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Adaptation reduces variability of the neuronal population code
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Sequences of events in noise-driven excitable systems with slow variables often show serial correlations among
their intervals of events. Here, we employ a master equation for generalized non-renewal processes to calculate the
interval and count statistics of superimposed processes governed by a slow adaptation variable. For an ensemble
of neurons with spike-frequency adaptation, this results in the regularization of the population activity and an
enhanced postsynaptic signal decoding. We confirm our theoretical results in a population of cortical neurons
recorded in vivo.
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Statistical models of events assuming the renewal property
that the instantaneous probability for the occurrence of an
event depends uniquely on the time since the last event
enjoys a long history of interest and applications in physics.
However, many event processes in nature violate the renewal
property. For instance, it is known that photon emission in
multilevel quantum systems constitutes a non-renewal process
[1]. Likewise, the time series of earthquakes typically exhibits
a memory of previous shocks [2], as do the times of activated
escape from a metastable state, as encountered in various
scientific fields such as chemical, biological, and solid-state
physics [3]. Often, the departure from the renewal property
arises when the process under study is modulated by some
slow variable, which results in serial correlations among the
intervals between successive events. In particular, the majority
of spiking neurons in the nervous systems of various species
show a serial dependence between interevent intervals (ISI)
due to the fact that their spiking activity is modulated by an
intrinsic slow variable of self-inhibition, a phenomenon known
as spike-frequency adaptation [4].

In this Rapid Communication, we present a non-renewal
formalism based on a population density treatment that enables
us to quantitatively study ensemble processes augmented with
a slow noise variable. We formally derive general expressions
for the higher order interval and count statistics of single and
superimposed non-renewal processes for arbitrary observation
times. In spiking neurons, intrinsic mechanisms of adaptation
reduce output variability and facilitate population coding in
neural ensembles. We confirm our theoretical results in a set of
experimental in vivo recordings and analyze their implications
for the readout properties of a postsynaptic neural decoder.

Non-renewal master equation. We define the limiting
probability density for an event given the state variable x by
the so-called hazard function hx(x,t) where t denotes explicit
dependence on time due to external input following [5,6]. Here,
we assume x has a shot-noise-like dynamics, which is widely
used as a model of spike-induced neuronal adaptation [6]:

ẋ := −x(t)/τ + q
∑

k

δ(t − tk), (1)

where δ is the Dirac delta function, tk is the time of the
kth event, and q is the quantile change in x at each event.

*Corresponding author: farzad@zedat.fu-berlin.de

The dynamics of x deviates from standard treatments of
shot noise (such as in [7]) in that the rate of events has a
dependence on x as expressed by the hazard function hx(x,t).
It is straightforward to show that the distribution of x in
an ensemble, denoted by Pr(x,t), is governed by the master
equation

∂t Pr(x,t) = ∂x

[
x

τ
Pr(x,t)

]
+ hx(x − q,t) Pr(x − q,t)

−hx(x,t) Pr(x,t). (2)

Much insight can be gained by applying the method of
characteristics [8] to establish a link between the state variable
x and its time-like variable tx . For Eq. (1) we define tx =
η(x) := −τ ln(x/q), whereby d

dt
tx = 1. When an event occurs,

tx �→ ψ(tx), where ψ(tx) = η(η−1(tx) + q) = −τ ln(e−tx/τ +
1) with its inverse given by ψ(tx)−1 = −τ ln(e−tx/τ − 1).
Thus, we define h(tx,t) := hx(η−1(tx),t). This transformation
of variables to tx elucidates the connection of the model to
renewal theory. Here, the reset condition after each event is
not tx �→ 0 (renewal) but tx �→ η(x + q) [5]. Therefore, the
variable tx that we may call a “pseudo-age” is a general state
variable that no longer represents the time since the last event
(age). Transforming variables in Eq. (2) from x to tx yields in
the steady state

∂tx Pr(tx) = −h(tx) Pr(tx)

+ [1 − �0(tx)][h(ψ−1(tx)) Pr (ψ−1(tx))], (3)

where �0(tx) is the Heaviside step function, and for conve-
nience we defined ψ−1(tx � 0) ≡ 0. An efficient algorithm
for solving Eq. (3) is given in [6]. We denote this solution by
Preq(tx). Further, the time-like transformation in Eq. (3) allows
computation of the ISI by analogy to the renewal theory [6]
and also permits the comparison to the master equation for a
renewal process as given in Eq. (6.43) in [9]. The distribution
of tx just prior to an event is a quantity of interest and is derived
as Pr∗(tx) = h(tx)Preq(tx)/req, where req = ∫

h(tx)Preq(tx)dtx
is a normalizing constant and also the process intensity or
rate of the ensemble. Similarly, one can derive the distribution
of tx just after the event, Pr†(tx) = Pr∗ (ψ−1(tx)) d

dtx
ψ−1(tx)

