originated from a similar
location in the cortex. In addition, the breakdown of active states
followed a similar pattern with slightly weaker direction preference
but a clear correlation to the direction of activity spreading, supporting
the notion of a wave-like phenomenon similar to that observed after
strong sensory stimulation in sensory areas. Taken together, our
findings support the idea that activity waves during slow-wave sleep
do not occur spontaneously at random locations within the network, as
was suggested previously, but follow preferred synaptic pathways on
a small spatial scale.

slow-wave sleep; extracellular electrode array; up/down state; ket-
amine/xylazine; traveling waves

SPREADING WAVES OF ACTIVITY within neocortical networks are a
phenomenon that can be observed under many different con-
ditions. This includes early developmental phases (Katz and
Shatz 1996; Wong 1999; Momose-Sato et al. 2007), strong
sensory stimulation in various primary sensory areas such as
barrel cortex (Ferezou et al. 2006; Petersen et al. 2003), visual
cortex (Xu et al. 2007), and motor cortices (Rubino et al. 2006)
(for a detailed review see Wu et al. 2008), as well as during
slow-wave sleep (Chauvette et al. 2010) and anesthesia-in-
duced slow-wave activity (Steriade et al. 1993a; 1993b; 1993c;

Takagaki et al. 2008). This widespread occurrence has led to a
strong interest in the mechanisms underlying wave propagation
in the neocortex although a functional role of the traveling
waves remains unclear. To gain a better understanding of the
functional nature of these reoccurring waves during slow-wave
sleep, many studies have elucidated important details on the
features of the so-called up- and down-states, which are a
characteristic of slow-wave activity in single cells and cell
populations. In a neocortical network undergoing slow-wave
activity, only a certain fraction of the cells within a local
volume takes part in action potential firing during the up-state
(at least in the superficial layers), as was revealed by calcium
imaging studies (Kerr et al. 2005), with a slow drift of the
active subpopulation. Multiple parallel intracellular recordings
have demonstrated, however, that even the silent cells receive
nearly no synaptic input during the down-states, whereas their
membrane potential shows strong depolarization and fluctua-
tions during the up-states (Volgushev et al. 2006), demonstrat-
ing that the entire network seems to partake in the oscillatory
activity (see also Léger et al. 2005). The questions regarding
which cells within the network start a new active state and the
mechanisms behind its spreading are discussed somewhat con-
troversially: some evidence points toward a thalamic origin
(Blethyn et al. 2006; Hughes et al. 2002; Crunelli and Hughes
2010), but, because spontaneous slow-wave activity can also
be observed within deafferentiated cortical slabs (Timofeev et
al. 2000), it seems that the cortico-thalamic feedback loop
might primarily serve to stabilize the oscillations and make
them more regular (Steriade et al. 1993b; Timofeev et al.
2000). Recent in vivo studies in cats suggest that, during
slow-wave sleep, layer V pyramidal neurons, generally con-
sidered the output cells of the local cortical network, seem to
activate before those in layer IV, which receive most of the
thalamic input (Chauvette et al. 2010). Along these lines,
up-state initiation in human subjects seems to be mediated by
synaptic input to dendrites located in the supragranular layers,
as shown by current source density analysis of layer-specific,
local-field-potential recordings. However, in human cortex no
leading layer in terms of onset of action potential firing could
be identified (Csercsa et al. 2010). Data from acute slice
experiments have supported these findings (Sanchez-Vives and
McCormick 2000), and the observation that extracellular Ca2"

concentrations rapidly increase toward the end of the down-
states and gradually decrease during the depolarized up-states
(Massimini and Amzica 2001) has also argued in favor of the
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cortical origin hypothesis. Mechanistically, the increased
[Ca2"]ext might lead to a cascade of downstream events,
including an increase in evoked vesicle release probability
(Crochet et al. 2005) and subsequently to a higher frequency of
miniature excitatory postsynaptic potentials, which then could
ignite a transition into the active state (Chauvette et al. 2010).
Theoretical studies, on the other hand, have suggested addi-
tional mechanisms that could lead to slow-wave activity start-
ing within the cortical network. If equipped with slightly
elevated densities of Ih-channels, pyramidal cells might serve
as pacemaker cells for a global oscillation (Kang et al. 2008),
whereas other theoretical considerations suggest that oscilla-
tory waves could be a generic emergent property of systems
with spatially restricted connectivity (Ermentrout and Klein-
feld 2001). Common to all theories is, first, the assumption of
a more or less homogeneous distribution of cell types and,
second, that oscillatory waves of activity could originate from
arbitrary locations within the network.

Because spatiotemporal patterns of traveling waves during
slow-wave activity are an experimentally quantifiable phenom-
enon, we wanted to further characterize the properties of slow-
wave activity generation. In particular, we investigated to what
extent waves of activity spread through the neocortical network
along stereotypical pathways. Studies performed in the anes-
thetized rat implementing voltage-sensitive dye (VSD) imag-
ing have shown that activity waves have a tendency to prop-
agate along specific paths, even showing cross-modal activa-
tion (Takagaki et al. 2008). EEG studies in humans also
revealed an origin and preferable direction of wave propaga-
tion that was consistent across subjects (Massimini et al. 2004;
Riedner et al. 2007). On the other hand, VSD imaging per-
formed in the barrel cortex of awake mice indicated that
spontaneous waves varied their direction from one trial to the
next (Ferezou et al. 2006). For our study, we implemented a
spatially defined array of seven extracellular electrodes in
combination with one intracellular electrode and recorded from
the somatosensory cortex of rats anesthetized with a combina-
tion of urethane and ketamine/xylazine. This kind of anesthesia
has been established as a model for slow-wave sleep (Fontanini
et al. 2003; Sharma et al. 2010) and leads to stable and regular
low-frequency oscillations in the neocortex. Fitting spreading
circular waves to our data, we found that wave fronts had a
preferred direction of propagation, which varied across ani-
mals. This was true for both, activating and inactivating tran-
sitions. Our findings suggest that activity waves during slow-
wave activity originate from a single location within the
network and follow preferred synaptic pathways, which are not
predefined by the coarse anatomical structure of the neocortex
and may differ across animals.

