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The activity of spiking neurons is frequently described by renewal point process models that assume the
statistical independence and identical distribution of the intervals between action potentials. However, the
assumption of independent intervals must be questioned for many different types of neurons. We review
experimental studies that reported the feature of a negative serial correlation of neighboring intervals, com-
monly observed in neurons in the sensory periphery as well as in central neurons, notably in the mammalian
cortex. In our experiments we observed the same short-lived negative serial dependence of intervals in the
spontaneous activity of mushroom body extrinsic neurons in the honeybee. To model serial interval correla-
tions of arbitrary lags, we suggest a family of autoregressive point processes. Its marginal interval distribution
is described by the generalized gamma model, which includes as special cases the log-normal and gamma
distributions, which have been widely used to characterize regular spiking neurons. In numeric simulations we
investigated how serial correlation affects the variance of the neural spike count. We show that the experimen-
tally confirmed negative correlation reduces single-neuron variability, as quantified by the Fano factor, by up to
50%, which favors the transmission of a rate code. We argue that the feature of a negative serial correlation is
likely to be common to the class of spike-frequency-adapting neurons and that it might have been largely

overlooked in extracellular single-unit recordings due to spike sorting errors.
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I. INTRODUCTION

Stochastic point process models have a long tradition in
cellular neurophysiology as a means to describe the random
nature of action potential generation in spiking neurons
[1-7]. The mathematical definition of a point process allows
one to analytically calculate the distribution or the expecta-
tion value of a given stochastic variable and to formulate
statistical predictions for experimental results. Numeric
simulation of point processes is highly efficient and can be
used to numerically construct distributions of stochastic vari-
ables that are analytically intractable. The class of renewal
point processes [8] has gained particular popularity in theo-
retical neuroscience [2,4—7]. In a renewal model the intervals
between successive events are independent and identically
distributed. Thus, a renewal process is fully characterized by
the distribution of interevent intervals. Selection of the spe-
cific model distribution allows one to incorporate some im-
portant physiological characteristics of spiking neurons such
as an absolute and relative refractory period [6,7,9]. In the
intact nervous system spiking neurons modulate their firing
rate with time as a means of dynamic stimulus encoding and
information processing. Point process models of neuronal
spiking that follow a dynamic firing rate can be achieved
with inhomogeneous variants of the renewal model where
the process intensity follows a deterministic and explicitly
time-dependent function. [9-15].

In the renewal model the probability for the occurrence of
the ith spike at time ¢ depends solely on the process intensity
and the time that elapsed since the last spike i—1 at time
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T,_;<t, but there is no serial dependence on the previous
history of spiking. However, several types of neurons in dif-
ferent systems have been shown to violate the renewal as-
sumption of independent intervals in their spontaneous activ-
ity. The common feature of these neurons is a short-lived
negative serial correlation of their interspike intervals (ISIs),
which is likely to be a general property of neurons that fea-
ture a physiological mechanism of spike frequency adapta-
tion (see Discussion).

In this paper we propose a class of autoregressive point-
process models that incorporate serial correlation of inter-
event intervals for arbitrary serial correlation orders. Our
model describes the marginal interevent interval distribution
by the generalized gamma distribution which includes as
special cases the log-normal, the gamma, the exponential,
and the Weibull distributions. We derive expressions for the
most relevant empiric measures of the interval statistics and
perform maximum-likelihood estimates of the model param-
eters in our data set. Using physiologically plausible model
parameters, we investigate the effect of a negative serial cor-
relation on the variability of single-neuron discharge.

II. SERIAL INTERVAL CORRELATION IN DIFFERENT
NEURAL SYSTEMS

The phenomenon of a significant negative serial interval
correlation of order 1—i.e., the anticorrelation of neighbor-
ing intervals—is a common property of spiking neurons in
various systems. In the sensory periphery this has been ob-
served in the electrosensory P-type receptor of weakly elec-
tric fish [16,17], in the sensory ganglion receptors of paddle
fish [18], and in the ganglion cells in the retina of goldfish
[19] and cats [20,21]. In central parts of the mammalian
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TABLE I. Reports on negative first-order serial interval correla-
tion in different preparations and cell types.

Ref. Model system and neuron type sc?

[16] Weakly electric fish, isolated -0.52
P-type receptors afferent

[17] Weakly electric fish, isolated -0.35
P-type receptors afferent

[26]  Weakly electric fish, electrosensory -0.29
line lobe, pyramidal cells in vivo

[18] Paddle fish, sensory ganglion ~-0.4

[27] Cat splanchnic, and hypogastric -0.3
nerves in vivo

[19] Goldfish retina, ganglion cells in vivo ~ —0.13

[21] Cat retina, ganglion cells in vivo -0.06

[20] Cat retina, ganglion cells in vivo -0.17

[22] Cat lateral superior olive in vivo -0.2

[24] Rat somatosensory cortex (S1) -0.21
in vivo, regular spiking cells

[24] Rat somatosensory cortex (S1) -0.07
in vitro, pyramidal cells

[25] Rat medial entorhinal cortex in vitro [-0.1,-0.4]°
layer II stellate and layer III
pyramidal neurons

e Honeybee central brain in vivo -0.15

mushroom body extrinsic neurons

4SC: serial correlation coefficient; for the estimation method, refer
to the respective reference.

