An evolutionary perspective on FoxP2: strictly for the birds?
Constance Scharff¹,² and Sebastian Haesler¹,²

FoxP2 mutations in humans are associated with a disorder that affects both the comprehension of language and its production, speech. This discovery provided the first opportunity to analyze the genetics of language with molecular and neurobiological tools. The amino acid sequence and the neural expression pattern of FoxP2 are extremely conserved, from reptile to man. This suggests an important role for FoxP2 in vertebrate brains, regardless of whether they support imitative vocal learning or not. Its expression pattern pinpoints neural circuits that might have been crucial for the evolution of speech and language, including the basal ganglia and the cerebellum. Recent studies in songbirds show that during times of song plasticity FoxP2 is upregulated in a striatal region essential for song learning. This suggests that FoxP2 plays important roles both in the development of neural circuits and in the postnatal behaviors they mediate.

Addresses
¹ Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
² Freie Universität Berlin, Department of Animal Behavior, Gruenewaldstrasse 34, 12165 Berlin, Germany

Corresponding author: Scharff, Constance (scharff@molgen.mpg.de)

Current Opinion in Neurobiology 2005, 15:694–703

This review comes from a themed issue on Neurobiology of behaviour
Edited by Nicola S Clayton and Rene Hen

Available online 2nd November 2005
0959-4388/$ – see front matter
© 2005 Elsevier Ltd. All rights reserved.
DOI 10.1016/j.conb.2005.10.004

Introduction
Language can be defined as the ability to communicate infinite meaning by combining a finite set of sounds (or gestures in the case of sign language) using the rules of grammar. Imitative learning influences which sounds or gestures are used, and how they are combined into sentences. There are good reasons to assume a genetic predisposition toward this learning, that is, a language instinct [1]. This could be reflected in neural circuits that determine the intrinsic hierarchical logic shared by all languages, named “universal grammar” by Chomsky and co-workers [1]. In 2001 the chase for genes associated with language resulted in the identification of a mutation in FoxP2 in individuals that share severe and characteristic core deficits of receptive and productive language. Comprehensive recent reviews summarize the behavioral phenotype and genetic, molecular and anatomical findings relevant to FoxP2 function in humans [2,3].

Language is one of the few uniquely human traits. Other bastions of alleged human exclusivity, such as tool production and mental time travel, are now known to exist also in animals [4,5]. If language is uniquely human, is FoxP2 a uniquely human gene? What about FoxP2 in other species? Here, we review reports of the past two years that analyze FoxP2 function in different vertebrates and in vitro systems. We focus particularly on songbirds, because of the well-established behavioral and neurobiological parallels between speech learning in human infants and song learning in birds [6,7]. The emerging picture reveals that the DNA and protein sequences in addition to the overall brain expression patterns of FoxP2 are highly conserved, from crocodile to human, regardless of their ability to learn vocally or not. We, therefore, speculate that FoxP2 is involved in the development of brain pathways that are essential for, but not limited to, the faculty of language. These comprise particularly the cortico–subcortical pathways that run through the cerebellum and the basal ganglia, which are involved in motor planning, sequenced behaviors and procedural learning. In addition, we summarize data that predict a role for FoxP2 in the postnatal function of these circuits, including those specialized for vocal learning. We conclude that unraveling the relevance of FoxP2 for language depends as much on considering its evolutionary conservation in non-human brains as on understanding the significance of its evolutionary innovation in the hominid lineage (see Box 1).

Molecular function
Pathomechanism
FoxP2 belongs to the large family of winged helix transcription factors that are characterized by a conserved Forkhead box (Fox) DNA-binding domain. The forkhead box binds to distinct sequences in promoter regions of a specific set of target genes, enabling their transcriptional regulation. Fox proteins affect cell fate and differentiation in various tissues, and mutations cause developmental disorders [8,9]. The common feature in all individuals with speech abnormalities caused by genomic alteration of FoxP2 seems to be a reduction of functional FoxP2 protein by 50%. This haploinsufficiency results from the introduction of a premature stop codon in one patient [10], the disruption of the gene by a translocation in another patient or a substitution of arginine to histidine (R553H) in the DNA binding domain (Figure 2) in all affected members of the KE family, in which the speech phenotype was originally described [11]. Homology mod-
Box 1 Molecular Evolution of FoxP2

