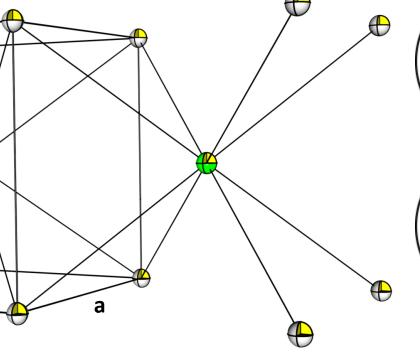
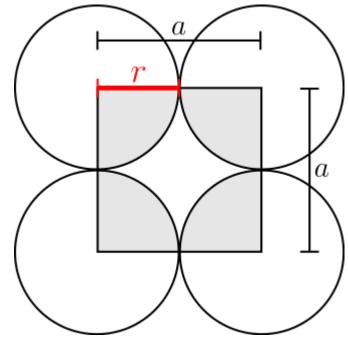

AC III Übung 2


Tabelle 3.1: Die 32 Kristallklassen und ihre Zugehörigkeit zu den Kristallsystemen

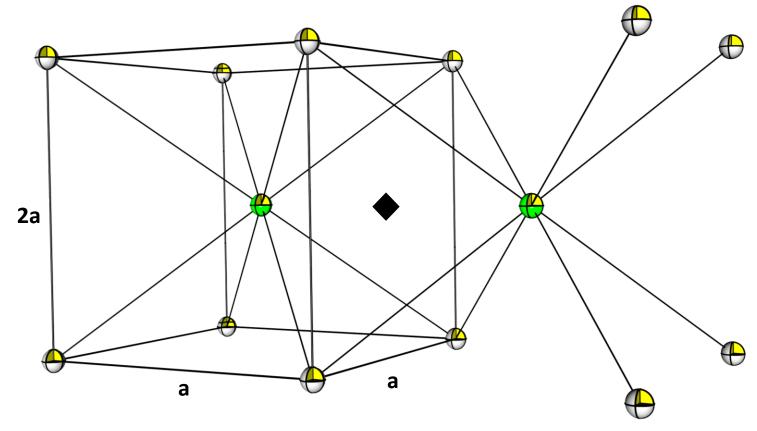
Kristallsystem (Kürzel)	Kristallklassen	Metrik der Elementarzelle
triklin (a)	1; 1	$a \neq b \neq c; \alpha \neq \beta \neq \gamma \neq 90^{\circ}$
monoklin (m)	2; m; 2/m	$a \neq b \neq c; \alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$ (oder $\alpha = \beta = 90^{\circ}, \gamma \neq 90^{\circ}$)
orthorhombisch (o)	222; mm2; mmm	$a \neq b \neq c; \alpha = \beta = \gamma = 90^{\circ}$
tetragonal (t)	$4; \overline{4}; 4/m; 422; 4mm; \overline{42m}; 4/mmm$	$a=b\neq c; \alpha=\beta=\gamma=90^{\circ}$
trigonal (h)	$3; \overline{3}; 32; 3m; \overline{3}m$	$a = b \neq c; \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$
hexagonal (h)	6; 6 ; 6/ <i>m</i> ; 622; 6 <i>m m</i> ; 6 2 <i>m</i> ; 6/ <i>m m m</i>	$a = b \neq c; \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$
kubisch (c)	$23; m\overline{3}; 432; \overline{4}3m; m\overline{3}m$	$a=b=c; \alpha=\beta=\gamma=90^{\circ}$

Es liegt eine tetragonale Innenzentrierte Zelle vor


Jede Kugel auf den Ecken ist zu einem achtel in den acht angrenzenden Zellen und eine Kugel in der Mitte

$$P = \frac{V_{Kugel}}{V_{Elementarzelle}} \cdot N \qquad \qquad N = \frac{1}{8} \cdot 8 + 1 \cdot 1 = 2 \qquad \qquad P = \frac{\frac{4}{3} \cdot \pi \cdot r^3}{2 \cdot a^3} \cdot 2$$

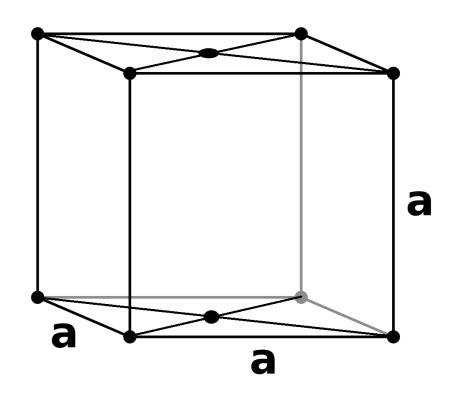
$$P = \frac{\frac{4}{3} \cdot \pi \cdot \left(\frac{a}{2}\right)^3}{2 \cdot a^3} \cdot 2 = \frac{\frac{4}{3} \cdot \pi \cdot \frac{1}{8} \cdot a^3}{2 \cdot a^3} \cdot 2 = 52 \%$$