®This study reported a rate dependent serial correlation.

“Refer to Sec. III.

brain, the same serial statistics has been reported for brain
stem neurons in the lateral superior olive [22], in primate
somatosensory cortex [23], and more recently in rat cortical
neurons in vivo [24] and in vitro [24,25]. In the present paper
we report the existence of the same type of short-lived serial
dependence of ISIs for a class of central neurons in the
mushroom body of the insect brain (cf. Sec. III). In Table I
we summarized all quantitative accounts of a negative serial
correlation.

III. EXPERIMENTAL RESULTS

We investigated the serial dependences of ISIs in the
spontaneous activity of extrinsic neurons in the mushroom
body (MB) of the honeybee. The mushroom body is known
to play a significant role in learning and memory of insects
[28]. The extrinsic neurons constitute the readout of the MB,
and each cell receives converging input from thousands of
MB Kenyon cells and, thereby, typically integrates different
sensory modalities. Details of the in vivo preparation and the
extracellular recording technique are described elsewhere
[29,30]. In brief, we manufactured electrodes with three
closely spaced polyurethane-coated copper wires (14 wm in
diameter). The electrodes were inserted into the ventral part
of the a lobe close to the peduncle, targeting the mushroom
body extrinsic neurons, in particular the clusters Al, A2, A4,
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A3, and A7 [31]. Raw signals were measured differentially
from all three electrode pairs and bandpass filtered at
1-9 kHz using a Lynx-8 amplifier (Neuralynx, Tucson, AZ)
before analog-to-digital (A/D) conversion with a sampling
frequency of 20 kHz. Semiautomatic spike sorting was per-
formed to identify the activity of up to three single units
using Spike2 software (Cambridge Electronic Design, Cam-
bridge, UK). In order to minimize the inference of potential
spike sorting errors with our statistical estimates (see Discus-
sion), we considered for each animal (N=23) only the unit
that expressed the highest amplitude of the extracellular
spike wave form.

Neural activity was measured under spontaneous
conditions—i.e., when the animal was shielded from any
sensory stimuli—for up to 20 min. Although the experimen-
tal condition was controlled, single-neuron activity could un-
dergo short episodes with spontaneous modulation of its
spike frequency, sometimes in parallel to a spontaneous mo-
tor behavior. Such overt changes of the firing rate, however,
may severely compromise the statistical analysis of the ISIs
[32]. Thus, in a first step of our analysis we identified in each
data set the longest part of stationary activity. To this end, we
measured the spike count in successive time bins of a fix
length of either 1 s or 500 ms for a lower (<10/s) or higher
firing rate, respectively, and divided the total series of counts
into equal parts of 30 bins. Each subseries of the counting
process was then tested for stationarity. We adopt the notion
of weak stationarity of a time series [33], which requires
three conditions to be fullfilled: The series must have (i) a
constant mean, (ii) a finite variance, and (iii) its autocovari-
ance must be translation invariant for an arbitrary time lag.
Next, we performed the Phillips Perron unit root test (PP
test), which is explained in detail elsewhere [34]. Briefly, the
family of unit root tests estimates the likelihood of a random
walk behavior. The random walk is a linear nonstationary
time series. The PP test formulates the null hypothesis: The
time series has a unit root; i.e., the time series is not station-
ary. If for a given count series the deviation from nonstation-
arity was significant (P <<0.1), we considered it as stationary.
Thereafter, subsequent stationary parts were pooled and the
test was repeatedly performed until the longest stationary
part was found. We used the PPTEST function of the TSERIES
package in the R statistical environment to perform this test.
The truncation lag parameter for the linear regression was set
to 12(755)%%, suggested by [35]. Figure 1 displays the count
series for part of one single-neuron recording where black
color indicates epochs that were classified as stationary.

From the longest stationary spike train of each neuron, we
collected all ISIs and estimated their distribution. An ex-
ample histogram of event intervals is illustrated in Fig. 2
together with model fits of the log-normal (red) and the cen-
tralized gamma distribution (blue; for details on the good-
ness of fit, refer to Sec. IV). If the spiking process was re-
newal, an adequate formal model of the ISI distribution
would suffice to define the renewal model. However, we
found that the assumption of independent intervals was vio-
lated in the observed spike train of this neuron. This becomes
evident in the conditional mean of ISI length in Fig. 2(b),
which estimates for all intervals ISI that fall into a given
class of interval lengths (bin width 15 ms) the average length
of the successive intervals ISI,, ;.
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FIG. 1. Test for weak stationarity of the counting process. Spike
count of neuron No. 1 observed in successive intervals of 1 s length
as a function of time. Gray parts did not deviate significantly from
the null hypothesis of a nonstationary time series. Black parts sig-
nificantly deviated from this null hypothesis and were assumed to
be weakly stationary. See text for details on the test procedure.

