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Abstract. The navigation capabilities of honeybees are surprisingly
complex. Experimental evidence suggests that honeybees rely on a map-
like neuronal representation of the environment. Intriguingly, a honeybee
brain exhibits approximately one million neurons only. In an interdisci-
plinary enterprise, we are investigating models of high-level processing in
the nervous system of insects such as spatial mapping and decision mak-
ing. We use a robotic platform termed NeuroCopter that is controlled
by a set of functional modules. Each of these modules initially repre-
sents a conventional control method and, in an iterative process, will be
replaced by a neural control architecture. This paper describes the neu-
romorphic extraction of the copter’s ego motion from sparse optical flow
fields. We will first introduce the reader to the system’s architecture and
then present a detailed description of the structure of the neural model
followed by simulated and real-world results.

Keywords: neural networks, neuromorphic computation, biomimetics,
self-localization.

1 Introduction

For decades, honeybees have been used as a model organism to study navigation.
They display a rich set of complex navigational capabilities [4]9]. Bees integrate
the path they travelled over extended periods of time and keep a robust approxi-
mation of the direction to their hive [I6]. Recent experimental evidence suggests
that - throughout their foraging carreers - bees form a complex map-like memory
[TO/TTIT2]. Intriguingly, this map might tell the bees where landmarks are (in an
allocentric coordinate system) as opposed to the simplistic alternative that only
route memories are formed and triggered by landmarks. Bees display remark-
ably robust and flexible navigation. They can switch from outbound to inbound
routes depending on environmental conditions, choose different targets to visit
and even fly novel shortcuts between known locations.

It is desireable to understand the neuronal mechanisms behind the cogni-
tive processes like mapping and decision making in the honeybee for two main
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reasons: First, on the level of neuronal computation we might discover basic com-
putational motifs and structures responsible for general navigation tasks such
as path integration, sensor fusion, state estimation and alike. Second, we want
to build robots with similar cognitive capabilities eventually. Recent robotic
systems, whether flying or on the ground, already implement methods for simul-
taneous localization and mapping (SLAM). However, we are interested in the
evolution of a neural programming paradigm, which we believe will emerge as
an alternative to conventional programming techniques. The paradigm involves
three steps: First a complex "brain” is programmed by defining the principal
connection scheme of different neural ”black boxes” for certain low-level and
cognitive functions of a robotic agent. This raw brain is then trained in a sim-
ulation that approximates reality sufficiently for the task to be solved and uses
techniques as e.g. structural evolution and reinforcement learning to arrive at a
brain structure with satisfying performance (e.g. [1]). Then, the matured brain
can be copied to the robot that in turn will learn in the real world to fine-tune
its brain.

Today, it is still impractical to use complex (spiking) neural networks on au-
tonomous robots since the processing power necessary can not be carried on-board.
In the near future, analog neuromorphic hardware (sub-theshold VLSI circuits)
will become a powerful alternative to conventional clocked processing units in mo-
bile robots due to their massive parallel processing capabilities and low power con-
sumption [6/13]. Currently, existing analog chips implement only a low number of
neurons. The inter-variability of the transistors is still unfeasibly high due to the
production process and lacking temperature robustness [14]. However, a great deal
of time and financial investments is dedicated to the development of better hard-
ware and industrial production processes. Eventually, neuromorphic hardware will
complement conventional processing units in mobile robots.

In an interdisclipinary project with roboticists and neuroscientists (”Project
NeuroCopter”) we are investigating neural models of honeybees’ navigational
capabilities and use 3D world simulations and a flying robotic platform to test
them. The neural modules are yet simulated in software using Matlab for ANN-
models and the neuron simulator IQR [2] for their spiking counterparts. The
copter (or the simulated agent in the 3D simulation) sends sensory data to the
brain simulation via an interface module that translates numeric data to spikes.
The neuro-modules are continuously executed and the activity of pre-defined
output neurons is read out and sent back to the real or simulated agents via the
interface module. Our long-term goal is to use analog neuromorphic hardware
on the copter to reach full autonomy.