A comparison of synonymous mutations (i.e. base substitutions that do not alter the amino acid [AA] sequence) and non-synonymous mutations (i.e. base substitutions that alter the AA sequence) in the FoxP2 sequences of mice, great apes and humans revealed that the gene was under selection pressure during recent human evolution [81,82]. After divergence from the great apes, two non-synonymous but no synonymous substitutions occurred. However, one of the two previously presumed human-specific amino acids also exists in non-human carnivores [83]. The functional significance of the AA that remains unique to humans is unclear as it lies in an uncharacterized protein domain. The pattern of FoxP2 sequence variation among humans further suggests that the human-specific allele was fixed in the population as a result of positive selection rather than relaxation of negative selection. Fixation is assumed to have occurred within the last 200,000 years, during which proficient language also appeared [81].

Because speech learning in humans necessitates vocal imitation, we and others investigated whether animals capable of vocal imitation, such as song-learning birds [84], bats, whales and dolphins [84] harbor the human-specific AA in FoxP2. This is not the case. Furthermore, there is no correlation between a species’ capacity for vocal learning and a particular version of their FoxP2 coding region (Figure 1; Haeseler S, Wada K, Enard W, unpublished). Thus, either Foxp2 was not directly involved in the evolution of vocal-learning in birds or selection acted on the large non-coding regions of Foxp2. The latter possibility is supported by theoretical and experimental evidence that points out the importance of regulatory sequences in the evolution of complex traits [85].

An evolutionary perspective on FoxP2: strictly for the birds?

Scharff and Haeseler

Murine FoxP2 and the other three members of the FoxP family can act as transcriptional repressors, shown with reporter constructs in different cell lines [13,14**]. Thus, in patients with FoxP2 mutations, reduced levels of functional protein are expected to attenuate transcriptional repression of a specific set of target genes. Their identity is still unknown, in part because the exact DNA motif to which FoxP2 binds has not been determined experimentally. However, the sequence to which FoxP1, the closest homolog of FoxP2, binds is known [15,16]. Interestingly, transcription reporter constructs containing the FoxP1 binding sequence also respond to FoxP2 [15], predicting a core motif to which both FoxP2 and FoxP1 can bind. This core motif is very similar to those of the two transcriptional activator families FoxO [17] and FoxC [18]. These mouse data suggest that Fox transcription factors are either functionally redundant or require additional protein interactions to specify target gene transcription.

Interaction partners

For transcriptional repression to occur, FoxP2 needs to dimerize with itself, with FoxP1 or with FoxP4 [14**]. This requirement distinguishes the FoxP family from other Fox transcription factors. Dimerization depends on a conserved leucine zipper motif [14*]. A C2H2 type zinc finger adjacent to the leucine zipper might modulate the specificity of the interaction between FoxP proteins, as reported for FoxP1 [15]. FoxP1 and FoxP2, but not FoxP4, also interact with the transcriptional co-repressor CtBP1. CtBP1 binding enhances, but is not essential, for transcriptional repression [14**]. A plethora of FoxP2 isoforms, including some that lack the forkhead box, add further complexity to the system [19].

FoxP2 contains an N-terminal glutamine-repeat that could function as a polar zipper to join other transcription factors that are bound to separate DNA segments [20], creating a multiprotein transcriptional unit. This hypothesis is consistent with the proximity of a binding site for FoxP1 to a number of other transcription factor binding sites in the c-fms promoter, a physiological target of FoxP1 [16]. Regulation of c-fms expression by FoxP1 depends on the polyglutamine repeat. Interestingly, the only neural sites of c-fms expression are the cerebellar Purkinje cells [21], which also strongly express FoxP2 (see below). The presence of a polyglutamine stretch in FoxP2 also prompted the search for pathogenic glutamine repeat extensions implicated in many neurodegenerative disorders [22]. However, the glutamine repeat region of FoxP2 is neither expanded in the specific language impairment (SLI) patients studied to date nor in a set of 142 patients with progressive movement disorders [19]. The length of the polyglutamine tract could, however, be relevant for the molecular evolution of FoxP2, as suggested by recent fascinating correlations between speciation and length of repeat motifs in dogs [23].

