Supplementary Material:
Adaptation Reduces Variability of the
Neuronal Population Code

A State-Dependent Hazard Function

We define a limiting probability density to an event, given the state variable x,
as
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where NJt,t + €] is a right continuous integer-valued function that jumps 1 at
each event time and is constant otherwise. Thus, N[¢t,¢ + €] counts the number
of events in the interval (¢,¢+ €], and z is a general state variable of the system.
Here, we assume a shot noise dynamics as described by Eq. (1) in the main text
governs the state variable x.

The hazard function for neuronal ensembles can be derived from a field mas-
ter equation of the system as it is stated in Eq. (B.1) [13]. Generally, a full
master equation assumes an infinite reservoir of entities and sparse interaction
among them (the underling assumptions of mean-field theory). Therefore, it
results that the fluctuation in the inputs are incoherent and sufficiently uncor-
related. This allows to apply the method of elimination of fast variables [6]
given the slow state variable x [13]. Indeed, it can be shown that the hazard
function is the response function of a neuron in the presence of noise, which
can be derived by the Fokker-Planck approximation of the mean field master
equation [16, 2] as described in [9] for the mean-adaptation theory.

In [13] it is shown that the Kramer rate function [5]

ha(2,t) = ap exp(—biz) (A.2)

provides an excellent agreement with the mean field calculation of the response
function, where a; and b; are fit parameters and hat indicates the approximation
nature of the hazard function to the full model of a neuron including voltage
dynamics and conductance-based synapses. In a dynamic input setting a; and by
are respectively determined by interpolating the mean excitatory and inhibitory
synaptic conductance to the neuron (see section 3 and 4 in [13]). In a static case,
a¢ and b; denote as a and b, respectively. Moreover, the effect of input statistics
and varying noise strength on Eq. (A.2) and the resulting inter-event distribution
is studied in [14]. In summary, a corresponds to firing rate of a neuron given the
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statistics of input parameters, where x = 0, and b is the adaptation coefficient
otherwise and can be derived using adaptation self-consistency in Eq. (13) in
the main text. This relationship allows to construct the rate model as in the
main text (last argument in Section Benefits for Neural coding), where a and b
are derived using the fit provided in NeuroTools . It is clear from Eq. (A.2) that
without adaptation a is the firing rate of the Poisson rate model. In order to
allow comparison, we normalized both processes to have the same initial firing
rate (Fig. 2) by assuming that there exists some constant regulation 0 < A" < 1
that maintains rate equality in the steady-state such that

Teq = aN = W(abgt)/(bgr). (A.3)

Thereafter, we assumed a change € in the mean conductance on the order of
0.01nS and recompute a and b, thus the rate model new equilibrium rate is
Teq = a‘N. The new equilibrium rate of the adaptive process is obtained by

ré, = W(abqr)/(b°qr). This construction leads to Fig. 2 (Left) in the main
text.

A violation of the mean-field theory assumptions, such as a finite size of
reservoir, in the network bring about “coherent” fluctuations in addition to
“incoherent” fluctuations, both can be used to derive the response function of
the system [11, 1], which implicates an alternative form for the hazard function
which includes a stochastic element [11]. However, under the condition that the
correlation time course of the interactions is short compared to adaptation time
scale, namely on the order of the synaptic time constant, interactions can be
treated as fast variables and, in the presence of slow adaptation, will vanish by
the method of elimination of fast variables.

The hazard function has been derived for many physical systems. We men-
tion the examples of models for earthquake events [4], financial risk modeling in
econophysics [8]. Tt is also plausible to apply the adiabatic elimination technique
for quantum dissipative system to obtain a matching hazard model as suggested
in [3].