This paper presents our approach starting from the mechanics and electronics
of our copter, followed by a detailed description of a neuro-module for the com-
putation of the copter’s six-dimensional ego motion vector. This module is the
first within a computation scheme that represents an initial model of landmark
mapping and localization refinement as depicted in Figure [l We will conclude
by discussing future prospects, new neuro-modules and new models of complex
insect navigation.
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Fig. 1. This figure depicts a connection scheme modeling a central aspect of honeybee
navigation: landmark mapping and self-localization based on known landmarks. The
connection scheme is composed of neuro-modules, each receiving input at the left side of
the respective box and each having a set of output neurons, symbolized by the smaller
box to the right. Each module might contain an arbitrary structure and wiring. In
the upper left part the neuro-module for ego-motion extraction receives optical flow
input from the conventional computer. Its output, a six-dimensional vector coded in
an ensemble of neurons, is fed into a module that rotates the ego-motion according to
a compass value and translates the motion into an allocentric coordinate system. The
output is integrated in the following module which computes the current estimate of
the copter’s position. This estimate is fed into a neural module responsible for tracking
different hypotheses of the own location (e.g. [3]). When landmarks are recognized
(either within the neuromodule or outside) their identity is represented by the output
of the object recognition module. Its location is fed into the central map, an associative
network that receives input from the transfer module which integrates and distributes
information among various modules. The confidence module represents the confidence
in the position stored in the map. Low confidence drives the transfer network to project
the copter’s location (as represented by the state estimator) to the map. Is the sensed
object known (high confidence) the transfer network updates the state estimation with
the output of the map. Medium confidence values result in a mix of both strategies.
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2 Mechanics and Electronics of Neurocopter

The copter is a custom built quadrotor. Four carbon fiber tubes are plugged
into a central aluminum cross joint milled and turned down to a weight of 30
g. At the end of each tube a brushless DC motor (AC2836-358) is affixed with
a custom holder. Each motor is driven by an ESC (electronic speed control,
jDrones AC20-1.0) connected to an ArduPilotMega (APM) flight control board
which is commercially available and serves as low-level motor controller and
flight stabilizer. The board is connected to a GPS unit (MTek GTPA010) and
offers common intergrated accelerometer, gyroscope and barometer. The APM
connects to a 2.4 GHz 8 Channel radio receiver (Turnigy 9X8CV2) that works
with a remote control (Turnigy TGY 9X) for manual / failsafe steering. It also
connects through a serial interface with a Linux embedded Cortex A8 based PC
(IGEP v2 DM3730). The IGEP runs a message dispatcher that receives UDP
packets from the ground station and either collects data from the APM via
the serial interface or executes programs on the Linux device itself. The ground
station is used for high level control, such as setting semi-automatic behaviors
such as starting, landing, position hold, altitude hold or waypoint following. The
ground station also collects sensory data for visualization and forwarding to the
brain simulation. A common webcam (Logitech Pro 9000) is connected to the
IGEP via USB. The total weight of the system is 1340 g and the additional
payload possible is approximately 1.5 kg.

Fig. 2. Photograph of the flying NeuroCopter. The quadrotor frame is built from car-
bon fiber tubes and an aluminum cross joint. The flight control electronics based on
the Arduino platform, motors and power supply are standard components. A Linux
board is used for wireless communication, camera readout and basic computations.
Most processing is done on the ground station’s computer.

3 Neuromorphic Extraction of Ego Motion

3.1 General Setup

On the embedded system, we compute a sparse set of image features [15] which
are tracked with a pyramidal version of the tracker described in [§]. For each
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cell of a 5 x 5 grid optical flow vectors are averaged (Figure [l depicts a sample
image taken in flight). The resulting set of 25 motion vectors are sent down to
the ground station via Wifi. The ground station translates the new data set and
feeds it to a neural network.