The molecular factors that regulate FoxP2 expression and the neural target genes of FoxP2 are still unidentified, leaving room for speculation. Analysis of signal transduction pathways relevant for the development of tissues in which FoxP2 is expressed and comparison with molecular interactions of other Fox genes converge on the sonic hedgehog (Shh) pathway as a candidate for interactions with FoxP2. FoxP2 is strongly expressed during lung morphogenesis [13], during which FoxA1 and FoxA2 regulate sonic hedgehog (Shh) [24]. Knockout of FoxP2 (see below [25]) and transgenic overexpression of FoxA2 in mice both disrupt cerebellar morphogenesis, which also depends on Shh signaling [26]. FoxP2 could also lie downstream of Shh, similar to FoxE1 [27], FoxM1 [28] and FoxF1 [29]. In addition, the zinc finger of FoxP2 is highly homologous to those of the major Shh downstream transcriptional effectors Gli1, Gli2 and Gli3 [13].

Taken together, dimerization of FoxP proteins and their potential interaction with other transcription factors
provide opportunity for complex patterns of target gene repression. In addition, the similarity of the predicted core DNA-motif, to which both FoxP1 and FoxP2 bind, raises the possibility that they can compensate for each other when co-expressed in the same cells.

Anatomy and behavior

Brain patterning

FoxP1 and FoxP2 are expressed in a similar, partly overlapping pattern in all species studied, from crocodiles to humans [30,31,32]. Their restricted expression in...
primordia of the forebrain suggests that they belong to the set of orthologous genes that specify anterior development in *Drosophila* and that are vital for different aspects of forebrain development in amniotes, for example, distalless (Dlx), empty spiracles (Emx), and orthodenticle (Otx) [33]. Similar to that of Dlx, Emx and Otx, FoxP expression starts during early embryogenesis. FoxP2 mRNA is first detected at embryonic day 13 in mouse brain and at an equivalent stage (E8–III;26) in zebra finch. FoxP1 expression lags by a day [32**,34]. In the rodent telencephalon, initial expression of FoxP1 and FoxP2 is largely limited to the lateral ganglionic eminence (LGE) [34,35], the mammalian subpallial germinal zone that gives rise to the striatal projection neurons of the basal ganglia and to the majority of cortical interneurons [36]. In birds, telencephalic FoxP2 expression also begins in the striatal anlage and continues in the striatum after hatching. The LGE expression pattern of FoxP1 and FoxP2 in rodents and birds predicts a role in regional specification of ventral telencephalic structures, similar to the one played by members of the Dlx and Gsh gene families of transcription factors [37].

Within the LGE, FoxP1 and FoxP2 are expressed in the subventricular zone and mantle region but not in the proliferative ventricular zone, suggesting that expression is initiated in postmitotic neurons. This interpretation is also compatible with the additional expression site in the non-proliferative cortical plate of the developing cortex [34,35].

In the adult murine cortex FoxP1 and FoxP2 expression is layer-specific. Neurons that express FoxP2 reside mainly in layer VI, whereas FoxP1 expressing cells reside mainly in layers III–V. Given that projection neurons generally colonize the cortical layers in an age-dependent, inside-out manner, FoxP2 expressing cells are expected to be born earlier than FoxP1 expressing cells. If so, this could account for the slightly earlier onset of expression of FoxP2 in the LGE. In the three-layered pallium of birds, FoxP1 is markedly expressed in the middle layer (mesopallium) and less in the other two ‘cortical’ layers [31**,32**]. Pallial FoxP2 expression varies among bird species, with homogeneously low expression in oscine songbirds and a FoxP1-like pattern in their distant relatives the parrot and ringdove [32**].

Because the LGE gives rise to striatal medium spiny projection neurons, it fits that this cell type expresses FoxP1 and FoxP2 in mice and birds [30,32**]. Less congruent is the fact that FoxP1 and FoxP2 expressing neurons in the murine cortex are more layer-specific and less sparsely distributed than expected for LGE-derived interneurons [35,38]. Instead, the abundance and layer-restriction of cortical FoxP1 and FoxP2 expressing neurons suggest that they are projection neurons. In this case, FoxP1 and FoxP2 would deviate from the more common pattern of developmentally relevant transcription factors that mark either pallial or subpallial derivatives [37].

