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In their natural environment, animals experience a complex and dynamic visual scenery.

Under such natural stimulus conditions, neurons in the visual cortex employ a spatially
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and temporally sparse code. For the input scenario of natural still images, previous work

demonstrated that unsupervised feature learning combined with the constraint of sparse

coding can predict physiologically measured receptive fields of simple cells in the primary

visual cortex. This convincingly indicated that the mammalian visual system is adapted to

the natural spatial input statistics. Here, we extend this approach to the time domain in

order to predict dynamic receptive fields that can account for both spatial and temporal

sparse activation in biological neurons. We rely on temporal restricted Boltzmann

machines and suggest a novel temporal autoencoding training procedure. When tested

on a dynamic multi-variate benchmark dataset this method outperformed existing models

of this class. Learning features on a large dataset of natural movies allowed us to model

spatio-temporal receptive fields for single neurons. They resemble temporally smooth

transformations of previously obtained static receptive fields and are thus consistent with

existing theories. A neuronal spike response model demonstrates how the dynamic

receptive field facilitates temporal and population sparseness. We discuss the potential

mechanisms and benefits of a spatially and temporally sparse representation of natural

visual input.
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1. Introduction

Physiological and theoretical studies have argued that the
sensory nervous systems of animals are evolutionarily
adapted to their natural stimulus environment (for review

see Reinagel, 2001). The question of how rich and dynamic

natural stimulus conditions determine single neuron res-

ponse properties and the functional network connectivity in
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mammalian sensory pathways has thus become an important
focus of interest for theories of sensory coding (for review see
Simoncelli and Olshausen, 2001; Olshausen et al., 2004).

For a variety of animal species and for different modalities
it has been demonstrated that single neurons respond in a
temporally sparse manner (Reinagel, 2001; Jadhav et al.,
2009; Olshausen et al., 2004; Hromádka et al., 2008) when
stimulated with natural time-varying input. In the mammal
this is intensely studied in the visual (Dan et al., 1996;
Vinje and Gallant, 2000; Reinagel and Reid, 2002; Yen et al.,
2007; Maldonado et al., 2008; Haider et al., 2010; Martin and
Schröder, 2013) and the auditory (Hromádka et al., 2008;
Chen et al., 2012; Carlson et al., 2012) pathway as well as in
the rodent whisker system (Jadhav et al., 2009; Wolfe
et al., 2010). Sparseness increases across sensory processing
levels and is particularly high in the neocortex. Individual
neurons emit only a few spikes positioned at specific
instances during the presentation of a time-varying
input. Repeated identical stimulations yield a high reliability
and temporal precision of responses (Herikstad et al., 2011;
Haider et al., 2010). Thus, single neurons focus only on a
highly specific spatio-temporal feature from a complex input
scenario.

Theoretical studies addressing the efficient coding of
natural images in the mammalian visual system have been
very successful. In a ground breaking study, Olshausen et al.
(1996) learned a dictionary of features for reconstructing a
large set of natural still images under the constraint of a
sparse code to obtain receptive fields (RFs), which closely
resembled the physiologically measured RFs of simple cells in
the mammalian visual cortex. This approach was later extended
to the temporal domain by van Hateren and Ruderman (1998),
learning rich spatio-temporal receptive fields directly from
movie patches. In recent years, it has been shown that a
number of unsupervised learning algorithms, including the
denoising Autoencoder (dAE) (Vincent et al., 2010) and the
Restricted Boltzmann Machine (RBM) (Hinton and
Salakhutdinov, 2006; Hinton et al., 2012; Mohamed et al.,
2011), are able to learn structure from natural stimuli and
that the types of structure learnt can again be related to
cortical RFs as measured in the mammalian brain (Saxe et al.,
2011; Lee et al., 2008, 2009).
Fig. 1 – Described model architectures: (A) Autoencoder; (B) RBM
(subfigure C; see also Section 4), there is a hidden layer only at the
connecting the current as well as previous activations of the vis
instantiation for each sample time within the models delay dep
by lateral connections between the hidden units of consecutive
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Considering that sensory experience is per se dynamic
and under the constraint of a temporally sparse stimulus
representation at the level of single neurons, how could the
static RF model, i.e. the learned spatial feature, extend into
the time domain? Here we address this question with an
unsupervised learning approach using RBMs as a model class.
Building on an existing model, the Temporal Restricted
Boltzmann Machine (TRBM) introduced by Sutskever and
Hinton (2007), we introduce a novel learning algorithm with
a temporal autoencoding approach to train RBMs on natural
multi-dimensional input sequences. For validation of the
method, we test the performance of our training approach
on a reference dataset of kinematic variables of human
walking motion and compare it against the existing TRBM
model and the Conditional RBM (CRBM) as a benchmark
(Taylor et al., 2007). As an application of our model, we
train the TRBM using temporal autoencoding on natural
movie sequences and find that the neural elements develop
dynamic RFs that express smooth transitions, i.e. translations
and rotations, of the static receptive field model. Our model
neurons account for spatially and temporally sparse activities
during stimulation with natural image sequences and
we demonstrate this by simulation of neuronal spike train
responses driven by the dynamic model responses. Our
results propose how neural dynamic RFs may emerge natu-
rally from smooth image sequences.
2. Results

We outline a novel method to learn temporal and spatial
structure from dynamic stimuli – in our case smooth image
sequences – with artificial neural networks. The hidden units
(neurons) of these generative models develop dynamic RFs that
represent smooth temporal evolutions of static RF models that
have been described previously for natural still images. When
stimulated with natural movie sequences the model units are
activated sparsely, both in space and time. A point process
model translates the model's unit activation into sparse neu-
ronal spiking activity with few neurons being active at any
given point in time and sparse single neuron firing patterns.
; (C) Conditional RBM and (D) Temporal RBM. In the CRBM
current sample time whose activation is defined by weights
ible layer. The TRBM (subfigure D) has a hidden layer
endency and the temporal evolution of the model is defined
time steps.
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Fig. 2 – Static filters learned by the aTRBM on 20�20 image
patches. Note the mostly Gabor like filters of varying
orientation and frequency selectivity.
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2.1. The model

We rely on the general model class of RBMs (see Section 4.1).
The classic RBM is a two layer artificial neural network with a
visible and a hidden layer used to learn representations of a
dataset in an unsupervised fashion (Fig. 1A). The units
(neurons) in the visible and those in the hidden layers are
all-to-all connected via symmetric weights and there is no
connectivity between neurons within the same layer. The
input data, in our case natural images, activate the units of
the visible layer. This activity is then propagated to the hidden
layer where each neuron's activity is determined by the input
data and by the weights W connecting the two layers. The
weights define each hidden neuron's filter properties or its
RF, determining its preferred input.