3.2 Simulated Optical Flow

Before developing the neural module we asked whether the optical flow output
can be unambiguously assigned to the respective ego-motions. For example, a
roll motion produces mostly parallel low on the image plane as would do a
translational sidewards motion (which might occur due to gusts). We therefor
simulated a three-dimensional terrain and modelled the camera in use. Artificial
optical flow was computed by moving or rotating the camera and projecting a
number of ground features onto the image plane before and after the camera
motion. Figure B depicts the resulting flow in the simulated world.

The optical flow on the image plane was then averaged in a 5 x 5 grid of
bins. Each action @ (a six-dimensional ego-motion vector) thus is assigned a
50-dimensional data point T (25 bins, each having a two-dimensional vector in
the plane). Consequently, we wanted to learn which pairs of actions (@';, @)
have a high dissimilarity but produce a pair of similar flow outputs (b, b ;).
To this end, all data points in the input and output space were normalized
such that the absolute maximum actions were vectors of unit length. In the
next step, two (eucledian) distance matrices for all pairs in each vector space
were computed. Each entry in the distance matrices expresses the similarity of
actions or results. Low values denote very similar vectors. To make distances
comparable between the two vector spaces, again, the distances were normalized
to values between 0 (equal) and 1 (maximum dissimilarity). In the next step all
inter-space distances were computed resulting in a set of action-pair-to-result-
pair distances. The largest values in this set indicate action pairs having high
dissimilarity but corresponding to similar result pairs (or vice versa, although
this is another problem not adressed here).

By evaluating the largest distance pairs, we found that some complex mo-
tions (high rotational and translational components) might counterbalance the
optical flow. If, for example, the copter would rotate into a positive pitch (lean
forward), the flow on the image plane would point upwards. If the copter moves
forward parallel to the ground surface an opposed optical flow is produced. If
the altitude of the copter, the rotational and the forward speed fall into a certain
range the flow cancels out and the inverse computation would produce a wrong
result. However, this movement (within the erroneous range mentioned) might
not happen often under normal operating conditions (a forward pitch normally
preceeds the translational motion but strong winds might push the copter in the
rotational movement). Secondly, roll and sideward motions or pitch and forward
motions do produce similar but not equal optical flow fields: a neural network
might well be able to separate both actions with feasible precision.
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Fig. 3. Rotating a virtual camera (symbolized by the pyramid in the left figure) over a
surface introduces image motion on the camera plane. The left figure depicts a three-
dimensional surface with a selection of point features (white dots). We simulate the
optic flow by projecting those ground features onto the camera plane before and after
a certain camera motion. The camera image is divided into 25 bins in which the flow
vectors are averaged (blue arrows in the right figure). Those average vectors are the
input to the neural network for the ego-motion computation.
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We trained a three-layered feed-forward artificial neural network (ANN) us-
ing the simulated ego-motion / action pairs. We then tested the reconstruction
of a simulated flight by iterating the following commands over a number of
time steps:

e move the camera according to a certain (smoothed) six-dimensional ego-
motion function

e obtain the flow field by tracking the ground features’ projection on the image
plane