In addition to the striatum, species-conserved expression of FoxP2 and FoxP1 is prominent in regions of the thalamus that receive input from the basal ganglia, in midbrain visual processing regions and in the inferior olive of the medulla. Other regions, including the cerebellar Purkinje cells, deep cerebellar nuclei and sensory auditory midbrain structures express FoxP2, but not FoxP1. Importantly, FoxP2 does not seem to be expressed in the majority of structures that form the trigeminal sensorimotor circuit that control the beak, tongue and oral cavity of birds [32**,39]. Although FoxP2 expression in the human trigeminal circuit has not been investigated in detail, the avian expression data predict that the orofacial dyspraxia of patients with FoxP2 mutations is not primarily linked to a role of FoxP2 in peripheral orofacial sensory or motor circuits.

FoxP1, FoxP2 and learned vocalizations

The specific expression of FoxP1 and FoxP2 in brain nuclei that control bird song implicates the two genes in learned vocalization. The pallial nuclei HVC (proper name) and RA (Robust nucleus of arcopallium; for nomenclature of song nuclei see [40]) express substantially more FoxP1 than their respective surrounding brain regions [31**,32**]. Moreover, in the striatal nucleus Area X, which is essential for song learning, FoxP2 expression is elevated above the surrounding striatum during periods of vocal plasticity, both in juvenile zebra finches (Figure 3a) and in adult canaries (Figure 3c) [32**]. Area X belongs to a basal ganglia circuit, called the anterior forebrain pathway (AFP; Figure 3b). The AFP bears strong electrophysiological, neurochemical and functional parallels to the human basal ganglia [41,42–44]. The structural and functional abnormalities of the basal ganglia in KE family patients [2] support the notion that the basal ganglia play a role in learned vocalizations not only in birdsong but also in human speech. Therefore, the analysis of the role of FoxP2 in the AFP will be particularly informative.

FoxP2 expressing medium spiny neurons in Area X are in an excellent position to affect song plasticity. They are the site of convergent glutamatergic AMPA- and NMDA-mediated pallial input and ascending dopaminergic D1-receptor mediated input. By analogy with the mammalian system these cells might be involved in reward learning [41]. In avian slices, the medium spiny neurons show long-term potentiation [45]. Their patterns of activity indirectly set the temporal code of inhibitory postsynaptic potentials read by the thalamic neurons of song nucleus DLM (dorsal lateral nucleus of the medial thalamus; Figure 3b). This enables FoxP2-expressing neurons in
Area X to gate the information passed on from DLM to the pallidal song nucleus LMAN (lateral magnocellular nucleus of anterior nidopallium; Figure 3b) through a rebound spiking mechanism [46]. Recent elegant experiments confirm the hypothesis posited from earlier lesion work [47] that LMAN ensures variability during song learning. When LMAN is transiently inactivated young zebra finches sing uncharacteristically stable song sequences instead of the variable juvenile ones [48]. Whether the variability that is vital for the process of song imitation is intrinsic to LMAN or is created ‘upstream’ by the combined action of Area X and DLM remains to be determined. The AFP circuit continues to be important in adult birds that keep their song fairly stable once they have mastered it, which was predicted by indirect experiments [49,50] and has now been shown directly [51].

What determines how much FoxP2 Area X expresses? In zebra finches the amount and the variability of singing do not seem to influence the levels of FoxP2 expression [32], in contrast to their effects on the expression of the immediate early gene ZENK [52,53]. The seasonal expression of FoxP2 in Area X of adult canaries could be related to seasonal changes in the morphology of song nuclei that depend on photoperiod, hormones and behavior [54,55]. For instance, during the fall months HVC grows in size and recruits more adult-born neurons both in canaries and in song sparrows [56,57]. Area X also changes seasonally in size but does not recruit more new neurons in wild-caught adult male song sparrows [58]. Although rates of seasonal neuronal recruitment are not known for Area X in adult canaries, the data from song sparrows suggest that rates of neural replacement and regulation of FoxP2 expression in Area X are not linked.
Seasonally and developmentally changing hormone levels could influence FoxP2 expression. This hypothesis is compatible with the observations that first, FoxP1 is co-regulated with the estrogen receptor α in cancer cells [59], second, gene regulation by this estrogen receptor requires FoxA1 [60], third, androgens can negatively regulate other FOX genes [61], fourth, mouse striatal medium spiny neurons depend on estrogens for their maturation in vitro [62] and fifth, steroids potently shape dendritic attributes and synaptic function in adult avian and mammalian brains [63,64]. If steroids influence FoxP expression in Area X, it would be an inhibitory relationship, because circulating testosterone levels are low in young finches and adult canaries [54] when FoxP2 expression is high. Hormone interactions with FoxPs in Area X could be distinct from those occurring in the surrounding striatum, because hormones can act trans-synaptically through the projection neurons from HVC to Area X [54]. Finally, melatonin receptors in Area X of starlings have a strikingly similar seasonal pattern to FoxP2 expression in canaries, being highest in the non-breeding fall months. Changing melatonin levels have been interpreted to play a role in downregulating cellular activity via the inhibitory action of melatonin on second messengers and transcription factors [65].