In general, successive intervals were not independent; in
most neurons, we observed a tendency for short intervals to
be followed by longer ones and vice versa. This dependence
was expressed in a negative Spearman rank-order correlation
coefficient [36] of order p=1 (calculated for neighboring in-
tervals). This was found to be significant (P<<0.01, Wil-
coxon rank-sum test) in 14 out of 21 neurons (Fig. 3). The
example neuron in Fig. 2 exhibited a significant serial corre-
lation of —0.05. The average significant correlation coeffi-
cient was —0.15.

Next, we tested for significant higher-order serial correla-
tion of the intervals /; and 1;,,,, separated by lag p. We again
used Spearman’s rank-order correlation coefficient and esti-
mated the partial autocorrelation function (PACF [37]) where
for the pth-order correlation we use only every pth data
sample. This avoids spurious correlation of order p due to
correlations of lower orders [ <p. We found that none of the
spike trains exhibited a significant (P=0.01) correlation of
higher order p>1 and average correlation coefficients close
to zero (Fig. 3).

IV. CORRELATED POINT PROCESS MODEL AND
PARAMETER ESTIMATION

A linear history-dependent process can be modeled by an
autoregressive (AR) process within the limits of stationarity
and ergodicity conditions (details are elaborated in [37]). A
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FIG. 2. (Color online) Empirical interspike interval distribution
and conditional mean of one MB extrinsic neuron. (a) Histogram of
the length of N=1530 ISIs (gray). Log-normal (red) and a gamma
(dashed blue) model distribution for MLE parameters. (b) Condi-
tional mean (CM) of the (i+1)st interval in dependence on the
length of the ith interval (estimated in bins of 15 ms).
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FIG. 3. Partial autocorrelation function for experimentally ob-
served spike trains. Box plots describe the distribution of rank-order
correlation across N=21 neurons for different serial lags. In 14
cases, the sequence of ISIs exhibited a significant (P <0.01) nega-
tive correlation of lag 1. For higher lags (p>1) the serial correla-
tion did not significantly deviate from 0 (P=0.01). Here we tested
only neurons with a unimodal shape of the interval distribution.

general form of the autoregressive process with serial depen-
dence up to a finite lag p reads

Xi=B1 X1+ BX o+ - +Bst—p+8s’ (1)

where g is assumed to be independent and identically dis-
tributed with the specific mean u and finite variance o2. B3; is
the correlation parameter for the specific lag i.

Under stationary conditions the distribution of X; is con-
ditional of the distribution of &,. Hence, it is possible to
generate surrogate sequences with a specific marginal distri-
bution of interevent intervals. As for the renewal model, the
choice of the interval distribution is crucial. It determines to
a large extent the count and interval statistics of the process.
In practical terms, the model distribution should closely re-
semble the empiric ISI distribution of the particular neuron
type that is to be modeled.

A. Log-normal marginal distribution

In order to modify (1) for generating a series of events
consistent with our experimental findings, we need to specify
(i) the serial correlation structure and (ii) a marginal interval
distribution that describes well our experimental data. With
respect to the empirical correlation structure we may sim-
plify the general model (1) to consider only the first-order
serial dependence (8=8,), which we assume to be negative.
As a model for the interevent intervals, we chose here the
log-normal distribution. This model fits reasonably good to
our experimental data (see Fig. 2 and Table II) and leads to a
rather simple mathematical description. Thus we have

A, =exp(X,) =exp(BX,_ +&,), (2)

where g, is assumed to be distributed normally with mean u
and variance o2, and S describes the negative serial depen-
dence of the series X,. In fact, the series A; of correlated
intervals is the exponential transformation of the series of
disturbances X,. The properties of such transformations of
correlated random variables is discussed in great detail in
[38].
The mean and variance of X, are determined by
EIX,]= (3)
1-5

and
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TABLE II. Estimated parameters from experimental spike trains of ten neurons for the autoregressive log-normal and centralized gamma

model with first-order serial correlation [3 Neurons No. 5 and No. 7 showed a significant (P=0.05) deviation from a unimodal distribution.