MATERIALS AND METHODS
Animals and surgery. For the experiments, adult Sprague-Dawley

rats (274 to 570 g body wt) were anesthetized with intraperitoneal
injections of 20% urethane (1 g/kg body wt), and supplementary doses
of a mixture of ketamine and xylazine (100 mg/kg and 5 mg/kg,
respectively) were administered every 30–50 min to maintain deep
anesthesia as defined by the absence of whisker movements and pinch
reflex and the presence of clear state transitions in the intra- and
extracellular recordings (see below). Body temperature was measured
using a rectal thermometer and maintained between 38–39° C using
a heating pad. Although the state transitions also occur under urethane

anesthesia alone, the use of ketamine enhances and stabilizes the
appearance of up- and down-states. After a deep anesthesia level was
achieved, animals were placed into a stereotactic holder, and the skull
was exposed. A 1.5 # 1.5 mm bone window was made over the left
somatosensory cortex medial to the barrel field (anteroposterior, $2.1
mm; mediolateral, 4.7 mm), and, where necessary, the dura was
removed. All experimental procedures used in this study were per-
formed in accordance with the Freiburg University and German
guidelines on the use of animals in research.

Electrophysiological recordings. For extracellular recordings, an
array of glass-coated, single platinum-tungsten microelectrodes was
used (0.5 to 0.8 M%; Thomas Recording, Giessen, Germany). Seven
electrodes were distributed on a 3 # 3 grid with 400 !m interelec-
trode distance (for experiments 1–8; Fig. 1A, top). Special care was
taken to arrange the tips of the electrodes within the same horizontal
plane to ensure recording from the same cortical layer. The dura was
removed, and the array was slowly lowered perpendicularly to the pial
surface into the brain tissue until clear spikes were detectable on at
least five of the seven electrodes. To avoid recordings from subcor-
tical structures, electrodes were never lowered more than 1.5 mm into
the tissue. A subset of the experiments (experiments 9–11; Fig. 1A,
bottom) were recorded with an array consisting of seven electrodes
distributed on a 3 # 4 grid with an interelectrode distance of 305 !m.
Again, the seven electrodes were inserted into the cortical tissue, but
this time at an angle of 45° with respect to the pial surface, positioned
in such a way as to have a planar arrangement of the electrode tips.
This resulted in a distance between the tips of 431 !m in one and 305
!m in the other direction. Here the dura was left intact, and electrodes
were lowered independently with the help of microdrives (MiniMatrix
system; Thomas Recording) until they reached their final position
within the cortex. Signals were preamplified 10# and 19# for the first
and second set of recordings, respectively, and then passed through an
array of filter amplifiers with a gain of 500 and a bandpass between
100 Hz and 5 kHz (Multi Channel Systems, Reutlingen, Germany).

Fig. 1. Recording electrodes layout and transition time detection. A: layout of
intra- and extracellular electrodes for experiments 1–8 (top) and 9–11 (bottom).
B: voltage histogram (gray) after high-pass filtering of intracellular recording
trace. Black curves show the 2 fitted skewed Gaussian functions (Eq. 1), the
peak values of which are marked by solid vertical lines. Broken lines mark
threshlow, threshmid, and threshhigh, respectively (see MATERIALS AND METHODS).
C: detection of transition times; lines as in B. Accepted (!) and rejected (� )
transitions are based on silent periods between consecutive down-to-up (DU)
and up-to-down (UD) transitions (see MATERIALS AND METHODS).
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Simultaneously to the extracellular recordings, one intracellular
electrode was placed medially in close vicinity (0.5 to 1 mm) to the
electrode array for membrane potential recording of a single cell. For
that, microelectrodes with a resistance between 60 and 120 M% were
pulled from borosilica glass (Hilgenberg, Malsfeld, Germany) on a
horizontal Flaming/Brown puller (P97; Sutter Instruments, Novato, CA)
and filled with potassium acetate solution (1 M). A total of 11 such
combinatorial experiments were recorded. Signals were amplified with a
bridge amplifier (SEC05; NPI, Tamm, Germany) and low-pass filtered at
3 kHz. All signals were digitized at 25 kHz (power1401; CED, Cam-
bridge, UK) and stored on a PC for offline analysis.