e average flow vectors in each of the 5 x 5 bins

e feed 50-dimensional input vector into ANN and read result vector

4 Results

The resulting ego-motion could then be integrated over time to reproduce the
flight curve. Figure [ visualizes both the trajectory computed from the input
velocities and the network’s reproduction. Apparently, the result needs improve-
ment. The reproduction follows the input upwards but substantially deviates
from it. The subspace of possible inputs that although being similar are sup-
posed to produce differing outputs could not be learned with optical flow input
alone. Feeding the copter’s altitude to the network improves the network’s per-
formance drastically. This is intuitive: translations in high altitude produce only
small flow vectors, whereas rotations are independent of scene depth. It is possi-
ble to significantly improve the networks output by updating an initial altitude
hypothesis using the ego-motion’s upward component and feed this altitude ap-
proximation back to the network. This value will accumulate even small errors
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Fig. 4. Integrating the output of the neural network yields a flight trajectory that
should preferably equal the trajectory created by integrating the input motions. The left
image shows the resulting flight reconstruction of a network that was trained without
altitude information. Using the output of the network to update an altitude estimation
which is fed back to the network in the following time step yield a precise reproduction
of the input.
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Fig. 5. This figure shows a camera frame captured in-flight over the Institute of Com-
puter Science at Free University Berlin. The frame is overlaid with optical flow features
(green points) and average flow vectors (in red) in each of the 25 image bins.
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Fig. 6. The figure depicts the flight path reconstruction of a 70 seconds video sequence
[7] recorded under strong wind conditions. The path, as computed by the neural mod-
ule (blue line) resembles closely the trajectory flown (GPS reference trajectory, green
dash-dotted line). Fast maneuvers and high flight speeds however lead to significant
accumulation of error at the highest point of the path.
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Fig.7. The reconstruction of the flight path for x, y and z-coordinates. The blue
curves depict the network’s reconstruction, the green dash-dotted line represents the
GPS reference data and the red line describes their difference. Maximum errors for
altitude, y-position and x-position are: 5.9 m, 2.9 m, 1.5 m, respectively.

in the computation over time. It is conceivable to either use the copter’s barom-
eter or GPS sensor to refine or define the altitude value entering the network.
It would also be conceivable to recalibrate the value by static up- or down-
movements that produce imploding or exploding flow vectors of a length that is
inversely proportional to the altitude.

We tested the ego-motion network module on our copter without XXX feeding
back altitude information from the barometer. The test flight was controlled
manually by a human pilot. Optical flow was computed on-board and sent down
to the ground station. The flow data was fed into the proposed network and the
resulting ego-motions were integrated to reproduce the flight trajectory taken.
Onboard sensory data was also logged at 50 Hz (gyroscope and accelerometer)
and 5 Hz (GPS), respectively. Figure [l shows the resulting flight path. A video
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of the flight sequence with an optical flow overlay can be downloaded at [7]. The
reproduction of the flight path resembles closely the actual flight path taken
with respect to planar coordinates over ground and altitude.

5 Conclusions and Future Work

This paper shows a neural network structure that computes a six-dimensional
ego-motion vector from sparse optical flow fields. The network does not require
additional sensors other than the camera used. It yields a sufficiently precise
estimation of the motion state of the copter that can be processed further in our
neural processing scheme.

Since GPS and barometer on the copter are rather imprecise our confidence
in a validation using these references is low. We are currently integrating a sonar
for higher altitude precisison and are implementing a conventional, non-neural
optical flow odometer. Both sensory systems will be used to increase precision of
the state estimation. However, the proposed neural system does not necessarily
have to be of high precision. One of our aims is to form a memory of the position
of landmarks in the neural network. A landmark that is discovered the first time
will be assigned the current allocentric self-position. The more often a landmark
is revisited from different directions the better the stored position will get and the
higher the confidence in this value. If the copter encounters a known landmark
the position will tune the self-localization network and improve the copter’s own
position estimate.

The focus of this work lies in the formulation of our general approach to in-
vestigate neural processing units for navigation in bees. The neural module for
the extraction of the robot’s ego-motion exemplifies the approach on the module
level. We are currently experimenting with prototypes of the neuro-modules for
state estimation and the transfer function as shown in[Il The scheme however is
not complete. The neural network might be able to map landmarks and use this
information to refine the copter’s postion estimate. Other cognitive processes,
such as decision making or motivation for certain behaviors are not yet integrated
into the model. In the near future conventionally implemented functionality will
be replaced step by step by neural modules. In the upcoming summer period we
are planning to conduct behavioral experiments with the copter. We will investi-
gate the question whether the model can reproduce behaviors observed in flights
of real bees (e.g. novel shortcuts). Consequently, we will test different models of
insect navigation (e.g. [5]) and compare the resulting behavioral repertoire to
the one found in nature.
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