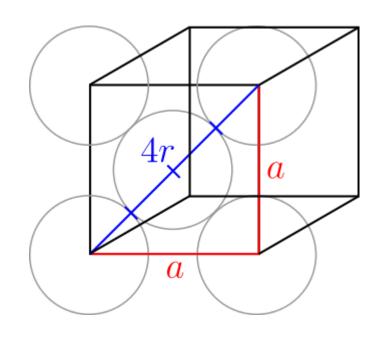


$$a = a \cdot b \cdot c = a \cdot a \cdot 2a = 2a^3$$

$$r = \frac{c}{2}$$

Immer den kürzesten Abstand (r) wählen zur Berechnung. Deswegen bei tetragonal innnenzentriert nicht die Diagonale zur Bestimmung von r wählen.


1. c, d)



c = 2a, daher eher Schichtstruktur, kein "Kontakt" zu Nachbarn. Sehr geringe Raumausfüllung (energetisch ungünstig), keine dichteste Packung.

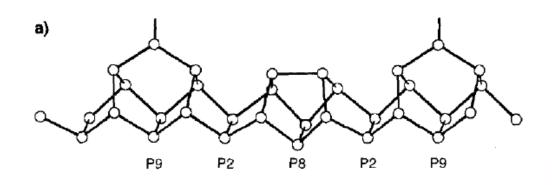
Es gibt 6 Oktaederlücken (gezeigt nur eine als Raute), die in zwei Zellen liegt

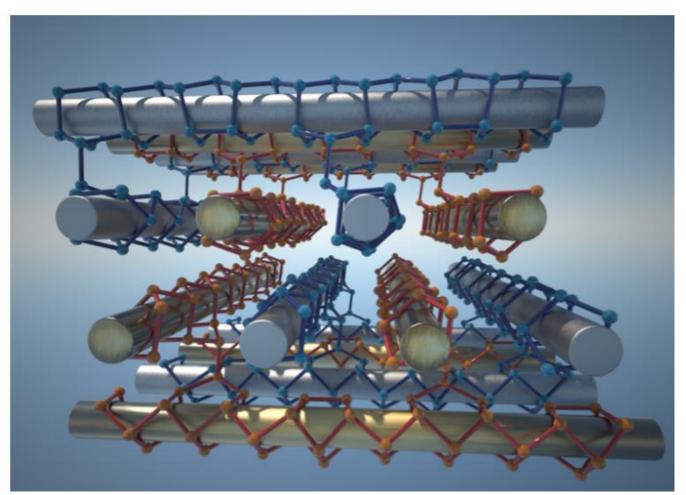
Es gibt keine Tetraederlücken im innenzentrierten Gitter

$$P = \frac{V_{Kugel}}{V_{Elementarzelle}} \cdot \Lambda$$

$$N = \frac{1}{8} \cdot 8 + 2 \cdot \frac{1}{2} = 2$$

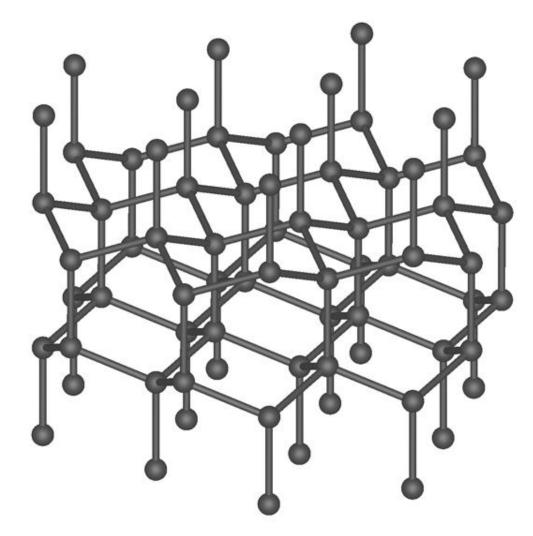
$$P = \frac{\frac{4}{3} \cdot \pi \cdot r^3}{a^3} \cdot 2$$

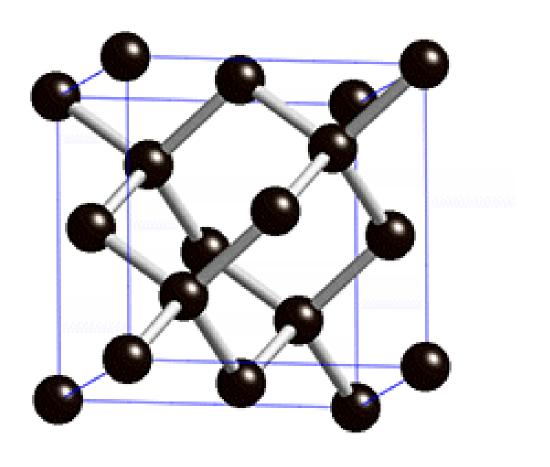

$$P = \frac{V_{Kugel}}{V_{Elementarzelle}} \cdot N \qquad N = \frac{1}{8} \cdot 8 + 2 \cdot \frac{1}{2} = 2 \qquad P = \frac{\frac{4}{3} \cdot \pi \cdot r^3}{a^3} \cdot 2 \qquad c^2 = a^2 + b^2 = a^2 + a^2 = 2a^2$$