Whilst the RBM has been successfully used to model static
data, it lacks in the ability to explicitly represent the temporal
evolution of a continuous dataset. The CRBM (Fig. 1C) and
TRBM (Fig. 1D) are both temporal extensions of the RBM
model, allowing the hidden unit activations to be dependent
on multiple samples of a sequential dataset. The models have
a delay parameter which is used to determine how long the
integration period on a continuous dataset is.

The CRBM has an instantiation of the visible layer for each
sample time within the model's delay range, each of which is
connected directly to the single hidden layer at the current
sample point. In the TRBM (Fig. 1D; see also Fig. 4.1) the
temporal dependence is modelled by a set of weights con-
necting the hidden layer activations at previous steps in the
sequence to the current hidden layer representation. The
TRBM and CRBM have proven to be useful in the modelling of
temporal data, but each again has its drawbacks. The CRBM
does not separate the representations of form and motion.
Here we refer to form as the RF of a hidden unit in one sample
of the dataset and motion as the evolution of this feature over
multiple sequential samples. This drawback makes it difficult
to interpret the features learnt by the CRBM over time as the
two modalities are mixed. The TRBM explicitly separates
representations of form and motion by having dedicated
weights for the visible to hidden layer connections (form)
and for the temporal evolution of these features (motion).
Despite these benefits, the TRBM has proven quite difficult to
train due to the intractability of its probability distribution
(see Fig. 4).

In this work we develop a new approach to training
Temporal Restricted Boltzmann Machines that we call Tem-
poral Autoencoding (we refer to the resulting TRBM as an
autoencoded TRBM or aTRBM) and investigate how it can be
applied to modelling natural image sequences. The aTRBM
adds an additional step to the standard TRBM training,
leveraging a denoising Autoencoder to help constrain the
temporal weights in the model. Table 1 provides an outline of
Table 1 – Autoencoded TRBM training steps.

Step Action

1. Static RBM training Constrain the static weights w using CD
2. Temporal autoencoding Constrain the temporal weights w1 to wd

3. Model finalization Train all model weights together using C

Please cite this article as: Häusler, C., et al., Natural image s
sparse code. Brain Research (2013), http://dx.doi.org/10.1016/j.br
the training procedure whilst more details can be found in
Section 4.1.3.

In the following sections we compare the filters learnt by
the aTRBM and CRBM models on natural image sequences
and show that the aTRBM is able to learn spatially and
temporally sparse filters having response properties in line
with those found in neurophysiological experiments.
2.2. Learning temporal filters from natural image
sequences

We have trained a CRBM and an aTRBM on natural image
sequence data taken from the Hollywood2 dataset introduced
in Marszalek et al. (2009), consisting of a large number of
snippets from various Hollywood films. From the dataset,
20�20 pixel patches are extracted in sequences 30 frames
long. Each patch is contrast normalized (by subtracting the
mean and dividing by the standard deviation) and ZCA
whitened (Bell and Sejnowski, 1997) to provide a training
set of approximately 350,000 samples. The aTRBM and CRBM
models, each with 400 hidden units and a temporal depen-
dency of 3 frames, are trained initially for 100 epochs on
static frames of the data to initialize the static weights W and
then until convergence on the full temporal sequences. Full
details of the models' architecture and training approaches
are given in the Experimental procedures section.
on single frame samples of the training data
using a denoising autoencoder on multi-frame samples of the data
D on multi-frame samples of the data

equences constrain dynamic receptive fields and imply a
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2.2.1. Static RFs
The static filters learned by the aTRBM through the initial
contrastive divergence training can be seen in Fig. 2 (note that
the static filters are pre-trained in the same way for the CRBM
and aTRBM, therefore the filters are equivalent). We obtain
Gabor-like patch filters resembling simple cell RFs in V1,
reproducing the typical result for a variety of methods (see
Introduction), statistics of which can be seen in Fig. 3. The RFs
of the hidden units are spatially located across the entire
image patch with some distinct clustering along the borders
(Fig. 3A). In 2D Fourier space (Fig. 3B) one can see a good
coverage of the space, representing frequency and direction
Fig. 3 – Static filter statistics – aTRBM: (A) histogram of the filters
(C) histogram of the filters preferred direction (showing a clear p
Visualization of the temporal transition weights for 3 time dela
and self-inhibition at delay¼3.

Please cite this article as: Häusler, C., et al., Natural image s
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selectivity, both these results being in agreeance with those
found in similar studies (see Cadieu and Olshausen, 2012;
Bell and Sejnowski, 1997, for example). The filters also display
a preference for cardinal (horizontal and vertical) orientations
(Fig. 3C), a phenomenon that has often been reported in
electrophysiological experiments of primary visual cortex
(e.g. Wang et al., 2003; Coppola et al., 1998).

2.2.2. Dynamic RFs
We then analysed how the static filters are connected
through the temporal weights learned during autoencoder
training by visualizing their evolution over time. The filters
spatial location; (B) histogram of the filters spatial frequency;
reference for cardinal directions) and (D) frequency. (E)

ys for the aTRBM. Note the strong self-excitation at delay¼1

equences constrain dynamic receptive fields and imply a
ainres.2013.07.056
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Fig. 4 – Dynamic RFs. 80 out of 400 hidden units with the
highest temporal variation from an aTRBM (A) and a CRBM
(B). For the pre-trained TRBM, we plot the most active units
as described in the text. Each group of 4 images represents
the temporal filter of one hidden unit with the lowest patch
representing time t and the 3 patches above representing
each of the delay steps in the model. The units are displayed
in two rows of 40 columns with 4 filters, with the temporal
axis going from top to bottom.

Fig. 5 – Spatial and angular evolution of two hidden units in
the aTRBM (subfigures A and B). The upper row shows the
center of each units receptive field in pixel space for the
most active units in the temporal evolution of one unit.
The lower row shows the strongest frequency component of
the filters for this same evolution. The unit in subfigure
(A) shows a clear spatial preference but is orientation
agnostic whilst the unit in subfigure (B) is less spatially
selective but shows a clear preference for vertically
oriented filters.
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discussed were learned by the aTRBM (see Eq. (1)) with our
training algorithm described in Section 4.1.3. To visualize the
dynamic RF of a hidden unit we clamped the activation of
that unit to 1 and set all other units to be inactive in the most
delayed layer of the aTRBM. We then proceeded to sample
from the distribution of all other hidden layers and chose
the most active units in every delay. This is shown in Fig. 4.
We have shown the most active units when a hidden unit is
active for the 80 units with highest temporal variation among
the subsequent filters. This, however, only gives us a super-
ficial look into the dynamics of the RFs. One way to look
further is to consider the n most active units at the second-
furthest delay and then sequentially clamp each of these to
an active state and look at the resulting activations in the
remaining layers. If one does this sequentially, we are left
with a tree of active units, 1 at time t�T, n at time t�ðT�1Þ,
and nT at time t. We can then look at what these units code
for. We have performed this procedure with two hidden
units, and to visualize what they code for we have plotted
the center of mass of the filters in frequency and position
space. This is shown in Fig. 5.