B Serial Correlation: Process memory

The history dependency of the slow dynamic shot-noise in Eq. (1) of the main
text, results in a state-dependent reset mechanism 1 which makes the process
non-renewal. Since the state variable z(¢) when an event occurs, makes a jump
x(t + dt) = z(t) + g defining the reset mapping 1(n(z)), such that the reset
condition become 7n(z) — n(z + ¢), it follows that

U(ts) =0~ (tz) + @) = —7In(exp(~t,/7) + 1) (B.1)
with its inverse given by

¥ (t,) = —7 In(exp(~t, /) - 1), (B.2)

! http://neuralensemble.org/trac/NeuroTools
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It is clear that at the time of event, state variable remapping condition deviates
from t, — 0. However, if we assume ¢ = 0, it results second and third terms
in right hand side of Eq. (2) canceling each other, which makes the master
equation follows a renewal theory and non-locality due to ¢ vanishes.

Therefore, the state-dependent reset v indicates the memory of the process
in the terms of serial correlation between consecutive inter-event intervals. Here,
we shall now relate the interval correlation coefficient to the probability of ob-
serving n events in the time window T', P(n,T), using the relationships derived
in [12]. Hence, the correlation of two back to back intervals is

/Oo P(1,T)dT = lim P(1,5) = E[AoA1]/ (B.3)
0 s—

and similarly for k lagged intervals, we have P(k,0) = E[AoAg]/p [12].

Here, we show that serial correlations between inter-events are negative for
phenomenological model of adaptation, following the ISI distribution given in
Eq. (4) and its corresponding counting process P(n,T), for a given hazard
function as Eq. (A.2) and defined 1 in the main text for a static firing rate: We
know 1) only operates on the current state and the reset at the k" interval before
has a vanishing effect on the current state of t,, we have limy_ o p(Ag, Ag) =
p(Ao)p(Ar) [13]. Therefore, applying Lemma (6.5) in [12] limj_,oo P(k,0) =
i1. Additionally, for the defined v in the main text we have ¢ : R — R7;
it follows that all trajectories are reinserted at negative pseudo-ages, and we
have 0,9 < 0, therefore “younger” event trajectories are reinserted at more
negative values and hazard function that explicitly defined in Eq. (A.2) is an
increasing 8y, b, (n(x)) > 0. Hence, for a given p; it follows that neuronal
adaption model here has the property u? > E[AgAg]. Thus, the correlation
coefficient £, between two intervals separated by lag k is negative and dies out
for large values of k.

Generally, following the same argument, if ¢ and h are monotonous and

atzw(tw)atxh(ta:) <0 (B4)

then the intervals exhibit a negative serial correlation. The condition on the
Eq. (B.4) also indicates that if 0, 1)(t5)0:, h(t;) = 0 the process is renewal and
under the condition of

atzw(tx)atzh(tx) > 0 (B5)

process produces positive serial correlation.

C Serial Correlations Beyond the Neuronal Systems

In this letter, we show that the negativity of serial correlation in neural adap-
tation enhances the signal transmission. Moreover, it has been argued that
a sub-Poissonian statistics (C2 < 1) is superior for light communication sys-
tems because it exhibits reduced variability the count statistics as compared to
the Poisson statistics [15, 7]. The phenomenon of negative serial correlations
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Tab. 1: Neuron model parameters as it is used for simulations of the full model
neuron including voltage dynamics, adaptation and conductance-based
synapses [13] as it is illustrated in Fig.1(Left) for comparsion to the
master equation approch. The simulation is performed in PyNEST.

Parameter Description Value

Vth, Threshold voltage -57mV

Vreset Rest voltage -70mV

Cm Membrane capacitance 289.5pF

g Membrane leak conductance 28.95pS

E; Membrane reversal potential -70mV

Arr RELREF quantal conductance increase 3214nS

Trp RELREF conductance decay time 1.97ms

E,, RELREF reversal potential -70mV

s SFA quantal conductance increase 14.48nS

Ts SFA conductance decay time 110ms

FE SFA reversal potential -70mV

Ee; Reversal potential of excitatory and inhibitory 0 mV, -75mV
synapses, respectively

Ge.i Excitatory and inhibitory synaptic quantal 2nS
conductance increase

Te,i Excitatory and inhibitory synaptic decay time 1.5ms , 10ms

Aeji Excitatory and inhibitory input rate 6Hz, 11.4Hz

(Eq. (B.4)) is also observed in multi-level quantum systems [17] where M mea-
sures the serial correlation between consecutive inter-photon times. According
to our results, a superposition of non-renewal photon emitters could enhance
reliable information transmission and signal discrimination in photo detecting
devices.