Double duty of transcription factors

FoxP2 is implicated in both brain development and postnatal behavior. Might the molecular mechanism of its regulation and function be similar in both contexts? Examples for a conservation of transcription factor function throughout the life of a cell are Dlx1 [66**] and the engrailed genes [67]. They are required in neonatal and adult mice for the survival of a subset of cortical interneurons and midbrain dopaminergic neurons, respectively. Because FoxP2 might be important for fate specification of striatal projection neurons during brain development, one wonders whether it fulfills a similar function during times of song plasticity in birds. Behavioral plasticity often entails changes in cell-type specific attributes of neurons, altering their connectivity and electrophysiological properties. These changes might actually challenge the maintenance of cell fate. An upregulation of FoxP2 might, thus, be needed to counterbalance the effects of neural plasticity to preserve the identity of the cell. Alternatively, increased FoxP2 expression in Area X during song learning could promote neural and behavioral plasticity. However, this seems less compatible with a hypothesized function of FoxP2 in regional specification of the embryonic brain.

FoxP2 knockout mouse

Whereas heart defects in FoxP1 knockout mice cause embryonic lethality [68], mice with disruption of both FoxP2 alleles live for three weeks after birth [69]. They are developmentally delayed, and are impaired in tests of motor function. Heterozygous mice perform only moderately worse than wild types, and catch up by their second week of life. Adult heterozygous FoxP2 knockout mice show no deficits in the Morris water maze, which requires coordinated movement of the limbs and measures spatial learning abilities. Spatial learning depends on the hippocampus, which does not express FoxP2 in mice [35,70] and would, therefore, not be expected to be strongly impaired in FoxP2 knockout mice.

Consistent with the conserved cerebellar FoxP2 expression [32**,35,70], FoxP2 knockout mice display cerebellar abnormalities. These include abnormal Bergmann glia and the delayed and incomplete postnatal resolution of the external granular layer, suggesting impaired cell migration. In addition, the molecular layer in heterozygous animals is thinner, the Purkinje cells have underdeveloped dendritic arbors and are misaligned. It is possible that the cerebellum is particularly vulnerable to the absence of FoxP2, because it lacks coexpression of FoxP1 [30,31**,32**]. FoxP1 might compensate for the absence of FoxP2 during development in regions that normally express both, for example, the basal ganglia and the thalamus. The basal ganglia that strongly express FoxP2 and FoxP1 during development do not exhibit gross histological abnormalities in FoxP2 KO mice. As KE family patients do have structural abnormalities of the basal ganglia [71], it will be interesting to analyze the anatomy and behavioral function of the basal ganglia in FoxP2 KO mice in more detail.

Homozygous FoxP2 knockout pups vocalize less in the sonic range than heterozygote and wild type animals when separated from their mothers. In the ultrasonic range, both homo- and heterozygote knockout animals utter fewer whistles. Interestingly, the acoustic structure of the vocalizations is preserved in FoxP2 KO pups, indicating that the motor areas controlling acoustic features of sound production are intact. Ultrasound communication in adult homozygotes could not be tested because they die too early [69]. Because FoxP2 is implicated in cellular differentiation of the developing lung, pneumatic function might be compromised in the knockout mice, which could affect vocalizations. In fact, hypoxia strongly decreases the rate of postnatal vocalizations [72]. Given the speech pathophysiology of patients with FoxP2 mutations, it is particularly interesting that vocal behavior in the KO mice is impaired. However, it is important to bear in mind that although both humans and mice vocalize, only speech is learned.