Visualizing the temporal RFs learnt by the CRBM is simpler
than for the aTRBM. We display the weight matrix W and the
temporal weights W1 to Wd for each hidden unit directly as a
projection into the visible layer (a 20�20 patch). This shows
the temporal dependence of each hidden unit on the past
visible layer activations and is plotted with time running
from top to bottom in Fig. 4B. The aTRBM learns richer filter
dynamics with a longer temporal dependency, whereas the
CRBM only seems to care about the visible layers at times t
and t�1, possibly because most of the variation is captured by
the visible-to-visible weights. The temporal profile of excita-
tion versus inhibition for the aTRBM can also be seen from
the profile of the connectivity matrix between its hidden
units. This is shown in Fig. 3E and one can note a transition
from self-excitation at delay¼1 to self-inhibition at delay¼3.

In Fig. 5 we analyse the filter histories of the aTRBM for
n¼3 and visualize for two of the hidden layer units, their
preference in image space, frequency and direction.
Please cite this article as: Häusler, C., et al., Natural image s
sparse code. Brain Research (2013), http://dx.doi.org/10.1016/j.br
For the unit in Fig. 5A there is a clear selectivity for spatial
location over its temporal evolution and activations remain
spatially localized. In contrast there is no apparent preference
for orientation. The unit depicted in Fig. 5B, on the other
hand, displays strong orientation selectivity, but the spatial
selectivity is not accentuated. These results are representa-
tive of the population and provide evidence for preferential
connectivity between cells with similar RFs, a finding that is
supported by a number of experimental results in V1 (Bosking
et al., 1997; Field and Hayes, 2004).

2.3. The dynamic RF model facilitates sparse coding

The temporal evolution of the spatial filter structure expres-
sed by single units in the dynamic RF model (Figs. 4 and 5)
renders individual units to be selective to a specific spatio-
temporal structure of the input within their classical RF. This
increased stimulus specificity in comparison to a static RF
model implies an increased sparseness of the units' activa-
tion. To test this hypothesis we quantified temporal and
spatial sparseness for both model approaches.
equences constrain dynamic receptive fields and imply a
ainres.2013.07.056
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Fig. 6 – Temporal and spatial sparseness of neuronal activity for static and dynamic RF responses. (A) Temporal sparseness
measured in 400 hidden layer units during 30 s of video stimulation is significantly larger for the dynamic (right) than the
static (left) RF model (Po10�5; Wilcoxon signed rank test). (B) Spatial sparseness measured across all 400 neurons is
significantly increased (Po10�5; Wilcoxon signed rank test) in the dynamic (right) RF model as compared to the static RF
model (left). (C) Sketch of cascade model for spike train generation. During video stimulation the activation curve of a hidden
layer neuron (left) expresses the deterministic probability of being active in each frame. A stochastic point process model
(center) generates action potentials (right) according to a time-varying intensity proportional to the activation curve. (D1–D3)
Temporal sparseness during 8 s of video stimulation. (D1) Activation curve of one hidden neuron for the static RF (blue) and
the dynamic RF (green) model with a temporal sparseness of S¼0.82 and S¼0.94, respectively. (D2) Repeated point process
realizations (n¼20) using the activation curves in (D1). (D3) Firing rate estimated as time histogram from 100 repetitions for
static (blue) and dynamic (green) RF model. (E1–E3) Spatial sparseness in the population of hidden layer neurons during video
stimulation. (E1) Average activation curves of hidden layer units for the static (blue) and dynamic (green) RF model. (E2) Spike
trains of N¼50 hidden layer neurons when using the static (red) or dynamic (blue) RF model. (E3) The fraction of active
neurons per video frame in the total population of 400 hidden units is considerably smaller for the dynamic RF model.

b r a i n r e s e a r c h ] ( ] ] ] ] ) ] ] ] – ] ] ]6
2.3.1. Temporal sparseness
We measured temporal sparseness of the single unit activa-
tion h using the well established sparseness index S (equation
(2)) introduced by Willmore and Tolhurst (2001) and described
in Section 4.2.1. The higher the value of S for one particular
unit, the more peaked is the temporal activation profile h(t) of
this unit. The lower the value of S, the more evenly dis-
tributed are the activation values h(t). The quantitative
results across the population of 400 hidden units in our
aTRBM model are summarized in Fig. 6A. As expected, units
are temporally sparser when the dynamic RF is applied with a
mean sparseness index of 0.92 (median: 0.93) compared to
the mean of 0.69 (median: 0.82) for the static RF. This is also
Please cite this article as: Häusler, C., et al., Natural image s
sparse code. Brain Research (2013), http://dx.doi.org/10.1016/j.br
reflected in the activation curves for one example unit shown
in Fig. 6D1 for the static RF (blue) and the dynamic RF (green)
recorded during the first 8 s of video input.

In the nervous system temporally sparse stimulus encod-
ing finds expression in stimulus selective and temporally
structured single neuron firing patterns where few spikes are
emitted at specific instances in time during the presentation
of a time varying stimulus (see Section 1). In repeated
stimulus presentations the temporal pattern of action poten-
tials is typically repeated with high reliability (e.g. Herikstad
et al., 2011). In order to translate the continuous activation
variable of the hidden units in our aTRBM model into spiking
activity we used the cascade model depicted in Fig. 6C and
equences constrain dynamic receptive fields and imply a
ainres.2013.07.056
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described in Section 4.2.2. The time-varying activation curve
(Fig. 6D1) is used as deterministic intensity function of a
stochastic point process model. This allows us to generate
repeated stochastic point process realizations, i.e. single trial
spike trains, as shown for the example unit in Fig. 6D2.
Clearly, the repeated simulation trials based on the dynamic
RF activation (green) exhibit a spiking pattern, which is
temporally sparser than the spiking pattern that stems from
the static RF activation (blue). This also finds expression in
the time histogram of the trial-averaged firing rate shown in
Fig. 6D3. The firing rate is more peaked in the case of the
dynamic RF, resembling the deterministic activation curve in
Fig. 6D1.
2.3.2. Spatial sparseness
Spatial sparseness (also termed population sparseness) refers
to the situation where only a small number of units are
significantly activated by a given stimulus. In the natural case
of time-varying stimuli this implies a small number of active
neurons in any small time window while the rest of the
neuron population expresses a low baseline activity. Again,
we use S (Eq. (2)) to quantify spatial sparseness from the
population activation h of hidden neurons and for each time
step separately. The results depicted in Fig. 6B show a
significantly higher spatial sparseness when the dynamic
RF was applied with a mean (median) of 0.92 (0.93) as
compared to the static RF with a mean (median) of 0.74 (0.74).