[6]. Then the relationship between tx and the ordinary ISI
distribution can be written as

ρ(	) =
∫ +∞

−∞
h(tx + 	)
(tx + 	)Pr†(tx)dtx, (4)
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where 
(tx + 	) = e− ∫ 	

tx
h(tx+u)du and 	 is the ISI length. Now

the nth moment μn of the distribution and its coefficient of
variation Cv can be numerically determined.

Counting statistics. In order to derive the count distribution,
we generalize the elegant approach for deriving the moment-
generating function as introduced in [10]: Let ρn(tn,tnx |t0

x ) be
the joint probability density given its initial state t0

x , where tn
stands for time to the nth event and tnx is the corresponding
adaptive state of the process. Thereafter, one can recursively
derive

ρ̃n+1
(
s,tn+1

x

∣∣t0
x

) =
∫

ρ̃n

(
s,tnx

∣∣t0
x

)
ρ̃
(
s,tn+1

x

∣∣tnx )
dtnx , (5)

where ρ̃n+1(s,tn+1
x |t0

x ) = L[ρn+1(tn+1,t
n+1
x |t0

x )] and L is the
Laplace transform with respect to time, assuming ρ̃1(s,t1

x |t0
x ) =

ρ̃(s,t1
x |t0

x ) [10]. Next, defining the operator Pn(s) and applying
bra-ket notation as suggested in [10] leads to the Laplace
transform of the nth event’s ordinary density:

ρ̃n(s) = 〈1|Pn(s)|Pr†〉 = 〈1|[P(s)]n|Pr†〉, (6)

where the operator P is associated with ρ̃(s), which interest-
ingly corresponds to the moment-generating function of the
sum of n non-independent intervals f̃n(s) as defined in [11].
Now, following Eqs. (2.15) in [11], the Laplace transform of
the count distribution is denoted as P̃ (n,s).

The Fano factor provides an index for the quantification of
the count variability. It is defined as JT = σ 2

T /μT , where σ 2
T

and μT are the variance and the mean of the number of events in
a certain time window T . It follows from the additive property
of the expectation that μT = ∫ T

0 r(u)du and assuming constant
firing rate μT = reqT . To calculate the second moment of
P̃ (n,s), we require Ãs = ∑

k ρ̃k(s); thus

Ãs = 〈1|P(s)[I − P(s)]−1|Pr†〉, (7)

where I is the identity operator. Note, assuming a renewal
interval distribution in Eq. (4) one obtains Ãr

s = ρ̃(s)/[1 −
ρ̃(s)] and L−1[reqÃs] = reqA(u) is the joint density of an
event at time t and another event at time t + u. Thus, the
autocorrlation of events is A(u) = req[δ(u) + A(u)]. Now, by
using Eq. (7), and Eq. (3.3) in [11], the second moment of the
count statistics can be derived. Thus, we obtain the Fano factor

JT = 1 + (2/T )
∫ T

0
(T − u)A(u)du − reqT . (8)

The asymptotic property of F = limT →∞ JT can be derived
from the result stated in Eq. (7.8) in [11] as

lims→0[Ãs − 1/(μ1s)] = C2
v

[
1/2 +

∞∑
k=1

ξk

]
− 1/2, (9)

where ξk is the linear correlation coefficient between two k

lagged intervals. Provided the limit exits, we find F = C2
v [1 +

2
∑∞

k=1 ξk] in [12].
Superposition. We now generalize our results on the

counting statistics to the superposition of independent point
processes. This is of practical interest in all cases where
we observe superimposed events that stem from multiple
independent process, e.g., in photon detection devices, or in
the case of a postsynaptic neuron that receives converging

inputs from multiple lines. We study the superposition of k

stationary, orderly, and independent processes. The ensemble
process will have a rate ř = ∑k

i=1 ri and following Eq. (4.18)
in [13] Ǎ(u) = ř + ř−1 ∑k

i=1 ri[Ai(u) − ri]. Here, for the
sake of simplicity, we derive the desired relationship between
C2

v and the ensemble F̌ for k identical processes. To this
end, we plug ř and L[Ǎ(u)] into the Eq. (9) and therefore
it becomes lims→0[Ãs − 1/(μ1s)] = Č2

v [1/2 + ] − 1/2,
where Čv and  = ∑∞

i=1 i are the coefficient of variation
and the interval correlations of the superimposed process.
Note that the left-hand side of this equation and Eq. (9) are
similar. Thus, we obtain