Detection of state transitions in intracellular recordings. In a first
step, down-to-up (DU) and up-to-down (UD) state transitions were
detected in the voltage traces recorded intracellularly. Low-frequency
fluctuations were eliminated by high-pass filtering traces with a
second-order Butterworth filter with passband and stopband corner
frequencies of 0.5 and 0.2 Hz, respectively. To determine state-
transition thresholds, voltage histograms were built over complete
filtered traces and fit by a dual skewed normal function (which led to
more reliable results than a simple sum of two Gaussians; Fig. 1B):

n!V" " #i Aie
#

!V # V0,i"2

2$i
2 $1 % erf$&i!V # V0,i"

$i%2 && % B (1)

with i & low, high; erf denotes the error function and introduces the
skewness parameters &i; V0,i, $i, and Ai are the mean, variance and
amplitude of the respective distributions; B denotes a global offset.
From this fit the two maxima nmax,low and nmax,high and their differ-
ence 'nmax were determined. We set thresholds to threshlow &
nmax,low " 0.25'nmax, theshmid & nmax,low " 0.5'nmax, and
threshhigh & nmax,low " 0.75'nmax (Fig. 1B). A state transition was
detected in the high-pass filtered intracellular trace if, for DU transi-
tions, voltage passed threshlow ¡ threshmid ¡ threshhigh or, for UD
transitions, threshhigh ¡ threshmid ¡ threshlow in the respective
order; the time point of transition was defined as the time of passing
threshmid. Up- and down-state durations were defined as the time until
the next UD or DU transition, respectively. Time points of transitions
were accepted for further wave-front analysis if between 50 ms and
200 ms before (after) the DU (UD) transition no voltage value was
higher than threshlow (Fig. 1C). We thereby ensured that we could
unambiguously detect an approaching wave front in the extracellular
recordings. Note that, because of our criteria for accepting transi-
tions, the number of DU transitions (Ntrans,DU) and UD transitions
(Ntrans,UD) were not the same and that in general there was not
necessarily a DU transition (onset of an up-state) for each UD
transition (offset of an up-state) for a particular up-state. This discrep-
ancy is not problematic for further analysis steps and does not affect
the results reported here.

For determining the distribution of action potentials (APs) after (for
UD transitions: before) the transition occurred, we set an AP detection
threshold to up state mean voltage plus twice the up state membrane
potential standard deviation. Every threshold crossing with a positive
flank was then detected as an AP.

Alignment of signals from extracellular electrodes. Multiunit ac-
tivity (MUA) from extracellular recordings was prepared with a root
mean square (RMS) procedure (Stark and Abeles 2007). Signals from
extracellular electrodes were cut off at twice their standard deviation
to reduce the relative weights of units with high amplitudes. Subse-
quently, traces were squared and low-pass filtered with a fourth-order
Butterworth filter with corner and stop frequencies of 100 Hz and 150
Hz, respectively. Finally, the square root of the signal was calculated
for further analysis. From the resulting traces, we cut 400-ms win-
dows centered around intracellular state transition times. Data within
these windows were then downsampled from 25 kHz to 1 kHz using
a fast Fourier transform-based method implemented in the Python-
based scientific computing package SciPy (Version 0.5.2; see http://
scipy.org/ for details). We thereby ended up with (Ntrans,DU "

Ntrans,UD) * Nextra_el data traces '(t), each containing a state transition,
assuming that the traveling wave passed by the respective extracellular
electrode. Depending on the spatial spread of the wave, transitions will
reach electrodes with different time shifts, which we quantified with
respect to the transition time detected in the intracellular recording.

For estimating this temporal shift for each extracellular electrode
with respect to the intracellular transition, we used a variant of an
algorithm introduced by Nawrot et al. (2003) for optimal temporal
realignment of single trial spike responses to a repeated stimulus. For
each electrode separately, we chose the first transition as having a shift
of (1,opt & 0. The remaining Ntrans-1 shifts ((2,opt . . . (N,opt) were
calculated by first computing the cross-correlograms for each pair
(i, j), Cij:

Cij!( j # (i" " ' 'i!(i % s"' j!( j # s"ds (2)

Subsequently, a second order polynomial, pij(() & aij (2 " bij ( "
cij, was fitted to a small window (40 ms) centered around the
maximum of each of the N(N-1)/2 correlograms Cij. Before correlat-
ing, all cut-out MUA traces were multiplied with a window having the
value of 1 everywhere, with the exception of the 10-ms border
regions, where it decreased as a squared cosine to 0. This procedure
forced the maximum of the polynomial into the 400-ms window of the
entire correlogram. The sum of all pij, P((2 . . . (N), then possesses a
unique global maximum that defines the shifts of trials (2 . . . N) for
optimal alignment with the first trial. The time point of an extracel-
lular state transition was then determined as the half-maximum
crossing of the mean of the aligned traces. The temporal difference
between intra- and extracellular state transition, (global, was subse-
quently subtracted from all single-transition shifts ((1 . . . (N). Using
this procedure, we could estimate the latency of state transitions in
extracellular signals relative to intracellular state transitions for each
electrode separately. Thus, for each DU and UD transition, we
obtained a vector of seven (total number of electrodes used in both our
arrays) latencies, which we processed further for measuring the
stereotypical nature of the state transitions.

Fitting of circular wave fronts. The basic assumption for our
analysis was that spontaneous state transitions do not occur simulta-
neously across the whole cortex but travel as waves through the
cortical network (reviewed in Wu et al. 2008). We further assumed
that, on the spatial scale of our electrode array, these traveling wave
fronts can be well approximated by expanding circular waves. We
could thus express the stereotypical nature of reoccurring waves
passing the extracellular electrode array on the basis of the angular
distribution of the origins of fitted circular wave fronts.