We demonstrate how the spatial sparseness for the static
and the dynamic RF model in the population of hidden units
affects spiking activity using our cascade point process
model. Fig. 6E2 shows the simulated spiking activity of all
ig. 7 – CRBM, TRBM, aTRBM and AE/MLP are used to fill in data
andom dimensions of the motion data are shown along with th
olumns), deterministically (middle column, grey), and as an aver
ottom of each column, one can see the Mean Squared Error (MS
000 sample test data. The aTRBM is the best performer of the si
nd TRBM. The deterministic AE/MLP has marginally better MSE
onger being a generative model. We find, however, that if one g
nd then takes the average of these, the MSE is reduced ever furth
his point of view, the aTRBM is the more advantageous model i
rial predictions, and if one is interested in reducing the MSE as
hereby reducing the single trial variation and increasing the pre

Please cite this article as: Häusler, C., et al., Natural image s
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400 neurons based on the activation hðtÞ of the hidden
neurons during 8 s of recording. Overall the static RF (blue)
results in higher firing rates. The stimulus representation in
the ensemble spike train appears more dense for the static RF
(blue) than in the case of a dynamic RF (green). As shown in
Fig. 6E3, fewer neurons were active at any given point in time
when they were driven by the dynamic RF model.
3. Discussion

We suggested a novel approach to unsupervised learning of
spatio-temporal structure in multi-dimensional time-varying
data. We first define the general topology of an artificial
neural network (ANN) as our model class. Through a number
of structural constraints and a machine learning approach to
train the model parameters from the data, we arrive at a
specific ANN which is biologically relevant and is able to
produce activations for any given temporal input (Section
2.1). We then extend this ANN with a Computational Neu-
roscience based cascade model and use this to generate trial
variable spike trains (Section 2.3).

The proposed aTRBM model integrates the recent input
history over a small number of discrete time steps. This
model showed superior performance to other models on a
recognized benchmark dataset. When trained on natural
videos that represent smooth sequences of natural images
the units in the hidden layer developed dynamic receptive
fields that retain the properties of the static receptive field
and represent smooth temporal transitions of their static
receptive field structure. This time-extension of the pre-
viously obtained static receptive fields increase the input
points from motion capture data (Taylor et al., 2007). Four
eir model reconstructions from a single trial (three leftmost
age of 50 generated trials (three rightmost columns). At the
E) of the reconstruction over all 49 dimensions of the entire
ngle trial predictors, producing a lower MSE than the CRBM
performance than the aTRBM, although at the cost of no
enerates 50 single trial predictions from the aTRBM model
er, allowing the aTRBM to far outperform the AE/MLP. From
n the respect that it can generate non-deterministic single
far as possible, can be averaged over a number of trials,
dictor performance.
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selectivity of each hidden unit. Consequently, each hidden
unit is activated in a highly sparse manner by only specific
spatio-temporal input scenarios.

3.1. Temporal autoencoding model

We have introduced a new training method for TRBMs called
Temporal Autoencoding and validated it by showing a sig-
nificant performance increase in modelling and generation
from a sequential human motion capture dataset (Fig. 7).
The gain in performance from the standard TRBM to the pre-
trained aTRBM model, which are both structurally identical,
suggests that our approach of autoencoding the temporal
dependencies gives the model a more meaningful temporal
representation than is achievable through contrastive diver-
gence training alone. We believe the inclusion of autoencoder
training in temporal learning tasks will be beneficial in a
number of problems, as it enforces the causal structure of the
data on the learned model.

We have shown that the aTRBM is able to learn high level
structure from natural movies and account for the transfor-
mation of these features over time. The statistics of the static
filters resemble those learned by other algorithms, namely
Gabor like patches showing preferential orientation of the
filters along cardinal directions (Fig. 2). The distribution of
preferred position, orientation and frequency (Fig. 3) is in
accordance with results previously found by other methods
(e.g. Cadieu and Olshausen, 2008; Bell and Sejnowski, 1997),
and the simple cell like receptive fields and cardinal selectiv-
ity is supported by neurophysiological findings in primary
visual cortex (Wang et al., 2003; Coppola et al., 1998). Impor-
tantly the temporal connectivity expressed in the weights
WM learned by the model is also qualitatively similar to the
pattern of lateral connections in this brain area. Preferential
connection between orientation-selective cells in V1 with
similar orientation has been reported in higher mammals
(Bosking et al., 1997; Field and Hayes, 2004; Van Hooser, 2007).
These lateral connections are usually thought to underlie
contour integration in the visual system. Here they arise
directly from training the aTRBM model to reproduce the
natural dynamics of smoothly changing image sequences.
One could say that, in an unsupervised fashion, the model
learns to integrate contours directly from the dataset.

The aTRBM presented here can be easily embedded into a
deep architecture, using the same training procedure in a
greedy layer-wise fashion. This might allow us to study the
dynamics of higher-order features (i.e. higher order receptive
fields) in the same fashion as was done here for simple visual
features. In this way one could envisage applications of our
approach to pattern recognition and temporal tasks, such as
object tracking or image stabilization.

3.2. The dynamic RF is a potential mechanism of sparse
stimulus encoding

There is strong evidence that encoding of natural stimuli in
sensory cortices – specifically in the visual and auditory
system – is sparse in space and time (see Section 1). Sparse
coding seems to be a universal principle widely employed
both in vertebrate and invertebrate nervous systems and it is
Please cite this article as: Häusler, C., et al., Natural image s
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thought to reflect the sparsity of natural stimulus input (Vinje
and Gallant, 2000; Olshausen et al., 2004; Zetzsche and
Nuding, 2005). Deciphering the neuronal mechanisms that
underlie sparse coding at the level of cortical neurons is a
topic of ongoing research.

Population sparseness critically depends on the network
topology. An initially dense code in a smaller population of
neurons in the sensory periphery is transformed into a
spatially sparse code by diverging connections onto a much
larger number of neurons in combinations with highly
selective and possibly plastic synaptic contacts. This is
particularly well studied in the olfactory system of insects
where feed-forward projections from the antennal lobe
diverge onto a much larger number of Kenyon cells in the
mushroom body with random and weak connectivity (Caron
et al., 2013) and thereby translate a dense combinatorial code
in the projection neuron population into a sparse code in the
Kenyon cell population (Jortner et al., 2007; Huerta and
Nowotny, 2009). Also in the mammalian visual system the
number of retinal cells at the periphery, which employ a
relatively dense code, is small compared to the cortical
neuron population in the primary visual cortex (Olshausen
et al., 2004). Another important mechanism responsible for
spatial sparseness is global and structured lateral inhibition
that has been shown to increase population sparseness in the
piriform cortex (Poo and Isaacson , 2009) and to underlie non-
classical receptive fields in the visual cortex (Haider et al., 2010).