Log-normal Centralized gamma
No. i & P? B & p p* B Cy
01 —3.245 1.361 0.090 —-0.006 0.797 0.103 0.339 -0.006 1.24
02 -2.239 0.545 0.000 —-0.268 4.291 0.028 0.000 —-0.268 0.66
03 —4.628 0.875 0.011 0.018 1.581 0.009 0.028 0.018 0.88
04 -3.057 0.721 0.000 —-0.189 2.409 0.024 0.013 -0.190 0.61
05 -1.521 1.048 0.759 —-0.424 1.129 0.321 0.238 —-0.442 0.96
06 —4.232 1.002 0.000 -0.103 1.303 0.017 0.000 —-0.103 0.86
07 -2.974 0.555 0.013 -0.062 3.762 0.016 0.477 —-0.062 0.51
08 -3.088 1.132 0.000 -0.215 1.047 0.075 0.000 -0.216 0.96
09 -2.955 0.568 0.049 0.007 3.695 0.016 0.780 0.007 0.51
10 -4.077 1.045 0.013 -0.068 1.226 0.022 0.222 —-0.068 1.06
4p: P-value, Kolmogorov-Smirnov test.
(5). The empiric interval distributions in Fig. 4(a) (gray his-
VIX]= 1-p (4) tograms) resemble well the model distributions (red). The
return maps of the log-transformed ISIs in Fig. 4(c) disclose
respectively. Thereafter, the expected value of A is the negative correlation of neighboring intervals and the em-
E[A] = ew/1- 20— ) piric estimate.s of the linear correlation coefﬁcient. [3,- of log-
s transformed intervals closely match the underlying model
and its variance is parameters. The empirical PACFs for serial correlations of
lag p=2 are close to zero.
V[AY] — (62;/./(1—,8)+02/(1—B2)) (e(rz/(l—ﬁz) _ 1)’ (6) ep

and hence the coefficient of variation of this series is

C[A,] = Ve 1= _ 1. (7)

The intensity N\ for this process can be derived directly from
(5) as

1 1
h= E[A] ow(1-pran0-p)’

(8)

The autocovariance of A is given in [38], Eq. (2.9).
As we incorporated only the first-order serial correlation
B, by iteration over lags we obtain the following:

Ay =exp(X,) = eXp< > Biss_i) - )
i=0

It is evident that the distribution of A, is conditional on
the distribution of &, if the stationary assumption holds (||
<1). Since the distribution of the g is normal, the distribu-
tion of A is asymptotically log-normal and the series is
negatively serially correlated.

Realizations of this autoregressive model are easily ob-
tained by numeric simulation. We performed two example
simulations in Fig. 4 where we defined the log-normal inter-
val distribution by the fix mean interval E[A]=50 ms and a
fix coefficient of variation C,[A]=0.5. The first-order serial
correlation parameter was either S=-0.1 (left) or 8=-0.5
(right). Note that by changing B8 and keeping E[A] and C,
fixed, we have to adjust o and w according to Egs. (7) and

B. Generalization of the model

We now propose the generalized gamma density as a
more general model for the marginal distribution of A,. For
x>0 this can be written as

& ( l)naxﬂa—le—(px)n_ (10)
F'(a)\p

This model incorporates some special cases that are
widely used to describe experimental ISI distributions of
regular spiking neurons. The exponential distribution ({)
=a=1; e.g., [1,6,32]) describes the well-known special case
of a Poisson process with only a single free parameter that
determines the mean interval and thus the process intensity.
The (centralized) gamma distribution (Q=1; e.g., [2,20]), the
Weibull distribution, and the log-normal distribution (e.g.,
[39,40]), which describes the limiting case for (¢— %) have
one additional free shape parameter.

Following the same scheme as in (2), we write

A, =exp(X,) = exp(BX,_; +£,), (11)

where g is assumed to be distributed generalized log-gamma
with the vector of parameters

{=(p,Q,0a). (12)

Since the distribution of &, is log-gamma, the distribution
of A will be asymptotically generalized gamma.
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FIG. 4. (Color online) Numeric simulations of the log-normal
model. The parameter of first-order serial correlation was set to
either B;=-0.1 (left) or B;=-0.5 (right). The parameters of E[A]
=50 ms and C,=0.5 were fixed for both cases. (a) Model (red line)
and empiric (gray histogram) interval distribution show a good
agreement. (b) Interval return map. The serial dependence of the
(i+1)st on the ith interval is difficult to see. The linear regression
(dashed line) with linear correlation coefficient @, of the interval
series A, underestimates the correlation parameter B;. (c) In the
interval return map of the log-transformed series log(A,) the strong
negative correlation is clearly visible (right). The empiric correla-
tion coefficient ,él is an unbiased estimate of the true correlation 3.
(d) PACFs estimated for serial lags p < 10.

C. Parameter maximume-likelihood estimation

The model (2) with marginal log-normal distribution has a
set of parameters: namely, u, o, and B. To obtain a
maximum-likelyhood estimator for the parameter set, we re-
write the probability density function of the log-normal dis-
tribution f; based on the normal distribution fy:

1
fL(As;lu"B’a-)zA_fN(ln AS;ILL’B’O-)' (13)

Thus, we can write the log-likelihood function of the log-
normal distribution (/;) as

PHYSICAL REVIEW E 79, 021905 (2009)

0.50
|

0.25
|

<

0.00

-0.25

-0.50

I T T T T
-0.50 -0.25 0.00 0.25 0.50

B

FIG. 5. (Color online) Comparison of linear correlation coeffi-
cient (black circles) and MLE estimator for ,@ (red triangles). Each
single estimate is based on a numeric simulation of 10 000 intervals
with parameters of neuron No. 1 in Table II. The serial correlation
parameter £ has been varied in the range [-0.99,0.99].