For each transition, we assumed a circular wave that started at
origin (x0, y0) at time t0 before it first hit the electrode array and
traveled at fixed speed v. Then, it will arrive at an electrode i of the
array at time:

ti "
1

v%!xi # x0"2 % !yi # y0"2 # t0 (3)

The four parameters x0, y0, v, and t0 were optimized for each
transition separately, using a Levenberg-Marquardt algorithm (Press
et al. 1992), which is designed to optimize nonlinear functions to a
given set of data points. It is implemented in the SciPy package
(Version 0.5.2) and based on the sum of squared differences between
the experimentally measured latency vector ((1 . . . (7) and on the
vector (t1 . . . t7) based on the circular wave model:

Error " #i"1
7 !(i # ti"2 (4)

yielding Ntrans sets of parameters for each experiment. Thus for each
state transition we obtained an estimate for the origin (x0, y0), defining
the direction of wave propagation, the speed of the propagating wave
front v, and time of impact t0.
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Measures of stereotypicity. Using the parameters computed by
circular wave front optimization, we further utilized measures from
circular statistics to determine how stereotypically spontaneous state
transitions occurred. We were particularly interested in whether ori-
gins of circular waves were homogeneously distributed or whether
there was a directional preference of wave propagation.

For convenience, we used the central electrode as the origin of a
polar coordinate system. Using the origin coordinates, (x0,i, y0,i), i &
1 . . . Ntrans, one can calculate the set of angles, )i, vs. an arbitrary
axis of the coordinate system (in our case the positive x-axis of the
array, pointing into rostral direction; see Fig. 4A). From the distribu-
tion of angles, we calculated complex mean vectors as

m1 "
1

Ntrans
#i ej)i

m2 "
1

Ntrans
#i e2j)i

(5)

where m1 and m2 denote the first and second trigonometric moment,
respectively. Note that the mean vector strength (the absolute value of
m) varies between 0 and 1. The circular variance was calculated as
(Batschelet 1981)

CV " %2!1 # *m*" (6)

Additionally, we tested the mean vector strength |m| against its ex-
pected value from a purely random distribution of angles with the same
Ntrans. The mean |m| from 1,000 random angular distributions was
calculated, as well as its standard deviation. We accepted experimental
mean vectors as significant if they were longer than the mean vector
strength plus four standard deviations of the simulated uniform
distributions.

For testing whether wave front propagation velocities showed a
preferred direction, we devised the following test: experimentally,
each direction was associated with a velocity. If we permuted the
velocities with respect to the directions, any dependencies between the
two should be resolved. We performed 1,000 of such permutations
and computed the resulting mean angular-velocity (AV) distribution.
We then used the mean squared difference as a distance measure to
determine which fraction of permuted AV distributions was more
different from the mean than the actually observed experimental
distribution. This fraction reflects the probability (P value) that the
experimental AV distribution derived from the group of permuted AV
distributions. A small P value (P ! 0.05) was then taken as evidence
for a nonhomogeneous AV distribution.

RESULTS

For studying the stereotypical nature of spontaneous state
transitions in vivo, simultaneous intra- and extracellular re-
cordings of spontaneous slow-oscillation activity from somato-
sensory cortex of 11 adult Sprague-Dawley rats were per-
formed. Intracellular recordings lasted between 3 and 12 min.
Times of state transitions between down-states and up-states
were determined from intracellular recordings and were used to
define a search window on the data from the extracellular
electrodes, within which the times of state transition for the
local cell population sampled by each extracellular electrode
were defined. The latency differences between extracellular
electrodes were used to fit an expanding circular wave front
characterizing the wave of activity traveling over the cortical
surface. Subsequently, the parameters from this fit were used to
determine how stereotypical the observed state transitions were
on a single trial basis.

Characterization of intracellularly recorded state transitions.
We first wanted to assure that the slow-wave activity observed

in our preparation was comparable to that reported in other
studies. Spontaneous state transitions in vivo have been ob-
served to occur with a frequency of around 1 Hz and to span a
membrane potential range of 10–15 mV (Steriade et al. 1993a;
Léger et al. 2005; Volgushev et al. 2006). We confirmed the
occurrence of slow oscillations in our intracellular recordings
by autocorrelating the intracellular signal (Fig. 2A, left). The
temporal period of the resulting side peaks of the correlogram
was 0.97 ( 0.21 s (range 0.76 to 1.40), i.e., mean oscillation
frequencies of 1.07 ( 0.20 Hz (Fig. 2A, right). Membrane
potential histograms showed two clearly discernible peaks,
which could be fitted well by a sum of two skewed normal
functions (Eq. 1). Experiments for which the second peak
could not be unequivocally identified were excluded from
further analysis. The voltage difference between the two peaks
was 9.8 ( 2.6 mV and thus within the range of values reported
previously. The clear separability of these peaks allowed us to
determine state-transition times with high precision in the
intracellular recording. Membrane potentials during down-
states were $80.3 ( 18.3 mV.

Fig. 2. Characteristics of intracellularly recorded membrane potential fluctua-
tions. A, left: example autocorrelogram (total time 1 min) of intracellular raw
data from single intracellular recording. Right: distribution of state-transition
frequencies as extracted from autocorrelograms (gray dots: single experiments;
black dot: mean across experiments). B, left and right: distribution of the
up-state and down-state durations, respectively. Gray traces represent individ-
ual experiments, and the black traces indicate the mean overall experiments.
The dashed vertical line at 200 ms depicts the minimum state duration used for
further analysis (see text). C, left: normalized action potential (AP) distribution
histogram for the DU transition (bin width 20 ms). Gray traces show distri-
butions from individual experiments, and the black trace is the mean over all
experiments (n & 11). Right: same as in left, but for the UD transition.
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Histograms of up-state and down-state durations (Fig. 2B,
left and right) revealed a weakly bimodal distribution, with
local minima at around 200 ms and 100 ms in the up- and
down-state distributions, respectively. For our analysis of the
stereotypical nature of transitions, we could only use state
transitions that allowed the reconstruction of wave fronts and,
therefore, discarded short-lasting states, where state onsets and
offsets were often difficult to assign. In addition, latencies
between the intra- and the extracellular transition could reach
up to 150 ms (Fig. 3B). As a minimum duration, we thus chose
the local minimum in the up-state length distribution (200 ms).
After the exclusion of state transitions followed by short states,
73.5 ( 4.5% for DU transitions and 76.9 ( 4.1% for UD
transitions were used for further analysis. The length of cut-out

windows for extracellular data was then set to 400 ms and
divided symmetrically around the intracellular state transition,
gathering an approximately sigmoidal shape of the extracellu-
lar spike-rate profiles within the cut-out window (see Fig. 7 in
Léger et al. 2005).