A network architecture of diverging connections and
mostly weak synapses is reflected in the RBM models intro-
duced here (see Section 4 and Fig. 1). Initially an all-to-all
connection between the units in the input and in the hidden
layer is given, but due to the sparsity constraint most
synaptic weights become effectively zero during training. By
this, hidden layer units sparsely mix input signals in many
different combinations to form heterogeneous spatial recep-
tive fields (Fig. 2) as observed in the visual cortex (Reich et al.,
2001; Yen et al., 2007; Martin and Schröder, 2013). A novelty of
the aTRBM is that the learning of sparse connections between
hidden units also applies to the temporal domain resulting in
heterogeneous spatio-temporal receptive fields (Fig. 4A). Our
spike train simulations (Fig. 6) match the experimental
observations in the visual cortex: sparse firing in time and
across the neuron population (e.g. Yen et al., 2007; Martin and
Schröder, 2013).

Experimental evidence in the visual cortex suggests that
temporally sparse responses of single neurons to naturalistic
dynamic stimuli show less variability across trials than
responses to artificial noise stimuli (Herikstad et al., 2011;
Haider et al., 2010). Equally, in the insect olfactory system the
temporally sparse stimulus responses in the Kenyon cells
have been shown to be highly reliable across stimulus
repetitions (Ito et al., 2008). In our model approach, response
variability is not affected by the choice of a static or dynamic
RF model. The trained aTRBM provides a deterministic
activation h across the hidden units. In the cascade model
(Fig. 6C) we generated spike trains according to a stochastic
point process model. Thus the trial-to-trial spike count
variability in our model is solely determined by the point
process stochasticity and is thereby independent of the RF
type. Spike frequency adaptation (SFA, Benda and Herz, 2003)
equences constrain dynamic receptive fields and imply a
ainres.2013.07.056

dx.doi.org/10.1016/j.brainres.2013.07.056
dx.doi.org/10.1016/j.brainres.2013.07.056
dx.doi.org/10.1016/j.brainres.2013.07.056


b r a i n r e s e a r c h ] ( ] ] ] ] ) ] ] ] – ] ] ] 9
is an important cellular mechanism that increases temporal
sparseness (Farkhooi et al., 2012; Nawrot, 2012) and at the
same time reduces the response variability of single neuron
(Chacron et al., 2001; Nawrot et al., 2007; Farkhooi et al., 2009;
Nawrot, 2010) and population activity (Chacron et al., 2005;
Farkhooi et al., 2011, 2012). Other mechanisms that can
facilitate temporal sparseness are feed-forward (Assisi et al.,
2007) and feed-back inhibition (Papadopoulou et al., 2011).

3.3. Why sparse coding?

Encoding of a large stimulus space can be realized with a
dense code or with a sparse code. In a dense coding scheme
few neurons encode stimulus features in a combinatorial
fashion where each neuron is active for a wide range of
stimuli and with varying response rates (stimulus tuning).
Dense codes have been described in different systems,
prominent examples of which are the peripheral olfactory
system of invertebrates and vertebrates (e.g. Friedrich and
Laurent, 2004; Wilson et al., 2004; Krofczik et al., 2008; Brill
et al., 2013), and the cortical motor control system of primates
(e.g. Georgopoulos et al., 1982; Rickert et al., 2009).

In sensory cortices a sparse stimulus representation is
evident (see Section 1). Individual neurons have highly
selective receptive fields and a large number of neurons is
required to span the relevant stimulus space. What are the
benefits of a sparse code that affords vast neuronal resources
to operate at low spiking rates? We briefly discuss theoretical
arguments that outline potential computational advantages
of a sparse stimulus encoding.

The first and most comprehensive argument concerns the
energy efficiency of information transmission. Balancing the
cost of action potential generation relative to the cost for
maintaining the resting state with the sub-linear increase of
information rate with firing rate in a single neuron leads to an
optimal coding scheme where only a small percentage of
neurons is active with low firing rates (Levy and Baxter, 1996;
Laughlin et al., 2001; Lennie, 2003).

The argument outlined above is limited to the transmis-
sion of information and conditioned on the assumption of
independent channels. Nervous systems, however, have
evolved as information processing systems and information
transmission plays only a minor role. Then the more impor-
tant question is how does sparse coding benefit brain com-
putation? We consider three related arguments. In a spatially
sparse code, single elements represent highly specific stimu-
lus features. A complex object can be formed only through
the combination of specific features at the next level,
a concept that is often referred to as the binding hypothesis
(Knoblauch et al., 2001). In this scheme, attentional mechan-
isms could mediate a perceptual focus of objects with highly
specific features by enhancing co-active units and sup-
pressing background activity. In a dense coding scheme,
enhanced silencing of individual neurons would have an
unspecific effect.

A spatially sparse stimulus representation can facilitate
the formation of associative memories (Palm, 1980). A parti-
cular object in stimulus space activates a highly selective
set of neurons. Using an activity-dependent mechanism of
synaptic plasticity allows the formation of stimulus-specific
Please cite this article as: Häusler, C., et al., Natural image s
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associations in this set of neurons. This concept is theoreti-
cally and experimentally well studied in the insect mush-
room body where the sparse representation of olfactory
stimuli at the level of the Kenyon cells (Perez-Orive et al.,
2002; Honegger et al., 2011) is thought to underlie associative
memory formation during classical conditioning (Huerta
et al., 2004; Huerta and Nowotny, 2009; Cassenaer and
Laurent, 2012; Strube-Bloss et al., 2011). This system has been
interpreted in analogy to machine learning techniques that
employ a strategy of transforming a lower dimensional input
space into a higher dimensional feature space to improve
stimulus classification (Huerta and Nowotny, 2009; Huerta,
2013; Pfeil et al., 2013).

Theories of temporal coding acknowledge the importance
of the individual spike and they receive support from accu-
mulating experimental evidence (e.g. Riehle et al., 1997;
Maldonado et al., 2008; Jadhav et al., 2009). Coding schemes
that rely on dynamic formation of cell assemblies and exact
spike timing work best under conditions of spatially and
a temporally sparse stimulus representations and low back-
ground activity.
4. Experimental procedures

4.1. Machine learning methods

To develop the Temporal Autoencoding training method for
Temporal Restricted Boltzmann Machines used in this work,
we have extended upon existing work in the field of unsu-
pervised feature learning.