Č2
v [1 + 2 ] = C2

v

[
1 + 2

∞∑
i=1

ξi

]
. (10)

The left-hand side of Eq. (10) is indeed the Fano factor F̌ of the
ensemble process as desired. Now, Palm-Khintchine theorem
[13] suggests as k → ∞, Č2

v → 1. Interestingly, if all indi-
vidual processes fulfill the renewal condition, it follows from
Eq. (10) that F̌ = C2

v = [1 + 2], and therefore if C2
v 	= 1 the

population activity is non-renewal with  < 0 ( > 0) for pro-
cesses with C2

v < 1 (C2
v > 1). This important finding explains

the numerical observation in [14] regarding emergence of non-
renewal processes as the result of the superposition operation.

Adaptation in a neuronal ensemble. In [6] it has been
shown by an adiabatic elimination of fast variables that
the master-equation description of a detailed neuron model
including voltage dynamics, conductance-based synapses, and
spike-induced adaptation reduces to a stochastic point process
similar to Eq. (3). The corresponding hazard function can be
approximated as

ĥx(x) = at exp(−btx), (11)

where at and bt are determined by the time-dependent statistics
of inputs [5] and the equilibrium-rate consistency equation
req ≈ ĥx(reqqτ ) [6] with the solution

req = W(abqτ )/(bqτ ), (12)

where W is the Lambert function. In the case of vanishing
adaptation (bq → 0) the process approaches the Poisson
process with req → a.

We show in [5] that the adaptation dynamics in Eq. (1)
produces negative serial correlations ξk < 0. The strength of
serial correlation decays with increasing lag k and depends on
the mean adaptation, E[x] = reqqτ .

Such a vanishing of negative serial interval correlations
with increasing lag is well supported by a large body of
experimental evidence [4]. The departure from the renewal
property induced by adaptation reduces the Fano factor in
Eq. (8) for the single process as well as for the population
model of superimposed processes.

We validate our theoretical result of the reduced Fano
factor in a set of experimental spike trains of N = 5 in
vivo intracellular recorded neurons in the somatosensory
cortex of the rat. The spontaneous activity of each of these
neurons shows negative serial interval correlations [15] where
the empirical sum over correlation coefficients amounts to
an average

∑10
i=1 ξi = −0.28. We construct the population
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FIG. 1. (Color) Adaptation reduces the Fano factor of the en-
semble process. Left panel: Magenta: JT for arbitrary observation
time T according to Eqs. (8) and (11) with bq = 1.4, a = 5.0,
and τ = 400 ms. Blue: Fano factor for equivalent renewal ensemble
process with interval distribution of Eq. (4). Square dots: Numerically
estimated Fano factor for superposition of the 5 realization runs of the
full-detailed adaptive neuron model as in [6]. Dash-dotted line: C2

v .
Right panel: Magenta: Empirical ĴT estimated from the pooled spike
trains of 5 cortical neurons. Blue: Fano factor for the pool of shuffled
spike trains. Dash-dotted: Average C2

v of the 5 individual spike trains.

activity by superimposing all 5 spike trains. Thereafter, we
estimate the Fano factor as a function of the observation time
and compare it to the case where, prior to superposition,
renewal statistics is enforced for each individual neuron
through interval shuffling. Our experimental observation in
Fig. 1 (right) confirms the theoretical prediction of a reduced
Fano factor similar to individual neurons [16] in the population
level.

Benefits for neural coding. We provide three arguments
that demonstrate how the mechanism of spike-frequency
adaptation benefits neural processing and population coding.
First, our result of a reduced Fano factor F̌ < C2

v for the
population activity of stationary adaptive processes (bq > 0)
directly implies a reduction of the noise in the neuronal
population rate code. Our analysis of a set of cortical data
suggests a reduction of >50% for long observation times. The
reduction of JT in Fig. 1 becomes significant even for small
observation times of ≈2 average intervals, which is a relevant
time scale for the transmission of a population rate signal.
This result is reminiscent of an effect that has previously been
acknowledged as noise shaping and weak stimuli detection
expressed in the reduction of the low-frequency power in a
spectral analysis of spike trains with negative serial interval
correlations [17]. Our result confirms their findings at the
population level.