$$P = \frac{\frac{4}{3} \cdot \pi \cdot (\frac{\sqrt{2} \cdot a}{4})^3}{a^3} \cdot 2 = 37 \%$$

$$r = \frac{\sqrt{2} \cdot a}{4}$$

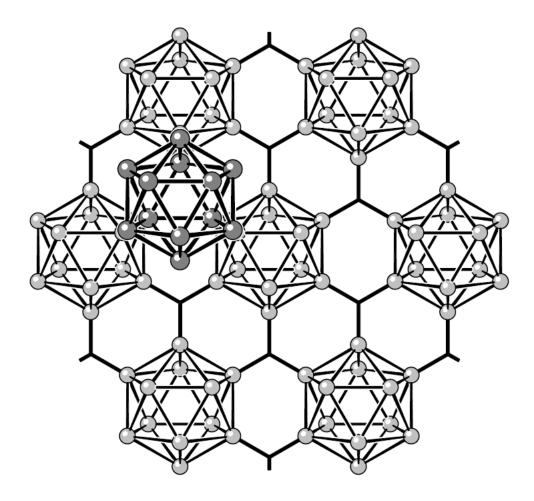
$$P = \frac{\frac{4}{3} \cdot \pi \cdot (\frac{\sqrt{2} \cdot a}{4})^3}{a^3} \cdot 2 = 37 \%$$


3. Hittorf'schem Phosphor



Kubischer Diamant und hexagonaler Diamant

3.



Schichtfolge ABC

Schichtfolge AB

3. B₁₂-Ikosaeder

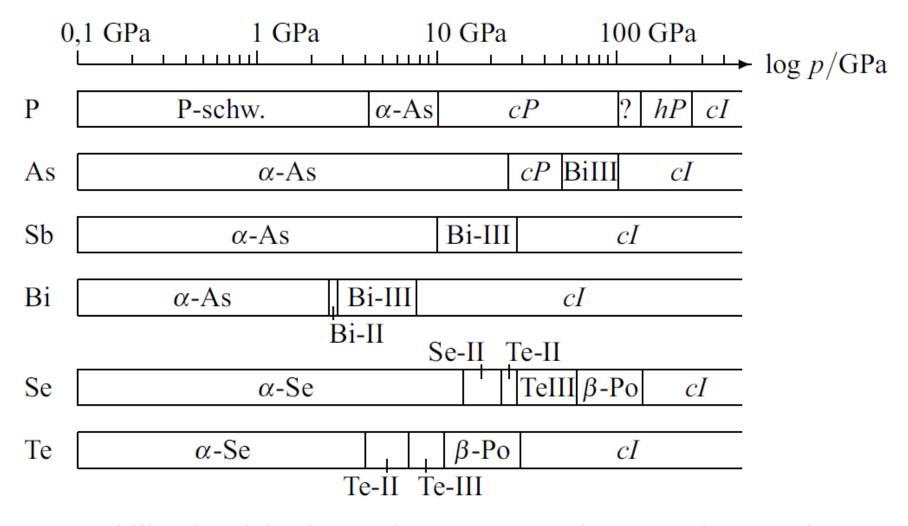
Abb. 11.16: Die Struktur des rhomboedrischen α -B $_{12}$. Die Ikosaeder im gezeigten

Tabelle 14.2: Die Elementstrukturen der Metalle bei normalen Bedingungen

h = hexagonal-dichteste Kugelpackung

c = kubisch-dichteste Kugelpackung = Kupfer-Typ

hc, hhc = andere Stapelvarianten dichtester Kugelpackungen


i = kubisch-innenzentrierte Kugelpackung = Wolfram-Typ

⋈ = eigener Strukturtyp

* = etwas verzerrt

Dichteste Kugelpackungen nehmen auch die festen Edelgase bei tiefer Temperatur an: Ne... \times c; Helium wird nur unter Druck fest (je nach Druck c, h oder i)

Li	Be												
i	h^{\star}												
Na	Mg											Al	
i	h											c	
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	
i	c	h	h	i	i	\bowtie	i	h	C	c	h^{\star}	\bowtie	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn
i	С	h	h	i	i	h	h	c	c	c	h^{\star}	c^{\star}	\bowtie
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb
i	i	hc	h	i	i	h	h	c	c	c	c^{\star}	h	c
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg			
	i	c											

Abb. 11.9: Stabilitätsbereiche der Strukturtypen von Elementen der 5. und 6. Hauptgruppe in Abhängigkeit des Druckes bei Zimmertemperatur. cP = kubisch-primitiv (α -Po); hP = hexagonal-primitiv; cI = kubisch-innenzentrierte Kugelpackung