
774

Neuron production, migration and differentiation are major
developmental events that continue, on a smaller scale, into
adult life in a wide range of species from insects to mammals.
Recent reports of adult neurogenesis in primates, including
humans, have led to explosive scientific and public attention.
During the last two years, significant discoveries have
revealed that the generation, recruitment and survival of new
neurons in adult brains are governed by principles similar to
those that shape the developing brain, such as neuronal
death, sensory experience, activity levels, and learning.
Similarly, many factors implicated in embryonic neurogenesis
are increasingly found to regulate adult neurogenesis and
survival as well. These findings now allow the first
manipulations of the numbers of adult-generated neurons to
address their potential behavioral function. 
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Abbreviations
BDNF brain-derived neurotrophic factor
BrdU bromodeoxyuridine
3H-thy tritiated thymidine
HVC song nucleus HVC, acronym used as proper name
IGF-I insulin-like growth factor I
RA robust nucleus of archistriatum
SVZ subventricular zone

Introduction
In the 1960s Joseph Altman and his colleagues published
a series of papers on the persistence of neurogenesis in
adult animals [1,2]. Their work was met with skepticism
and did not become part of canonical textbook knowl-
edge. During the next two decades, mammalian
dendrites and synapses were shown to undergo constant
remodeling [3,4]. These findings indicated that adult
brains were far less static than was previously assumed
and the term ‘adult brain plasticity’ was coined. Reports
of continued neurogenesis in the adult rodent olfactory
system and hippocampus soon confirmed and extended
Altman’s original observations [5,6]. Yet, when in the
early 1980s experiments documented the addition of
functional new neurons to existing circuits in adult song-
bird brains, this phenomenon was regarded as ‘a
challenging biological mystery’ [7] with little relevance to
higher organisms [8]. The idea that the replacement of
neurons could occur even in organisms with higher brain
functions, such as monkeys and humans, was countered
with negative data and ideological reserve [8]. The recent
reports of adult neurogenesis in the brains of primates,
including humans (reviewed in [9]), caused some

methodological controversy [10] but, if corroborated, fur-
ther establish that adult neurogenesis is a widespread
phenomenon and of great clinical relevance. The peripa-
thetic path from discovery to acceptance of adult
neurogenesis is highlighted in a recent review article [11].

The focus of research has now shifted from documenting
that adult neurogenesis exists to understanding the factors
controlling it and its function. In this review, I summarize
recent progress in elucidating the fate of adult neural pre-
cursors and their progeny, the life span of new neurons
and their possible involvement in behavior. As three
recent reviews focused on neurogenesis in mammalian tis-
sues [9,11,12], I will discuss new results from the songbird
system and attempt to integrate them with findings from
a range of species that exhibit adult neurogenesis, includ-
ing fish and insects. 

Documenting new neurons
Documenting the generation of an adult-born neuron
involves proof that the cell is new and that it is a neuron.
To show that a neuron is new it has to be ‘birthdated’ by
incorporation of tritiated thymidine (3H-thy), bromo-
deoxyuridine (BrdU) or a retrovirus into its DNA during
the division(s) that led to its birth. To show that it is a neu-
ron, a number of different lines of evidence should be
provided: first, its morphological and molecular character-
istics must be consistent with a neuronal phenotype.
Second, electrophysiological characterization must reveal
neuronal activity [13•,14•,15]. However, this is experimen-
tally cumbersome [15] and therefore rarely done. Using
calcium-imaging or immediate-early gene activation to
study the activity of newly generated neurons might be
alternatives. Third, if new neurons are known to reach
their final site of incorporation by migration, tracking the
fate of 3H-thy- or BrdU-birthdated neurons after different
survival times should reveal cells with a morphological and
molecular phenotype typical of migrating neurons, and dif-
ferentiated neurons extending axons into their target
regions. Some of these methods, and the situations in
which they have been applied, have been summarized
recently in more detail [9]. 

To assess the functional consequences of adult-born neu-
rons, it is imperative to document not only the number of
neural progeny generated (referred to in the text as ‘neu-
rogenesis’), but also how many neurons are functionally
incorporated into existing circuitry (‘neuronal incorpora-
tion’), and how many survive for some length of time
(‘survival’). In many systems, there is a balance between
neuronal death and neurogenesis, leading to ‘neuronal
replacement’. It is important to remember the dynamic
relationship between the birth of neurons, their incorpora-
tion, and their death when interpreting the numbers of
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adult-born neurons present at different survival times after
their generation. 