4.1.1. Existing static models of unsupervised learning
Two unsupervised learning methods well known within the
Machine Learning community, Restricted Boltzmann
Machines (RBMs) and Autoencoders (AEs) (Larochelle and
Bengio, 2008; Bengio et al., 2007) form the basis of our
temporal autoencoding approach. Both are two-layer neural
networks, all-to-all connected between the layers but with no
intra-layer connectivity. The models consist of a visible and a
hidden layer, where the visible layer represents the input to
the model whilst the hidden layer's job is to learn a mean-
ingful representation of the data in some other dimension-
ality. We will represent the visible layer activation variables
by vi, the hidden activations by hj and the vector variables
by v¼ fvig and h¼ fhjg where i¼ ½1‥N� and j¼ ½1‥S� index
the individual neurons in the visible and hidden layers,
respectively.

Restricted Boltzmann Machines are stochastic models that
assume symmetric connectivity between the visible and
hidden layers (see Fig. 1A) and seek to model the structure
of a given dataset. They are energy-based models, where the
energy of a given configuration of activations fvig and fhjg is
given by

ERBMðv;hjW;bv;bhÞ ¼�v>Wh�b>
v v�b>

h h;

and the probability of a given configuration is given by

Pðv;hÞ ¼ exp ð�ERBMðv;hjW;bv;bhÞÞ=ZðW;bv;bhÞ;
equences constrain dynamic receptive fields and imply a
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where ZðW;bv;bhÞ is the partition function. One can extend
the RBM to continuous-valued visible variables by modifying
the energy function, to obtain the Gaussian-binary RBM

ERBMðv;h W;bv;bh

�� Þ ¼�v>

s2
Whþ Jbv�vJ2

2s2
�b>

h h:

RBMs are usually trained through contrastive divergence,
which approximately follows the gradient of the cost function

CDnðW;bv;bhÞÞ ¼ KLðP0ðvjW;bv;bhÞjjPðvjW;bv;bhÞÞ

�KLðPnðvjW;bv;bhÞjjPðvjW;bv;bhÞÞ;

where P0 is the data distribution and Pn is the distribution of
the visible layer after n MCMC steps (Carreira-Perpinan and
Hinton, 2005). The function CDn gives an approximation to
maximum-likelihood (ML) estimation of the weight matrix w.
Maximizing the marginal probability PðfvgDjW;bv;bhÞ of the
data fvgD in the model leads to a ML-estimate which is hard
to compute, as it involves averages over the equilibrium
distribution PðvjW;bv;bhÞ. The parameter update for an RBM
using CD learning is then given by

Δθp
∂ERBM

∂θ

� �
0
� ∂ERBM

∂θ

� �
n
;

where the o4n denotes an average over the distribution Pn of
the hidden and visible variables after n MCMC steps. The
weight updates then become

ΔWi;jp
1
s2

vihj
� �

0�
1
s2

vihj
� �

n:

In general, n¼1 already gives good results (Hinton and
Salakhutdinov, 2006).

Autoencoders are deterministic models with two weight
matrices W1 and W2 representing the flow of data from the
visible-to-hidden and hidden-to-visible layers, respectively
(see Fig. 1B). AEs are trained to perform optimal reconstruc-
tion of the visible layer, often by minimizing the mean-
squared error (MSE) in a reconstruction task. This is usually
evaluated as follows: Given an activation pattern in the
visible layer v, we evaluate the activation of the hidden layer
by h¼ sigmðv>W1 þ bhÞ, where we will denote the bias in the
hidden layer by bh. These activations are then propagated
back to the visible layer through v̂ ¼ sigmðh>W2 þ bvÞ and the
weights W1 and W2 are trained to minimize the distance
measure between the original and reconstructed visible
layers. Therefore, given a set of image samples fvdg we can
define the cost function. For example, using the squared
Euclidean distance we have a cost function of

LðW1;W2;bv;bhjfvdgÞ ¼∑
d
Jvd�v̂d J2:

The weights can then be learned through stochastic gradient
descent on the cost function. Autoencoders often yield better
representations when trained on corrupted versions of the
original data, performing gradient descent on the distance to
the uncorrupted data. This approach is called a denoising
Autoencoder (dAE) (Vincent et al., 2010). Note that in the AE,
the activations of all units are continuous and not binary, and
in general take values between 0 and 1.
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4.1.2. Existing dynamic models of unsupervised learning
To date, a number of RBM-based models have been proposed
to capture the sequential structure in time series data. Two of
these models, the Temporal Restricted Boltzmann Machine
and the Conditional Restricted Boltzmann machine, are
introduced below.

Temporal Restricted Boltzmann Machines (TRBM) (Sutskever
and Hinton, 2007) are a temporal extension of the standard
RBM whereby feed-forward connections are included from
previous time steps between hidden layers, from visible to
hidden layers and from visible to visible layers (see Fig. 1D).
Learning is conducted in the same manner as a normal RBM
using contrastive divergence and it has been shown that such
a model can be used to learn non-linear system evolutions
such as the dynamics of a ball bouncing in a box (Sutskever
and Hinton, 2007). A more restricted version of this model,
discussed in Sutskever et al. (2008), can be seen in Fig. 1D and
only contains temporal connections between the hidden
layers. We will restrict ourselves to this model architecture
in this paper.

Similarly to our notation for the RBM, we will write the
visible layer variables as v0;…;vT and the hidden layer
variables as h0;…;hT. More precisely, vT is the visible activa-
tion at the current time t and vi is the visible activation at
time t�ðT�iÞ. The energy of the model for a given configura-
tion of V ¼ fv0;…;vTg and H¼ fh0;…;hTg is given by

EðH;VjWÞ ¼ ∑
T

t ¼ 0
ERBMðht;vtjW;bÞ� ∑

M

t ¼ 1
ðhTÞ>WT�th

t; ð1Þ

where we have used W ¼ fW;W1;…;WMg, where W are the
static weights and W1;W2;…WM are the delayed weights
for the temporally delayed hidden layers hT�1;hT�2;…;h0

(see Fig. 1D). Note that, unlike the simple RBM, in the TRBM,
the posterior distribution of any unit in the hidden layer
conditioned on the visible layer is not independent of other
hidden units, due to the connection between the delayed
RBMs. This makes it harder to train the TRBM, as sampling
from the hidden layer requires Gibbs sampling until the
system has relaxed to its equilibrium distribution. This has
led researcher to consider other types of probabilistic models
for dynamic data.