I B.olA LA, . A) == 2 In A
k

+ (. B.olln A In A,, ..., InA)).

(14)

Since 2, In A, is constant with regard to w, o, and 3, both
logarithmic-likelihood functions /; and [y reach their maxi-
mum with the same u, 8, and o. Hence, using the expression
for the maximum-likelihood estimators (MLEs) for the nor-
mal distribution, we can deduce the MLEs for the parameters
of the log-normal distribution [33]. The MLEs for the gen-
eralized gammamodel are given in [41]. Using the lemma
(14), we may obtain the MLEs for the generalized log-
gamma distribution. In practical terms, when estimating pa-

rameters from a sample {A} of experimentally obtained in-
tervals, we may first perform a logarithmic transformation
and then apply the MLE estimators on the transformed
sample {log(A)}.

Maximum-likelihood estimation ensures a bias-free pa-
rameter estimation with minimal variance of the estimator.
Applying nonoptimal estimators will lead to a biased esti-
mate. The linear correlation coefficient assumes a normal
distribution of the random variable and will introduce a bias
for log-normal distributed random variables. We illustrate
this in Fig. 5 where we simulated realizations of the model
described in (2) and subsequently obtained two different es-

timates ,[§ of the serial interval correlation parameter . The
red triangles in Fig. 5 indicate the estimated values obtained
by MLEs on the ordinate which closely match the true pa-
rameter values on the abscissa. However, the linear serial
correlation coefficient (black circles) strongly underestimates
the model inherent serial correlation 8 with an increasing
estimation error for increasing absolute values of (.

D. Empiric estimates of model parameters

In practice, we rarely know for certain that a sample of
observed event intervals is drawn from a specific distribu-
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tion. Instead, the best we can typically do is to provide evi-
dence that our observations are consistent with a distribution
model. A goodness-of-fit test can be performed to assess
whether the observations were likely to be drawn from the
hypothesized model distribution, which is particularly help-
ful when choosing between alternative models. We used the
Kolmogorov-Smirnov test to assess the goodness of fit of the
log-normal and the centralized gamma distribution to the
empiric ISI distribution for ten different neurons. In order to
perform the test correctly, distribution model parameters
were estimated based on the assumed distribution using
MLEs. The test results for ten example units are illustrated in
Table II. In summery, the test indicates that the model cannot
be rejected in approximately 75% and 50% of all neurons for
the log-normal and the centralized gamma distribution, re-
spectively (P=<0.01). Moreover, all units were tested for uni-
modality based on a test suggested in [42]. Only two neurons
showed a significant deviation of their ISI distribution from
unimodality (neurons No. 5 and No. 7 in Table II).

V. EFFECT OF SERIAL INTERVAL CORRELATION ON
COUNT VARIABILITY

Stochastic point processes are typically described by two
inherent stochastic variables. These are the intervals A be-
tween events and the event count Ny—i.e., the number of
events that are expected to fall within a certain time interval
of length 7. For any given point process, interval and count
statistics are closely related. We investigated the effect of
serial interval statistics on the variability of the event count
in numerical simulations of our model (2). To quantify the
count variability we used the Fano factor [14,43] (also “in-
dex of dispersion”) which normalizes the count variance by
the mean count across observations of length 7:

VINg]
E[N7]

JT:

For renewal models the count variability depends solely
on the dispersion of the interval distribution and it holds in
the limit of infinite observation that limy_ .J= Ci [6,8,44].
This relation will change if the interevent intervals are no
longer independent, but exhibit serial dependences. Cox and
Lewis [44] derived the following analytic expression for the
effect of serial interval correlation of order p on a point
process that is otherwise stationary:

o

lim J;=Co| 1+2X &, |, (15)

T— p=1

where §, denotes the autocorrelation function of the interval
sequence (i.e., the pth-order linear correlation coefficient)
[44]. Using our model (2), we explored the Fano factor as a
function of first-order serial interval correlation 8 in numeric
simulations. We again fixed the parameters of mean interval
wm and the C,. For each parameter value of 3, we then gen-
erated 10 000 point process realizations and computed the
Fano factor across all repetitions. Our results in Fig. 6(a)
show that J increases with increasing values of positive serial
correlation, while it decreases with increasing strength of
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FIG. 6. (Color online) Effect of serial interval correlation on
spike count variability. We obtained numerical spike train realiza-
tions using our model (2). We varied the serial correlation param-
eter B and adjusted the parameters (u, o) to obtain a fixed value of
C,. (a) Fano factor (J) as a function of 3 for three different values
of C, as indicated. The horizontal dotted lines indicate the expec-
tation J= Ci for a renewal process. The vertical dashed line repre-
sents the renewal model where 8=0. (b) Ratio of J and Cf. For the
physiologically relevant range with negative first-order serial corre-
lation Be[-0.5,-0.1] (cf. Table I), the Fano factor is clearly
smaller than the Ci (gray shaded area). For the renewal model
(B;=0) we find J/ C3ZI as expected. Each data point represents
10 000 trials. Each trial comprised on average 100 spikes; this num-
ber is sufficiently large to avoid a significant bias of estimation for
Fano factor and Ci [14]. The black square reproduces the results
given in [24] as the average for seven cortical neurons with signifi-
cant first-order serial correlation of ISIs (see Discussion).