Conclusions and future directions

The original suspicion that FoxP2 would be primarily involved with control of oro-facial muscles and, thus, would be only peripherally interesting for understanding neural substrates for speech and language, is not supported by the gene expression and mouse KO data. Instead, the strong expression of FoxP2 in cerebellar
and basal ganglia circuits points towards functions that include sensory–motor integration important for sequenced behaviors and procedural learning. For language it has been proposed that a basal ganglia-dependent procedural memory system mediates the ‘how’, that is, the implicit, non-declarative aspect of how language is put together sequentially using rule-governed computations [73]. By contrast, the ‘what’ of language depends on the explicit ‘mental lexicon’ of words, what they mean and any unpredictable, non-rule-governed grammatical exceptions [73]. The beauty of the idea that language uses a procedural memory system is that one can easily imagine how language evolved onto ‘procedural’ and ‘declarative’ memory systems that already existed in animals [74]. By analogy, Area X in songbirds could have evolved from a striatum mediating general procedural learning and adapted this ability for song acquisition [75]. Circuits evolved for vocal learning could then continue to mediate general procedural and declarative processing, or lose this ability. In SLI patients, there is evidence for procedural deficits that affect both language and other functions [73]. However, it is unlikely that Area X in songbirds functions in procedures that are unrelated to singing. Adult Area X lesions do not hinder zebra finches’ functions in procedures that are unrelated to vocal learning and memory in mammals, it will be interesting to test whether the effect of sleep on song learning is mediated via the basal ganglia. This would strengthen the notion that sleep facilitates procedural memory.

When FoxP2 mutations were first linked to speech and language, the hope that a single gene might provide insight into such a complex trait was met with considerable skepticism. Four years later the accumulated knowledge encourages optimism that studying FoxP2 function will help us to understand the neural mechanisms of learned vocal communication. Yet many questions remain. Some of these are summarized in Box 2.

The human experience is based on traits that are unique to our species and traits that we share with other animals. Language combines aspects of both. In his ‘Essay concerning Humane Understanding’ [80] the English Philosopher Locke wrote in 1689 under the heading ‘Brutes have memory’; “Birds learning of Tunes and the endeavors one may observe in them to hit the notes right put it past doubt with me, that they have Perception, and retain Ideas in their Memories and use them for Patterns. (…) It cannot with any appearance of Reason, be suppos’d (much less proved) that Birds, without Sense and Memory, can approach their Notes, nearer and nearer by degrees, to a Tune played yesterday”. By turning to birds to understand the role of FoxP2 in song learning we might in turn discover something about how language evolved for the purpose of ‘Humane Understanding’.

Acknowledgements

The authors regret that, owing to space constraints, many key pieces of research had to be cited as reviews rather than as original articles. We thank W Enard for Figure 1, the members of the Scharff lab, A Zychlinsky for critical comments, and HH Ropers for continued encouragement. This work was supported by the Max Planck Society’s program for the promotion of exceptional female scientists and grants SFB 515 and 665 of the German Science Foundation DFG.

References and recommended reading

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest

Box 2 Open questions:

1. Which genes are regulated by FoxP1 and FoxP2?
2. What regulates FoxP2 expression, particularly in Area X?
3. Does FoxP1 play a role in human speech and birdsong?
4. What is the identity of the pallial and/or cortical FoxP1 and FoxP2 expressing neurons?
5. Is there a causal relationship between FoxP2 expression levels in Area X and song plasticity?
6. Is the striatum surrounding Area X involved in procedural learning and memory?
7. Does the cerebellum participate in song learning and production?
An evolutionary perspective on FoxP2: strictly for the birds? Scharff and Haesler

This study reveals that Foxp1, Foxp2 and Foxp4 can homo- and hetero-dimerize via a conserved leucine zipper motif. The fact that dimerization is required for transcriptional activity of these Foxp transcription factors, at least in vitro, highlights the importance of including Foxp1 and Foxp4 in further studies on Foxp2 function.

This study reveals that Foxp1, Foxp2 and Foxp4 can homo- and hetero-dimerize via a conserved leucine zipper motif. The fact that dimerization is required for transcriptional activity of these Foxp transcription factors, at least in vitro, highlights the importance of including Foxp1 and Foxp4 in further studies on Foxp2 function.