The condition in Eq. (B.5) might be of interest for event emitting systems
that exhibit a self-exciting feedback and thus depart from renewal assumption by
positive serial correlations between adjacent inter-event intervals. For example,
it has been shown in [10] that after major earthquakes the rate of the aftershocks
decreases in time by the Omori law. This decreasing rate generates a memory
of inter-events where small (large) recurrence intervals follow small (large) ones,
implying positive correlations among inter-event times.



C Serial Correlations Beyond the Neuronal Systems 5

References

[1]

2]

8]

P. C. Bressloff. Stochastic neural field theory and the System-Size expan-
sion. STAM Journal on Applied Mathematics, 70(5):1488-1521, Jan. 2009.

N. Brunel. Dynamics of sparsely connected networks of excitatory and in-
hibitory spiking neurons. Journal of computational neuroscience, 8(3):183~
208, 2000.

F. Casagrande, L. A. Lugiato, and G. Strini. Adiabatic elimination tech-
nique for quantum dissipative systems. In L. Accardi and W. Waldenfels,
editors, Quantum Probability and Applications II, volume 1136. Springer
Berlin Heidelberg, 1985.

A. Corral. Time-decreasing hazard and increasing time until the next earth-
quake. Physical Review E, 71(1):017101, Jan. 2005.

C. Gardiner. Handbook of Stochastic Methods: for Physics, Chemistry and
the Natural Sciences. Springer, 3rd edition, Apr. 2004.

C. W. Gardiner. Adiabatic elimination in stochastic systems. i. formula-
tion of methods and application to few-variable systems. Phys. Rev. A,
29(5):2814, May 1984.

A. Jann and Y. Ben-Aryeh. Quantum-noise reduction in semiconductor
lasers. Journal of the Optical Society of America B, 13(5):761-767, May
1996.

Y. A. Katz and N. V. Shokhirev. Default risk modeling beyond the first-
passage approximation: Extended Black-Cox model. Physical Review F,
82(1):016116, July 2010.

G. LaCamera, A. Rauch, H. Luscher, W. Senn, and S. Fusi. Minimal
models of adapted neuronal response to in vivo-like input currents. Neural
Comput, 16(10):2101-2124, Oct. 2004.

V. N. Livina, S. Havlin, and A. Bunde. Memory in the occurrence of
earthquakes. Phys. Rev. Lett., 95(20):208501, Nov. 2005.

M. Mattia and P. D. Giudice. Population dynamics of interacting spiking
neurons. Phys. Rev. F, 66(5):051917, Nov. 2002.

J. A. McFadden. On the lengths of intervals in a stationary point process.
J. of the Royal Stat. Soc. Series B, 24(2):364-382, 1962.

E. Muller, L. Buesing, J. Schemmel, and K. Meier. Spike-Frequency adapt-
ing neural ensembles: Beyond mean adaptation and renewal theories. Neu-
ral Comp., 19(11):2958-3010, 2007.



C Serial Correlations Beyond the Neuronal Systems 6

[14] W. H. Nesse, C. A. D. Negro, and P. C. Bressloff. Oscillation regularity in
Noise-Driven excitable systems with Multi-Time-Scale adaptation. Phys.
Rev. Lett., 101(8):088101, 2008.

[15] B. E. A. Saleh and M. C. Teich. Can the channel capacity of a light-wave
communication system be increased by the use of photon-number squeezed
light? Physical Review Letters, 58(25):2656, June 1987.

[16] A. J. F. Siegert. On the first passage time probability problem. Physical
Review, 81(4):617, Feb. 1951.

[17] F. C. Soler, F. J. Rodriguez, and G. Zumofen. Memory in the photon
statistics of multilevel quantum systems. Phys. Rev. A, 78(5):053813, Nov.
2008.