Temporal shifts between electrodes in the array. To detect
direction and speed of traveling-activity wave fronts, we mea-
sured the time differences of wave-front arrival at the different
electrodes within the extracellular recording array. In contrast
to the detection of state transitions in intracellular recordings,
where voltage thresholds allow for an unambiguous definition
of the transition time, APs recorded with extracellular elec-
trodes do not necessarily mark state transitions because the first
AP can occur with considerable jitter after the membrane

Fig. 3. Extracellular multiunit activity (MUA)
data and implementation of realignment algo-
rithm. A: example of an extracellular record-
ing, centered on the intracellular state transi-
tion (dashed line). The gray trace indicates raw
data; the black trace shows data after process-
ing (see MATERIALS AND METHODS). B: calcu-
lated shifts for a single experiment, showing
mean and SD for each extracellular electrode
(indicated by dot and bar, respectively) and
individual shifts for each transition (gray
dots). C: 50 filtered extracellular traces (as
black trace in A), randomly chosen from 1
electrode (during the same experiment), cen-
tered around intracellular state transition onset
(white line) before (top) and after (bottom)
realignment algorithm was applied. D: exam-
ple of 3 s of intracellular raw data (top) and the
7 simultaneously recorded extracellular raw
traces (bottom 7). Dashed lines indicate intra-
cellular DU transition onset, and the black
highlighted MUA signal shows 400-ms win-
dows after realignment shifts were applied
(see MATERIALS AND METHODS).
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potential has reached the up-state. This problem can be reduced
by averaging over a local population of neurons because most
cells take part in slow oscillations in a concerted manner
(Volgushev et al. 2006; Kerr et al. 2005). Extracellular elec-
trodes with an impedance close to 1 M% pick up signals from
neurons in a volume of roughly 100-!m diameter around the
electrode tip (Stark and Abeles 2007), which contains between
20 and 30 neurons in the neocortex, assuming a cell density of
90,000 cells per mm3 (Gabbott and Stewart 1987). To get a
reasonable estimate of the transition time of the local popula-
tion, we used a combination of two procedures: in a first step,
we applied an RMS procedure (see MATERIALS AND METHODS) to
the extracellular signals from each electrode (Fig. 3A). This
method is advantageous for an unbiased estimation of the
activity of a larger population of neurons recorded by a single
electrode because high-amplitude APs from cells that are
located close to the electrode tip are truncated. This is espe-
cially important for the second step in our analysis, the extrac-
tion of transition times by applying a realignment algorithm
(see MATERIALS AND METHODS), because the measurement of the
optimal time shift could otherwise easily be dominated by a
few high-amplitude AP units. The realignment algorithm was
used because it allows for reliable response detection in noisy
single-trial data (see Nawrot et al. 2003). Because with this
algorithm the error in shifts based on less steep noisy flanks is
bigger, we extracted the histograms of AP occurrences (Fig.
2C, left and right). These histograms should allow us to
estimate the sharpness of state transitions in extracellular
recordings under the assumption that the firing pattern ex-
tracted from the intracellular recording is representative for the
cells generating the signals captured by the extracellular elec-
trodes. From the appearance of the histograms, we should

expect sharper DU transitions than UD transitions (Léger et al.
2005). This potentially renders the shifts of UD transitions less
reliable compared with those of DU transitions. The realign-
ment algorithm itself was used to align single cut-out windows
from a given electrode such that the observed signals became
maximally similar (Fig. 3C). For each transition, the latencies
of all electrodes (Fig. 3B) relative to the intracellular recording
(Fig. 3D) were then used for estimating the parameters of a
single activity wave front moving across the electrode array.

Traveling wave fronts of DU transitions. To assess how
stereotypical the state transitions were, we applied circular
statistics to the distribution of directions pointing toward the
extrapolated origins of circular waves fit to the transition
latencies of the extracellular electrodes (Fig. 4A). The stereo-
typical nature was quantified by calculating the mean vector
(Eq. 5) of the directions for all state transitions in an experi-
ment. The direction of the mean vector indicates the preferred
direction; its length (the mean vector strength) is a measure for
the relative frequency of its occurrence. The mean vector
strength ranges from 0 to 1, corresponding to no and maxi-
mally stereotypical behavior, respectively. Three examples of
direction distributions of DU transitions are shown in Fig. 4B
(top). The average mean vector strength over all experiments was
0.45 ( 0.25 (range 0.08 to 0.74). These values correspond to an
average circular variance (Eq. 6) of 59° (range 77.7 to 41.3°),
meaning that transitions had a strong bias toward the preferred
direction of propagation. To assess the statistical significance of
the observed vector strengths, we compared them to the expected
values of 1,000 uniformly distributed, random-angle distributions
with the same number of transitions each. We considered a mean
vector strength as highly significant if it exceeded the simulated
mean vector strength by four standard deviations from the control