negative correlation, up to a certain minimum. Our numeri-
cal predictions (open symbols) fit well to the analytic predic-
tion (15), which is based on estimates of the linear correla-
tion coefficients §p, again from numerical realizations of our
model. In Fig. 6(b) we directly explored the ratio J/C>. It
emphasizes the effect of serial correlation on count variabil-
ity in comparison to the renewal case for which J= Ci. We
conclude that the process (2) with a realistic negative corre-
lation strength in the experimentally observed range of S
e€[-0.5,-0.1] (cf. Table I) exhibits a count variance that is
up to 50% smaller than predicted from the renewal model.

VI. DISCUSSION

We report here a negative first-order serial correlation of
ISIs in the spontaneous activity of mushroom body extrinsic
neurons in the honeybee. The estimated negative correlation
was generally weak, but significant in the majority of units.
Short-lived serial interval correlations have been previously
observed in the spontaneous activity of various different
types of neurons and with different correlation strengths up
to approximately —0.5 for neighboring intervals, as summa-
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rized in Table I. This indicates that the spiking processes of
those neuron types generally exhibit a nontrivial dependence
on the spiking history. In other words, the dynamics under-
lying a neuron’s spike generation is not reset after each spike
as is assumed in the prominent renewal model as well as in
many computational single-neuron models.

A. Effect of spike sorting errors

Why are there so few reports on the negative interval
correlation in the activity of single neurons in central brain
structures (cf. Table I)? One possible explanation is the gen-
eral nonstationary nature of spiking activity in the living
brain where firing rates are modulated on different time
scales. This generally introduces positive serial correlations
that can mask negative interval correlations. A second expla-
nation applies to very low firing rates. In the limit of zero
firing rate, all point processes will converge to a Poisson
process [26] and thus serial dependences become extinct. If
the spike train shows a sufficient degree of stationarity and if
the firing frequency is not very low, however, there is one
more plausible explanation. Potential errors during the pro-
cedure of spike sorting in extracellular recordings may lead
to the false assignment of individual spikes to one single unit
(false positive spikes) or to missed spikes of one neuron
(false negative spikes). Both types of errors will reduce the
strength and significance of the empircial correlation mea-
sure (simulations not shown) [75] . In practice, spike-sorting
errors are inevitable and abundant. E.g., the rate of false
positive assignment has been estimated to reach =10% in
the neocortex and a similar number of spikes of a particular
neuron are likely to be missed (e.g., [45,46]). This can
readily explain why the phenomenon of serial interval corre-
lation has been largely overlooked in in vivo preparations
where single-neuron activity is accessible mainly through ex-
tracellular recording techniques, in particular in the awake
animal. Conversely, if we assume that neurons of a certain
class do exhibit a particular serial correlation pattern, we
might be able to exploit this knowledge in the context of a
spike-sorting procedure. In particular, we suggest here to use
the significance of the observed first-order negative serial
correlation of a putative single unit as a post hoc quality
measure for the success of the spike sorting algorithm. This
will require the continuous measurement of stationary spon-
taneous activity during parts of the experiment.

B. Cause of negative serial interval correlation

The feature of negatively correlated intervals is likely to
be a neuron intrinsic property caused by the same cellular
mechanisms that underlie spike frequency adaptation (SFA).
The combinatorial effect of calcium influx associated with
action potential generation, slow decaying intracellular cal-
cium dynamics, and a calcium-dependent potassium current
mediates the so-called slow afterhyperpolarization (e.g.,
[47-52]). Benda and Herz [53] reviewed the mechanisms
underlie the SFA in great detail. In the spontaneous state, this
adapting mechanism may lead to an alteration of short and
long intervals. Conversely, significant anticorrelation of
neighboring intervals in experimental spike trains is indica-
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tive of SFA [52] and measures of negative serial correlation
may be applied to actually collect evidence for SFA in re-
cordings from awake animals. However, one cannot exclude
the possibility that the statistics of the synaptic input under
spontaneous conditions causes or alters the serial statistics of
the output spike train. For example, in the primary afferent
neurons of the electrosensors in the paddle fish, serial corre-
lation of alternating sign exists up to very high serial orders
[18,54,55]. This is due to an oscillatory input from hair cells
that couples to a second neuron intrinsic oscillator. In an
aged preparation where the primary afferent is devoid of its
input and thus decoupled from the afferent oscillation,
higher-order correlations rapidly decay except for the strong
negative first-order correlation, which is caused by neuron
intrinsic properties [55].