Conditional Restricted Boltzmann Machines (CRBM) as des-
cribed in Taylor et al. (2007) contain no temporal connections
from the hidden layer but include connections from the
visible layer at previous time steps to the current hidden
and visible layers. The model architecture can be seen in
Fig. 1C. In the CRBM, the past nodes are conditioned on,
serving as a trial-specific bias. These units are shown in
orange in Fig. 1C. Again, learning with this architecture
requires only a small change to the energy function of the
RBM and can be achieved through contrastive divergence.
The CRBM is possibly the most successful of the Temporal
RBM models to date and has been shown to both model and
generate data from complex dynamical systems such as
human motion capture data and video textures (Taylor, 2009).

4.1.3. Temporal autoencoding training for TRBMs
Much of the motivation for this work is to gain insight into
the typical evolution of learned hidden layer features or RFs
present in natural movie stimuli. With the existing CRBM this
equences constrain dynamic receptive fields and imply a
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is not possible as it is unable to explicitly model the evolution
of hidden features without resorting to a deep network
architecture. Sparse coding models, as proposed by Cadieu
and Olshausen (2008) overcome this restriction by learning
complex filters, allowing for phase dynamics by multiplying
the filters by complex weights whose dynamics are governed
by phase variables. However, the evolution of the filters is
indirectly modelled by the phase variables, not allowing for a
direct biological interpretation.

The TRBM, in comparison, provides an explicit represen-
tation of the evolution of hidden features but, as we show,
can be difficult to train using the standard algorithm. While
this model does not have a direct biological influence, its
artificial neural network structure allows for a biological
interpretation of its function and indeed, producing a spiking
neural network implementation of this approach would make
for interesting future research. Here, we present a new pre-
training method for the TRBM called Temporal Autoencoding
(aTRBM) that dramatically improves its performance in mod-
elling temporal data.

Training procedure: The energy of the model is given by
Eq. (1) and is essentially an M-th order autoregressive RBM
which is usually trained by standard contrastive divergence
(Sutskever and Hinton, 2007). Here we propose to train it with
a novel approach, highlighting the temporal structure of the
stimulus. A summary of the training method is described in
Table 1. First, the individual RBM visible-to-hidden weightsW
are initialized through contrastive divergence learning with a
sparsity constraint on static samples of the dataset. After
that, to ensure that the weights representing the hidden-to-
hidden connections (Wt) encode the dynamic structure of the
ensemble, we initialize them by pre-training in the fashion of
a denoising Autoencoder as will be described in the next
section. After the Temporal Autoencoding is completed, the
whole model (both visible-to-hidden and hidden-to-hidden
weights) is trained together using contrastive divergence (CD)
training.

One can regard the weights W as a representation of the
static patterns contained in the data and the Wt as repre-
senting the transformation undergone by these patterns over
time in the data sequences. This allows us to separate the
representation of form and motion in the case of natural image
sequences, a desirable property that is frequently studied in
natural movies (see Cadieu and Olshausen, 2012). Further-
more, it allows us to learn how these features should evolve
along time to encode the structure of the movies well. In the
same way as static filters learned in this way often resemble
RFs in visual cortex, the temporal projections learned here
could be compared to lateral connections and correlations
between neurons in visual cortex.

Temporal Autoencoding: The idea behind many feature
extraction methods such as the autoencoder (Vincent et al.,
2010) and reconstruction ICA (Le et al., 2011) is to find an
alternative encoding for a set of data that allows for a good
reconstruction of the dataset. This is frequently combined
with sparse priors on the encoder. We propose to use a
similar framework for TRBMs based on filtering (see Crisan
and Rozovskii, 2011) instead of reconstructing through the
use of a denoising Autoencoder (dAE). The key difference
between an AE and a dAE is that random noise is added to
Please cite this article as: Häusler, C., et al., Natural image s
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each training sample before it is presented to the network,
but the training procedure still requires the dAE to reproduce
the original training data, before the noise was added, thereby
denoising the training data. The addition of noise forces the
model to learn reliable and larger scale structure from the
training data as local perturbations from the added noise will
change each time a sample is presented and are therefore
unreliable.

In the aTRBM, we leverage the concept of denoising by
treating previous samples of a sequential dataset as noisy
versions of the current time point that we are trying to
reproduce. The use of the term noise here is somewhat of a
misnomer, but is used to keep in line with terminology from
dAE literature. In the aTRBM case, no noise is added to the
training data, but the small changes that exist between con-
secutive frames of the dataset are conceptually considered to be
noise in the terms that we want to remove these changes from
previous samples to be able to correctly reproduce or predict the
data at the current time point. We can therefore use a dAE
approach to constrain the temporal weights. In this sense, we
consider the activity of the time-lagged visible units as noisy
observations of the systems state, and want to infer the current
state of the system. To this end, we propose pre-training the
hidden-to-hidden weights of the TRBM by minimizing the error
in predicting the present data frame from the previous observa-
tions of the data. This is similar to the approximation suggested
by Sutskever et al. (2008), where the distribution over the
hidden states conditioned on the visible history is approxi-
mated by the filtering distribution. The training is done as
follows. After training the weights W we consider the model to
be a deterministic Multi-Layer Perceptron with continuous
activation in the hidden layers. We then consider theM delayed
visible layers as features and try to predict the current visible
layer by projecting through the hidden layers. In essence, we
are considering the model to be a feed-forward network, where
the delayed visible layers would form the input layer, the
delayed hidden layers would constitute the first hidden layer,
the current hidden layer would be the second hidden layer and
the current visible layer would be the output. We can then write
the prediction of the network as v̂T

d ðv0
d;v

1
d;…;vT�1

d Þ, where the d
index runs over the data points. The exact format of this
function is described in Algorithm 1. We therefore minimize
the reconstruction error given by

LðWÞ ¼∑
d

���vT
d�v̂Tðv0

d;v
1
d;…;vT�1

d Þ
���2;

where the sum over d goes over the entire dataset. The pre-
training is described fully in Algorithm 1.

We train the temporal weights Wi one delay at a time,
minimizing the reconstruction error with respect to that
temporal weight stochastically. Then the next delayed tem-
poral weight is trained keeping all the previous ones con-
stant. The learning rate η is set adaptively during training
following the advice given in Hinton (2010).