Fig. 4. Circular wave-front analysis of state
transitions. A: schematic illustration showing
circular wave origin (x0, y0) and expanding
wave fronts propagating across the multi-
electrode array. Positions and identities of
electrodes are indicated by black dots, la-
beled accordingly. The interelectrode dis-
tance was 400 !m for the first set and 431
and 305 !m for the second set of experi-
ments (see MATERIALS AND METHODS). M,
medial; L, lateral; C, caudal; R, rostral.
B: examples of directional distributions
(quiver plots, top) and resulting rank plots
(bottom). Mean directions in quiver plots are
indicated by thick vectors; mean vector
length and 4# SD resulting from 1,000 uni-
form angular distributions are shown as inner
and outer circles, respectively. In the rank
plots, thick black lines depict experimental
angular distribution. Gray lines show 200
uniform angular distributions, and thin black
line is the equidistant distribution. Before
generating rank plots, the mean angle was
subtracted. Numbers in the upper left-hand
corners of the rank plots indicate the exper-
iment number, asterisk indicates signifi-
cance. C and D: distributions of wave-front
velocities of DU and UD transitions, respec-
tively. Gray traces show distributions from
single experiments, and the average across
experiments is shown in black. Velocities
larger than 100 !m/ms are pooled into a
single bin at the far right of the respective
histogram.
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surrogate data (inner and outer black circles in Fig. 4B, top,
respectively). This was the case in 10 out of 11 experiments. For
a better visualization of deviations of experimentally observed
angular distributions from uniformly random distributions, we
plotted angles from single transitions against their relative rank
within the distribution of angles (Fig. 4B, bottom). To allow for a
better comparison over different experiments, we aligned the
mean angles along the positive x-axis (angle 0°). This way,
experimental data can be easily compared with simulated uniform
distributions (gray traces in Fig. 4B, bottom). This visualization,
similar to the reported mean vector lengths, demonstrates that
most experiments showed a clear preference for one direction of
the wave of activity spreading over the cortical tissue. Using a
sliding-window (width: 10 transitions) approach, we examined
the temporal evolution of the mean direction. For all experiments,
fluctuations around the mean direction stayed well within the
circular variance over the recording period (data not shown).

One main concern during our analysis was that, during the
experiments, electrodes might not have been aligned in one
single plane but could have picked up MUA signals from
different layers. It has been described in previous studies that

up-states might be initiated in deep layers first (Sanchez-Vives
and McCormick 2000; Chauvette et al. 2010; Sakata and Harris
2009; Csercsa et al. 2010). Indeed, additional experiments,
where the electrodes of the 3 # 4 electrode array were
positioned vertically in three different cortical layers (Supple-
mental Fig. S1A; supplemental material for this article is
available online at the Journal of Neurophysiology website), in
some cases showed temporal lead in deep layers (Supplemental
Fig. S1B). To test whether one electrode introduces such a
systematic error to our wave-front parameter estimation, we
performed the same analysis again with one electrode left out
in turn. For most experiments, no qualitative changes of our
results were observed (Supplemental Fig. S2A). For two ex-
periments, however, we found electrodes that, when left out,
reduced the significance of our results. We marked these
experiments in Fig. 5A by asterisks in parentheses.

By comparing the second trigonometric moment (m2; Eq. 5) to
the first moment (m1) we determined whether the angular distri-
butions were monomodal (m1 ) m2) or bimodal (m2 ) m1). One
would expect a bimodal distribution when waves of activity were
reflected at a border between areas (Xu et al. 2007) and, hence,

Fig. 5. Analysis of angular distributions of
wave-front origins. A: angular rank plots of
DU transitions of single experiments, sorted
by decreasing DU mean vector strength (Eq.
5). Format as in Fig. 4B. B: angular rank
plots of UD transitions of single experiments,
ordered as in A. Format as in A. C: distribu-
tions of angular differences between DU and
UD transitions (thick black lines), sorted by
decreasing DU mean vector strength. Gray
horizontal lines indicate angular difference
distribution mean and SD of 1,000 artificial
uniformly distributed DU and UD angular
distributions with the same number of state
transitions each. Dashed vertical lines depict
the angle between mean DU and UD vectors.
The numbers located in the upper left-hand
corners in A to C indicate the number of the
individual experiment. Significance is indi-
cated by asterisks in A and B, and the number
in the lower right corner indicates the number
of transitions used for the respective plot.
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would pass our electrode array consecutively in opposite direc-
tions. For DU transitions, the average m2 vector strength was
0.30 ( 0.14 (range 0.15 to 0.55). The corresponding m1-to-m2
ratio was 1.51 ( 0.64 ()1 in 10 of 11 experiments; the remaining
1 experiment was not significant compared with a uniform ran-
dom distribution). These findings clearly show that DU transition
directions were unimodally distributed.

We next measured the mean median propagation velocity of
DU transition wave fronts from the circular wave-front fits, as
25.8 ( 7.6 !m/ms (range: 15.1 to 37.8 !m/ms). Despite this
high variability in median velocities, velocity histograms
looked similar for all experiments (Fig. 4C, gray traces),
resulting in a smooth mean velocity distribution across all
experiments (Fig. 4C, black trace). This distribution shows a
distinct peak at 19 !m/ms. A permutation test (see MATERIALS

AND METHODS) revealed that, in 4 of 11 experiments, the
experimental AV distribution deviated significantly (P ! 0.05)
from a randomized AV distribution in one or more angular
bins. However, we could not find a clear correlation between
the peaks of the AV distribution and the preferred direction of
wave-front origins.