C. Computational models

We briefly discuss existing models at different levels of
abstraction that have been shown to reproduce the experi-
mentally observed negative serial correlation. The choice of
a model at the appropriate level of complexity obviously
depends on the specific questions under study [56]. Zacksen-
house et al. [57] devised a compartmental model of the prin-
cipal cells of the mammalian lateral superior olive (LSO).
Only the inclusion of Ca**-dependent K* channels could re-
produce a negative serial dependence of neighboring ISIs
that resembled those observed in in vivo single-unit record-
ings from the LSO of an anesthetized cat [22]. In the same
issue, Wang [51] presented a biophysical model of a cortical
pyramidal neuron with one single dendritic and a somatic
compartment. Incorporation of a voltage gated Ca®* conduc-
tance and a Ca**-dependent K* conductance produced a pro-
nounced SFA behavior and negative serial correlation of suc-
cessive intervals for stationary input conditions. The model
predicted that the strength of the negative correlation in-
creases with the output firing rate. This has recently been
confirmed in an experimental in vitro preparation [25] and
quantitative prediction for the average correlation coefficient
of —0.3 was well met by the recent experimental estimates
listed in Table I.

Using a generalized leaky integrate and fire (IF) model
with spike frequency adaptation, Liu and Wang [52] pre-
dicted values for negative serial interval correlations in cor-
tical pyramidal neurons, again in the range of —0.19 to
—0.24. Recently, Muller et al. [58] presented a conductance-
based IF model with SFA. The neuron, when driven by ex-
citatory and inhibitory synaptic input, reproduces negative
serial interval correlation, the strength of which is rate de-
pendent. This model can be reduced to a Markov process for
spike-frequency-adapting neural ensembles by adiabatic
elimination of fast variables [58]. This elegant approach syn-
thesizes existing mean adaptation approaches, population
density methods, and inhomogeneous renewal theory, result-
ing in a unified and tractable framework which goes beyond
renewal and mean-adaptation theories by accounting for cor-
relations between subsequent interspike intervals.

At the next level of reduced complexity, the classic IF
model has been modified to produce negative interval corre-
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lations by numerical simulation. Introducing a dynamic fa-
tigue of the spike threshold that decays exponentially with
physical time introduces a threshold memory [17,59-62].
The maximal order and strength of significant serial correla-
tions is then rate dependent. This model finds analytic treat-
ment in [63]. A simpler modification of the IF model [64]
assumes a threshold memory of fixed serial order k and thus
produces negative serial correlations only up to order &, in-
dependent of the rate.

D. Point process models

Point processes represent a different category of abstract
models. They do not provide a complete model of the single
neuron as an input-output system. In the mathematical defi-
nition, the point process intensity is a predescribed determin-
istic or stochastic function that describes the time depen-
dence of the event rate—i.e., of the neuron’s output. Synaptic
input per se does not find its analogy in these models. How-
ever, so-called cascade models (cf. [56]) combine an input
stage that converts synaptic drive into an intensity variable
with a random point process that generates the spike output.
The merits of a stochastic point process model are its ana-
Iytic formulation and a highly efficient numeric simulation.

We presented a simple autoregressive (AR) point process
model that may be seen as a straightforword extension of the
widely used renewal model and earlier interval models with
serial dependences [65,66]. Our approach models a linear
AR process that draws random disturbances € where the dis-
tribution of the random variable € is represented on a loga-
rithmic scale (e.g., the log-gamma distribution). We then ex-
ponentially transform the resulting sequence to obtain the
final sequence of non-negative intervals (e.g., gamma
model). The experimentally observed single-unit spike trains
showed in all but two cases an unimodal interval distribution
that in many cases could be well fitted by a log-normal or
centralized gamma distribution (cf. Table II). Our model can
be generalized for any well-defined interval distribution [67].
The linear serial correlation coefficients up to finite lag p
directly enter our model (2). Empiric estimates of the param-
eters (B; are obtained using appropriate ML estimators based
on a concrete model distribution. An alternative model-free
and reliable estimator is provided by Spearman’s rank-order
correlation coefficient ([36,68]; cf. Fig. 3) which replaces the
real-valued intervals by their rank among all intervals which
are assumed to be uniformly distributed. Its disadvantage in
comparison to the appropriate ML estimator is expressed in
the reduced power of the significance test [69]. For our
model we apply the PACF to estimate the serial correlation
parameters. This requires a sample size that increases only
linearly with serial correlation order p and allows for param-
eter estimation from realistic experimental sample sizes.

A more general approach for generating a history-
dependent sequence of intervals rests on the conditional
probability density function of an interval given the lengths
of the previous intervals as it is described in [7]. This ap-
proach of formulating a point process model with serial cor-
relations up to a lag p requires a model of the full
p-dimensional interval distribution, or likewise, the
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p-dimensional hazard term. The difficulty of this approach
obviously lies in the empiric estimate of the distribution pa-
rameters from experimental data. The number of intervals
that is required for a faithful estimate will generally increase
exponentially with the power of p+1.