This two papers above identify the areas expressing Foxp2 in the songbird brain. In addition, Teramitsu et al. [31**] describe this expression to be very similar in human brains. Haesler et al. [32**] provide two lines of evidence for a correlation between Foxp2 expression in Area X and song plasticity. The expression pattern of Foxp1 overlaps with that of Foxp2 in birds and humans [31**]. This is in agreement with their molecular interaction. However, the conserved Foxp2 expression pattern is also found in birds that vocalize innately and crocodiles, the closest non-avian relative [32**]. This suggests that Foxp2 might have been involved in the evolution of subtelencephalic and striatal sensory and sensory-motor circuits that create a permissive environment upon which vocal learning can evolve if other circumstances or factors come into play.

44. Farries MA, Ding L, Perkel DJ: Evidence for “direct” and “indirect” pathways through the song system basal ganglia. J Comp Neurol 2005, 484:93-104. These three studies scrutinize the microcircuity and cellular composition of Area X. Taken together, they confirm that key components of the mammalian basal ganglia circuitry are functionally replicated in the AFP of songbirds. This includes the existence of cell types with neurochemical and electrophysiological properties characteristic of mammalian striatal and pallidal neurons. Interestingly, the aspiny fast spiking ‘pallidal’ (AF) neurons differ in their probable embryonic origin and anatomical location in mammals and birds. However, the serial synaptic architecture of both systems results in direct and indirect pathways with net opposing effects on the thalamus. Different direct and indirect pathways have been proposed. Carrillo and Doupe [42*] postulate that the avian equivalent of the mammalian indirect pathway involves the connection: pallial glutamatergic HVC neurons → Enkephalin+ GABAergic AF neurons →
thalamocortical projections. This may explain why the indirect pathway is more critical for learning and plasticity because of its net inhibitory action on the thalamus. These authors suggest the ‘direct’ pathway to be HVC → SB to P+ → GABAergic medium spiny striatal neurons (SN) → AF neurons → DLM, because of its net excitatory action. Note that in this scenario the direct pathway has one more synapse than the indirect pathway. Based on their findings that many presumed AF projection neurons in Area X do not project to DLM but contact other AF neurons, Farries et al. [44] hypothesize that the net inhibitory indirect pathway could involve a series of three inhibitory synapses, that is, pallidal glutamatergic HVC neurons → SN neurons → locally projecting AF neurons → AF neurons → DLM.

The authors show that thalamic neurons can translate extrinsic GABAergic input in Area X into strikingly precise patterns of sustained spiking in the AFP basal ganglia circuit that is important for song learning in birds. Reliable propagation of activity through this pathway is mediated via a postinhibitory rebound mechanism enabling the precise spike timing information to be passed on through an inhibitory synapse.

This paper adds an interesting new dimension to the activation of the immediate early gene ZENK in relation to song production. Previous studies in a variety of different song birds show that the amount of singing and social context affect ZENK expression. In Area X of male zebra finches ZENK is differentially expressed when singing stereotyped courtship song or singing the more variable ‘undirected’ songs while unaccompanied (see also [52]). The above study demonstrates that the variability in song duration and in the interval between successive songs predicts the level of song-induced ZENK in Area X and LMAN of free ranging chirping sparrows. This might indicate that ZENK expression levels in Area X depend primarily on the variability of song delivery and not the social context per se.

65. Bentley GE: Melatonin receptor density in Area X of European starlings is correlated with reproductive state and is unaffected by plasma melatonin concentration. Gen Comp Endocrinol 2003, 134:157–162.

This particularly well-done study provides an example of a transcription factor with a function during both development and adulthood. As previously known, the homeodomain transcription factor Dlx1 plays an important role in the regulation of the embryonic development of forebrain GABAergic interneurons. The authors show that it is also required for regulating the functional longevity of cortical and hippocampal interneurons in the adult brain. Cell transplantation experiments demonstrate that the survival of adult interneurons is a cell-autonomous function of Dlx1.

The authors analyse the impact of sleep on the dynamic of vocal imitation during the song learning phase of young zebra finches. The variability in the acoustic structure of the song notes is increased after a night’s sleep but reduced again by intensive practice in the morning. Interestingly, those finches whose note structure changed most overnight imitate their tutors with highest accuracy, emphasizing the notion that variability is essential for learning (see also [48]). This elegant behavioral analysis sets the stage for physiological insights into sleep-dependent vocal learning mechanisms.