Traveling wave fronts of UD transitions. Previous imaging
studies suggested that the activity at the end of up-states does
not simply die out without a spatiotemporal structure but that,
instead, the UD transition travels as a circular wave front
similar to that of the DU transition (Xu et al. 2007). To test this
in our experimental data, we applied the same analysis as
above to UD transitions.

We observed that the distribution of directions toward the
origin of the wave front for single experiments (plotted in Fig.
5B as rank plots) looks more diffuse than that observed for DU
transitions (Fig. 5A). The average mean vector strength was
0.30 ( 0.13 (range 0.13 to 0.46), meaning an average circular
variance of 68° (range 76° to 60°, respectively). However, with
the use of the same test against uniform random angular
distributions as for DU transitions, only 7 of 11 experiments
showed significantly stereotypical transitions, based on mean
vector strength. Again, no dependence of mean direction on
experimental time was observed (see above). Also, leaving out
one electrode in turn from our analysis (see above) did not
change our results.

As for DU transitions, we used the second trigonometric
momentum to test bimodality vs. monomodality of the direc-
tion distribution. The average vector strength for m2 was
0.24 ( 0.1 (range 0.08 to 0.36). The ratio between m1 and m2
was 1.49 ( 0.92 (range 0.4 to 3.4), again showing a clearly
unimodal distribution.

The distribution of velocities (Fig. 4D) looked similar to that
observed for DU transitions, with an average median velocity
of 24.8 ( 5.2 !m/ms (range 18.4 to 33.7 !m/ms). Again, the
average of velocity distributions across experiments showed a
distinct peak, now at 16 !m/ms. Experimental AV distribu-
tions deviated significantly (P ! 0.05) from randomized AV
distributions in 7 of 11 experiments. Again, the relation be-
tween AV distribution peaks and preferred direction of wave-
front origins remained unclear.

We next asked the question whether DU and UD transitions
at the beginning and end, respectively, of the same up-state
shared the same properties regarding direction toward wave
origin and propagation velocity. Velocities of DU and respec-
tive UD wave fronts did not correlate (all P values )0.05,

Spearman’s rank test). We tested the dependence of UD
wave-front direction on DU wave-front direction by computing
the distribution of their angular differences, '+ (Fig. 5C). In
those experiments, where both DU and UD vector strength
were particularly large, a clear peak around '+ & 0 emerged,
showing that a large fraction of UD waves traveled in the same
direction as the preceding DU wave front.

DISCUSSION

In the present study, we examined the stereotypical behavior of
spontaneous transitions between up- and down-states in the somato-
sensory cortex of anesthetized rats. We used extracellularly recorded
MUA triggered on intracellular state transitions to determine the
temporal shifts of wave-front arrivals between different electrodes.
This is, to our knowledge, the first study where a large number of
such spontaneous DU and UD transitions was used from the same
animal to systematically analyze the wave-front propagation during
slow-wave activity on a microscopic scale (Massimini et al. 2004;
Volgushev et al. 2006). In the vast majority of experiments, we
observed a clear, highly significant unimodal distribution of wave-
front traveling directions. Results from previous studies regarding
stereotypical behavior of state transitions on a cellular level are
contradictory: Luczak et al. (2007) reported highly stereotypical ac-
tivation of single units upon state transitions, independent of wave-
front direction. Another study, using optical imaging methods to
observe a smaller population of cells, did not find any stereotypical
firing behavior of single cells (Kerr et al. 2005). However, the latter
experiments covered a much smaller spatial scale, thereby potentially
stressing local fluctuations.

The results presented here indicate that activity propagation
in most animals showed a clear preferred direction, a behavior
that may originate from the repeated early activation of an
excitatory pathway often originating from a single location in
the cortex (Vyazovskiy et al. 2009). In other words, there
seems to be a cortical “hot spot”, where up-states are initiated
and subsequently travel as clearly defined wave fronts across
the cortex. In how far activity at this location is triggered by
cortical cells, or by thalamic input, cannot be judged from our
data. The same holds true for the underlying physiological
mechanism: spontaneous synaptic release, followed by activa-
tion of persistent sodium currents (Timofeev et al. 2000;
Bazhenov et al. 2002; Chauvette et al. 2010), could cause the
observed stereotypical wave generation if one assumes that
certain cells have a particularly low threshold to release syn-
aptic vesicles. Similarly, up-states could arise from autono-
mously oscillating pacemaker cells (Kang et al. 2008) forming
the hot spot. It will be interesting to see in future experiments
whether in different sleep cycles these hot spots appear at
different locations or whether they are preferentially located at
a single position in the cortex of the respective individual.
Moreover, as we found neither the same directional preference
nor a similar origin of the traveling waves across animals, the
corresponding difference between presumed hot spots across
animals needs to be explained.