Algorithm 1. Pre-training temporal weights through Auto-
encoding.

for each sequence of data frames Iðt�TÞ; Iðt�ðT�1ÞÞ…; IðtÞ,
we take

vT ¼ IðtÞ;…;v0 ¼ Iðt�TÞ and do
equences constrain dynamic receptive fields and imply a
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for each sequence of data frames Iðt�TÞ; Iðt�ðT�1ÞÞ…; IðtÞ,
we take

for d¼1 to M do
for i¼1 to d do

hT�i ¼ sigmðWvT�i þ bhÞ
end for

hT ¼ sigm ∑d
j ¼ 1Wjh

T�j þ bh

� 	
, v̂T ¼ sigmðW>hT þ bvÞ

ϵðvT ; v̂TÞ ¼ jvT�v̂Tj2
ΔWd ¼ η∂ϵ=∂Wd

end for
end for

4.2. Model analysis

4.2.1. Sparseness index
To measure spatial and temporal sparseness we employ
the sparseness index introduced by Willmore and Tolhurst
(2001) as

S¼ 1�ðΣjaj=nÞ2
Σða2=nÞ ð2Þ

where a is the neural activation and n is the total number of
samples used in the calculation. To quantify sparseness of
the hidden unit activation we stimulate the aTRBM model
that was previously trained on the Holywood2 dataset (cf.
Section 2.2) with a single video sequences of approx. 30 s
length at a frame rate of 30 s (total 897 frames) and measure
the activation h of all hidden units during each video frame.
Spatial sparseness refers to the distribution of activation values
across the neuron population and is identical to the notion of
population sparseness (Willmore et al., 2011). To quantify
spatial sparseness we employ S to the activation values h
across all 400 units for each of the time frames separately,
resulting in 897 values. We use the notion of temporal
sparseness to capture the distribution of activation values
across time during a dynamic stimulus scenario (Haider
et al., 2010). High temporal sparseness of a particular unit
indicates that this unit shows strong activation only during a
small number of stimulus frames. Low temporal sparseness
indicates a flat activation curve across time. Our definition of
temporal sparseness can easily be related to the definition of
lifetime sparseness (Haider et al., 2010) if we consider each
video frame as an independent stimulus. However, natural
videos do exhibit correlations over time and successive video
frames are thus generally not independent. Moreover, the
dynamic RF model learns additional time dependencies. We
employ S to quantify the temporal sparseness across the 897
single frame activation values for each neuron separately,
resulting in 400 single unit measures.

Temporal and spatial sparseness are compared for the
cases of a static RF and a dynamic RF. The static RF is
defined by looking at the response of the aTRBM when all
temporal weights are set to 0. This is equivalent to training a
standard RBM.

4.2.2. Cascade spike generation model
From the activation variable h of the hidden units in our
aTRBM model we generated spike train realizations using a
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cascade point process model (Herz et al., 2006) as described in
(Fig. 6C). For each hidden unit we recorded its activation h
during presentation of a video input. This time-varying
activation expresses a probability between 0 and 1 of being
active in each video frame. We linearly interpolated the
activation curve to achieve a time resolution of 20 times the
video frame rate. We then used the activation curve as
intensity function to simulate single neuron spike train
realizations according to the non-homogeneous Poisson pro-
cess (Tuckwell, 2005). This can be generalized to other rate-
modulated renewal and non-renewal point process models
(Nawrot et al., 2008; Farkhooi et al., 2011). The expectation
value for the trial-to-trial variability of the spike count
is determined by the point process stochasticity (Nawrot
et al., 2008) and thus independent of the activating model.
We estimated neural firing rate from a single hidden
neuron across repeated simulation trials or from the popula-
tion of all 400 hidden neurons in a single simulation trial
using the Peri Stimulus Time Histogram (Perkel et al., 1967;
Nawrot et al., 1999; Shimazaki and Shinomoto, 2007) with a
bin width corresponding to a single frame of the video input
sequence.
4.3. Benchmark evaluation – human motion dynamics

We assessed the aTRBM's ability to learn a good representa-
tion of multi-dimensional temporal sequences by applying it
to the 49 dimensional human motion capture data described
by Taylor et al. (2007) and, using this as a benchmark,
compared the performance to a TRBM without our pretrain-
ing method and Graham Taylor's example CRBM implemen-
tation.2 All three models were implemented using Theano
(Bergstra et al., 2010), have a temporal dependence of 6
frames (as in Taylor et al., 2007) and were trained using
minibatches of 100 samples for 500 epochs.3 The training
time for all three models was approximately equal. Training
was performed on the first 2000 samples of the dataset after
which the models were presented with 1000 snippets of the
data not included in the training set and required to generate
the next frame in the sequence. For all three models, the
visible-to-hidden connections were initialized with contras-
tive divergence on static snapshots of the data. For the TRBM
we then proceeded to train all the weights of the model
through contrastive divergence, whereas in the aTRBM case
we initialized the weights through temporal autoencoding as
described in Algorithm 1, before training the whole model
with CD. The CRBM was also trained using contrastive
divergence. In addition, we created a deterministic model
which has the same structure as the aTRBM but was trained
using only the first two training steps listed in Table 1 which
we will refer to as an Autoencoded Multi-Layer Perceptron
(AE/MLP).
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Data generation in the aTRBM is done by taking a sample
from the hidden layers at t�6 through t�1 and then Gibbs
sampling from the RBM at time t while keeping the others
fixed as biases. This is the filtering approximation from
Sutskever et al. (2008). The visible layer at time t is initialized
with noise and we sample for 30 Gibbs steps from the model.
Data generation from the AE/MLP is done deterministically
whereby the visible layers at t�6 through t�1 are set by the
data and the activation is the propagated through to the
visible layer at t for the sample prediction. We are interested
in the performance of the AE/MLP to determine whether or
not their is an advantage to the stochasticity of the RBM
models in this prediction task. To this end, we also tested the
deterministic performance of the three RBM models dis-
cussed here but the results were much poorer than those
where the model generated data stochastically.

The results of a single trial prediction for four random
dimensions of the dataset and the mean squared error (MSE)
of the RBM model predictions over 100 repetitions for all 49
dimensions of the task can be seen in can be seen in Fig. 7.
While the aTRBM is able to significantly outperform both the
standard TRBM and CRBM models in this task during single
trial prediction (3 leftmost columns), the deterministic AE/
MLP model (middle column) predicts with an even lower error
rate. In the 3 rightmost columns, we produce 50 single trial
predictions per model type and take their mean as the
prediction for the next frame in order to see if averaging over
trials reduces the inherent variance of a single trial predic-
tion. The performance of the CRBM and the aTRBM improve
markedly and the aTRBM outperforms all other models. It
should be noted that this process is not the same as taking
the mean activation of the model (ie. a deterministic pass
through the model with no sampling) which severely under
performs the results shown here. Instead, averaging over
multiple stochastic samples of the model proves to be
advantageous in creating a low error estimate of the next
frame. These results show not only the advantage of the
aTRBM over the CRBM in this task, but also that of the
stochastic models over the deterministic AE/MLP. Although
single trial predictions from the aTRBM are not quite as
accurate as those of the AE/MLP, the aTRBM is able to
generate unique predictions stochastically at each trial,
something the deterministic AE/MLP is not able to achieve.
If one is interested purely in minimizing the MSE of the
prediction, one can still use the aTRBM to generate and
average over multiple trials which reduces the MSE and out
performs the AE/MLP.
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