The formulation of the conditional intensity function [70]
provides a rather general framework to relate the intensity of
a point process to its event history and other covariate func-
tions such as the intensity and spiking history of parallel
processes [71]. However, empiric estimation of the condi-
tional intensity function typically requires a large amount of
experimental data.

E. Reduced single-neuron discharge variability

The variability of the single-neuron discharge across re-
peated observations, as quantified by the Fano factor, has
been extensively studied in various experimental systems. It
may be interpreted as noise with respect to the signal en-
coded in the single neuron’s firing rate, which is implicitly
assumed to be identical in all experimental repetitions. In
point process theory interval and count statistics are directly
related. In the renewal case the variance of the interval dis-
tribution fully determines the variance of the spike count.
Numeric simulations of our nonrenewal model predict that
the variability of single-neuron discharge is smaller than ex-
pected under the renewal assumption for all neurons that
show the typical feature of a negative serial interval correla-
tion in their spontaneous activity. Experimental findings con-
firm this model prediction. Under spontaneous conditions,
the P-type receptor of the weakly electric fish produce regu-
lar spike trains with a strong first-order negative serial cor-
relation [16,17]. This resulted in a Fano factor that was much
smaller than predicted under the renewal assumption—i.e.,
for a random permutation of the empiric interval series [17].
We could show elsewhere [24] that cortical spike trains in
vivo exhibited a negative serial interval correlation with an

average strength of [Ai’% —0.2. This leads to a Fano factor that
was about 30% smaller than the Ci, which matches well our
numerical calibration in Fig. 6. Positive serial correlations of
interspike intervals, as e.g., induced through short- and long-
ranged autocorrelation of the input noise to a neuron, in-
crease the Fano factor [72,73]. In physiological terms, such a
temporal noise correlation may be interpreted as weak modu-
lation of the background input to a neuron, which results in a
subsequent modulation of the output firing rate [14] and
hence in positive correlations of the ISIs. Such modulations,
however, may easily violate the condition of weak stationar-
ity where we assume a constant mean interval.

The effect of a reduced count variability for negative se-
rial interval correlation is naturally also expressed in the
spectral analysis of a spike train. Under stationary condi-
tions, the negative serial correlation reduces the power of the
noise spectrum at low frequencies, which enhances the infor-
mation transfer in the low-frequency domain [18,63,64]. This
noise-shaping effect was confirmed in experimental data
from the P-type receptor of the weakly electric fish [74].
Note that this effect diminishes at high frequencies. This fre-
quency dependence is equally expressed in the dependence
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of the Fano factor on the length T of the observation interval.
For shorter intervals the Fano factor tends to unity,
limy_,oJ7=1, while the C, tends to zero, independent of the
stochastic nature of the underlying process [14].

As discussed before, we may expect that erronous spike
sorting has frequently led to the analysis of “single-unit ac-
tivity” that was not 100% single-neuron activity. If we as-
sume a negative interval correlation in the single-neuron ac-
tivity, we may deduce two major effects of spike sorting
errors on the statistics of the sorted unit activity [75]: (a) The
Fano factor increases when serial correlation diminishes, and
(b) the variance of the interval length (C,) likely increases
due to false positive and false negative spikes that truncate or
merge the original spike trains with a biased production of
too short and too long intervals. We may speculate that spike
sorting errors lead to a systematic over estimation of count
and interval variability, and thus may have caused a biased
picture of single-neuron variability. We believe that a cau-
tious reevaluation of serial spike train statistics and of spike
count variability is necessary particularly in the in vivo ac-
tivity of central neurons. As we have discussed elsewhere
[14], additional factors may lead to an overestimation of the
true single-neuron variability in experimental recordings
from awake animals. In central brain structures the most
prominent influence is to be expected from ongoing activity
that is not directly related to the experimental task under
observation [76-78].

As outlined above, we hypothesize that the large class of
neurons that feature an intrinsic SFA mechanism generally
exhibit a negative serial correlation under spontaneous con-
ditions. We may thus formulate the working hypothesis that
the SFA mechanism reduces count variability not only under
spontaneous conditions, but generally also under response
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conditions. This would result in a more reliable transmission
of an input signal in favor of a rate code and might improve
stimulus decoding in downstream neurons. Along these lines,
Chacron et al. could show that the noise shaping due to the
nonrenewal spike train structure in the population of afferent
receptor neurons improved stimulus representation in
postsynaptic cells [74]. Liidtke and Nelson demonstrated in a
model study that postsynaptic neurons can directly exploit
the nonrenewal structure of a presynaptic spike train and
benefit from an enhanced sensitivity to weak signals on a
noisy background [62].

F. Open-source tools

We provide implementations of various tools for numeric
point process simulation and parameter estimation within the
FIND open-source toolbox for neural data analysis with Mat-
lab [79] (http://find.bcen.uni-freiburg.de/). Implementations
in Python will be made available at the portal site of G-Node
[80] (www.g-node.org), the German node of the International
Neuroinformatics Coordinating Facilites (INCF).
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