Our second argument is concerned with the transmission of
a population-rate signal. We may define a functional neural
ensemble by the common postsynaptic target neuron that
receives the converging input of all ensemble members. To
elucidate the postsynaptic effect of adaptation we simplify the
ensemble autocorrelation function A(u) following [18] with
an exponential approximation

Â(u) = reqδ(u) + [(F − 1)/2τc] exp(−u/τc), (13)

where the second term is the approximation of reqA(u). For
a given observation time window u and τc the reduction of
F implies that Âr

u < Âu. Therefore, the postsynaptic neuron
receives inputs from an adaptive ensemble that expresses an
extended autocorrelation structure as compared to the inputs

from a non-adaptive ensemble. Following the theory on the
effect of input autocorrelation on signal transmission in spiking
neurons as developed in [18], a longer τc reduces the input
current fluctuations and this facilitates a faster and more
reliable transmission of the modulated input rate signal by
the postsynaptic target neuron.

Finally we argue that a postsynaptic neuron can better
decode a small change in its input if the presynaptic neurons
are adaptive. To this end, we compute the information gain of
the postsynaptic activity between two counting distributions of
an adaptive presynaptic ensemble when ĥx(x) is adiabatically
transferred to ĥx(x − ε) with a small change ε in the input
ensemble. It is convenient to use ρ̃n(s) which is associated
with the counting distribution P̃ (n,s). Thus, we apply the
Kullback-Leibler divergence to Eq. (6) before and after the
adiabatic change in the input:

DKL
(
ρ̃ε

n||ρ̃n

) =
∑

i

ρ̃ε
i (s) ln

(
ρ̃ε

i (s)/ρ̃i(s)
)
. (14)

Using Eq. (7) we obtain DKL(ρ̃ε
n||ρ̃n) = Aε

s [ln(Aε
s /As)]. Due

to Eqs. (1) and (12), the mean adaptation after the change is
E[xε] = τqrε

eq. If ε > 0 it follows that rε
eq � req. Therefore

the mean adaptation level increases and the adapted process
exhibits stronger negative serial correlations and Aε

s > As .
Thus, by Eq. (13), it is straightforward to deduce that DKL >

Dr
KL, for renewal and adaptive processes with identical interval

distributions.
We now compute the information gain of the adaptive

ensemble process relative to a matched Poisson rate model.
For different initial rate values req we assume a small but fixed
increase ε in the input that we express in parameter changes aε

and bε in Eq. (11) as outlined in the Supplementary material
at [5]. This leads to an increase κ = rε

eq − req in rate that is
effectively constant over a wide range of initial values req

(Fig. 2, left). In the rate model, assuming the same initial
value of req, the same input step leads to a higher equilibrium-
rate increase κPoisson > κ , which depends on the initial rate
(Fig. 2, left) because the rate model lacks a mechanism of
self-inhibition, which in the adaptive model counteracts the
rate increase. Therefore, we compute the Kullback-Leibler
divergence for both models and normalize it by the change in
the output rate κ . The result in Fig. 2 (right) shows that DKL/κ

is larger for the adaptive model than for the rate model across
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FIG. 2. (Color) Information gain per spike due to adaptation.
Left panel: Transfer of equilibrium rate for fixed ε change of the
input in adaptive and Poisson model. Right panel: Kullback-Leibler
divergence per extra spike as the measure of information gain for nth
event density of adaptive and Poisson processes while u = 200 ms
and ε = 0.01 nS with the same initial req and κ = rε

eq − req.
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the range of tested input rates. Thus, the information per extra
spike is larger in the adaptive ensemble than in the renewal
ensemble, and a postsynaptic neuron can discriminate small
changes ε more efficiently, even though the absolute change
in firing rate is lower.

Discussion. Our results point out an important aspect of
spike-frequency adaptation that benefits the reliable trans-
mission and postsynaptic decoding of the neural population
code. This aspect adds to the known properties of compression
and temporal filtering of sensory input signals [19] in spike-
frequency-adapting neurons. The specific result of Eq. (10) is
also of practical consequence for the empirical analysis of the
so-called multi-unit activity. By estimating the Fano factor or
serial correlations and Čv at the population level, we readily
obtain an estimate of the average Cv by assuming renewal
processes for individual spike trains.

We developed a formalism to treat event-emitting systems
that are influenced by a slow state variable, and we provided

a number of useful general results on the higher order
event statistics of superimposed renewal and non-renewal
event processes, which are applicable to a wide range of
event-based systems in nature (Supplementary material
at [5]). The derivation of the state-dependent hazard function
and master equation [6] assumes incoherent input fluctuation
as in the mean-field theory, where common input is negligible.
Treating a network with coherent fluctuations as encountered
in finite-size networks requires an alternative derivation of the
hazard function (Supplementary material at [5]).
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