Methodological constraints. The basic assumption for this
study is the circular shape of the traveling wave fronts. This
view is supported by voltage-sensitive dye studies (Xu et al.
2007; for a comprehensive review, see Wu et al. 2008). Even
for different wave-front shapes, such as spiral waves (Huang et
al. 2004), the circular shape is a reasonable approximation on
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the small spatial scale covered by our electrode array (*800
!m). Distortions of the circular shape could arise from differ-
ent sources: 1) small areas within the cortex might be activated
slightly earlier or later compared with the gross traveling wave
front, thereby introducing an “effective” temporal jitter; and
2) the realignment algorithm used in our study might introduce
a temporal shift error, when signals superimposed by noise are
presented. However, wave-front fitting (Eq. 3) performed well
on jittered surrogate latencies, retrieving the direction reliably
for normally distributed temporal jitters up to a standard
deviation of *20 ms, which is clearly more than we expect to
be possibly introduced by the noise sensitivity of the realign-
ment algorithm (Nawrot et al. 2003). In a certain fraction
(*5% on average) of all transitions, we observed an unrealis-
tically high velocity ()100 !m/ms), which might either be
attributable to effective temporal jitter (e.g., the cortex activat-
ing quasisynchronously) or be introduced by a combination of
temporal shift errors. Removal of these transitions did not change
the results presented here. One additional concern during exper-
iments was that the intracellular electrode itself, or tissue damage
incurred by it, might be the source of state transitions. However,
as in most experiments, the preferred direction did not point
toward the intracellular electrode (and nor to any of the extracel-
lular electrodes), we are confident that the observed propagating
waves originated in the neuronal network itself and not at a
location of an electrode or tissue injured by it. It would, however,
be interesting to see whether wave propagation changes in a
chronic recording with implanted electrodes.

The use of an intracellular electrode might not be feasible in
other experimental preparations, particularly if the number of
extracellular electrodes is increased. We therefore repeated our
analysis of temporal shifts of activity within windows centered
around state transitions in one extracellular electrode. This
modified approach yielded the same results (data not shown),
showing that our analysis is feasible also with multielectrode
arrays without intracellular measurement.

An additional parameter that allows validation of our results
with respect to previous findings from other groups is the
wave-propagation velocity. Experimental observations re-
vealed velocities over a range of 2–30 !m/ms (Reig et al.
2010; Ferezou et al. 2006); our findings are in the upper half of
this range. Propagation velocities predicted by computational
models are somewhat lower (3–8 !m/ms; Compte et al. 2003)
but markedly increased when inhibition in the model was
blocked (20–50 !m/ms; Compte et al. 2003). The contribu-
tions of excitatory and inhibitory neurons could not be identi-
fied in our study, as we did not sort single units from the
extracellularly recorded MUA.

Waves have been reported to transcend functional borders
within the cortex (Takagaki et al. 2008). However, a recent
study (Xu et al. 2007) showed a more complex behavior at area
borders between primary and secondary visual cortices, including
compression and reflection of waves. Reflection at a nearby area
border would, in our experiments, have resulted in a bimodal
direction distribution, which we never observed. However, be-
cause of methodological constraints, we excluded DU transitions
following very short down-states and thus might have systemat-
ically ignored reflections at area borders close to our electrode
array. In any case, it remains to be demonstrated in how far our
results are transferable to other brain areas as, for instance, the
visual cortex described in Xu et al. (2007), and whether reflected

waves could be detected if we place our electrode array over the
border between two areas. A serious limitation with respect to
such analysis is, however, the low number and density of elec-
trodes that have been available for the reconstruction of the
traveling waves. Obviously, it is impossible to differentiate be-
tween circular waves and more complex patterns, which might
impose the same latency distributions, with only seven electrodes.

Functional implications. The occurrence of spontaneous
slow oscillations has been demonstrated in a large variety of
preparations, ranging from organotypical (Johnson and Buono-
mano 2007) and acute slice preparations (Sanchez-Vives and
McCormick 2000; Reig et al. 2010) over deafferented cortical
slabs (Timofeev et al. 2000) to experiments in the intact cortex
(Steriade et al. 1993a; 1993b; 1993c; Contreras and Steriade
1995; Léger et al. 2005; Kerr et al. 2005; Waters and Helmchen
2006; Saleem et al. 2010). Additionally, in vivo experiments
have been performed under a variety of conditions, particularly
with respect to anesthesia. Here, the usage of ketamine/xyla-
zine was shown to generate oscillating behavior similar to
slow-wave sleep observed in sleeping animals (Sharma et al.
2010; Fontanini et al. 2003).

The function of slow oscillations and associated traveling
waves has thus far remained elusive. It has been proposed that
these effects play a key role in memory consolidation (Wilson and
McNaughton 1994; Sejnowski and Destexhe 2000; Hoffman et al.
2007; Landsness et al. 2009), with specific activity patterns being
replayed during up-states (Luczak et al. 2007; but see also Kerr et
al. 2005) and a stronger activation in cortical regions that have
been extensively used during wake periods (e.g., Huber et al.
2008). This view might be consistent with our finding that cortical
subregions were activated in the same spatiotemporal order over
many consecutive state transitions, thereby potentially introducing
a high number of pattern repetitions. It is, however, difficult to
judge in how far the patterns characterized in our study are
stereotypical down to the level of synapses. For a validation of this
issue, experiments with paired recordings in the intact animal would
be the ultimate test, an experimental technique that is not available to
date. Another, more tractable issue concerns the question in how far
our results may be biased by the anesthetic we used. Future experi-
ments in unanesthetized, sleeping animals could show, whether trav-
eling waves during slow-wave sleep exhibit the same stereotypical
behavior as observed here under ketamine/xylazine anesthesia. We
expect a similar behavior under these two conditions, as a certain
degree of stereotypical behavior has been shown in humans (Massi-
mini et al. 2004). However, an interesting extension to the experi-
ments we performed for this study would be 1) to track changes in
wave-propagation parameters over several sleep cycles within the
same animal and 2) to compare these results to those from animals
having spent time in an enriched environment, as this might enforce
consolidation during sleep of newly learned patterns, particularly in
motor and sensory areas.
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