As reports about the existence of new neurons in adult
brains increase, the phenomenon is starting to be accepted
bona fide and the burden of experimental proof seems to
decrease. This development is premature, and discoveries
of adult neurogenesis in new systems should receive con-
tinued scrutiny (see Box 1).

Cellular fate of neural precursors and their
progeny 
Spontaneous neurogenesis exists in adult insects [16],
crustaceans [17], fish [18,19], reptiles [20], amphibians
[21], birds [22], marsupials [23,24] and mammals [9]. A
comparison across systems suggests that neural precursors
in adulthood give rise to a variety of, but not all, neuronal
phenotypes. Most adult-born neurons fit the characteris-
tics of neurons generated late in central nervous system
(CNS) development, which tend to be interneurons or
neurons with short projections to targets within the same
brain structure. Adult-born neurons that fit this description
include interneurons in the olfactory bulb of arthropods
[17] and mammals [25], intrinsic mushroom body neurons
of insects [16], cerebellar granule neurons of fish [19],
HVC neurons in songbirds [22], hippocampal granule neu-
rons of mammals [26,27] and intracortical projection
neurons in primates [28].

Are adult neural precursors restricted to become
neurons of particular phenotypes?
During development of the nervous system, initially mul-
tipotent neural stem cells are thought to progressively
restrict their developmental potential through the pro-
duction of increasingly lineage-restricted precursor cells
[29–31]. The similar fate of neurons born last in develop-
ment and those born in adults raises the possibility that
equivalent lineage-restricted neural progenitors are the
source of both populations. This view is consistent with
data from the analysis of one-year-old canaries that were
injected with 3H-thy during different embryonic and
post-hatch ages. Neurogenesis becomes increasingly
restricted to the telencephalon where it persists into
adulthood [32].

Fate-restricted replacement in songbirds
Recent experiments in zebra finches also support the idea
that adult neural precursors are fate-restricted, limiting the
types of neurons that can be produced ([33•]; see
Figure 1). Two types of new neurons are constantly added
to nucleus HVC in adult songbirds: local interneurons, and
neurons that extend axons towards the robust nucleus of
the archistriatum (RA), thus becoming projection neurons
in the motor pathway that controls production of learned
song (here, designated HVC→RA). A third type of HVC
neuron projects to Area X (designated HVC→X), and this
type is never produced in adulthood [22].

3H-thy or BrdU incorporation reflect either DNA replication or
DNA repair. The fact that neurons labeled with 3H-thy or BrdU
can reflect newly generated neurons but also neurons that have
undergone DNA repair is one of the recurrent criticisms sur-
rounding reports of adult neurogenesis [10,86]. It is undisputed
that nucleotide incorporation during DNA repair takes place on a
much smaller scale than during replicative DNA synthesis, but a
systematic and quantitative comparison of BrdU or 3H-thy incor-
poration after neuronal DNA repair or after cell division has not
been made in adult brain tissue. Concern about false positives
resulting from DNA repair is not unwarranted: adult postmitotic
neurons show high rates of spontaneous DNA mutations [87],
are particulary susceptible to damage by free-radicals [88], and
can repair DNA efficiently [89,90]. 

Mounting interest in the therapeutic potential of adult neurogene-
sis in brain repair has led to an increase in studies in which
upregulation of neuronal is observed subsequent to experimentally
induced neuronal injury [33•,34••,91–93]. In these experiments, it
is particularly important to include additional appropriate controls
for DNA repair, as many of the criteria used to prove the identity
of the newly generated cells do not in fact distinguish between a
newly generated neuron and a neuron that has undergone injury-
induced DNA repair. Among those ambiguous criteria are the
presence of synapses, connectivity to distant targets, expression
of neuronal markers and expression of certain proteins involved in
the cell cycle [94].

Controls to distinguish between neurogenesis and DNA repair
could include: 

1. retrograde labeling of projection neurons with vital dyes before
administration of BrdU/3H-thy and documentation that none of the
previously labeled neurons subsequently incorporate BrdU/3H-thy.
2. comparison of silver-grain counts from 3H-thy-labeled cells known
to divide (e.g. endothelial) and putative new neurons [95].
3. use of antibodies against proteins associated with DNA repair
but not with DNA replication [96].
4. use of mice with targeted deletions of DNA repair genes [87] to
demonstrate presence of adult neurogenesis.
5. comparison of 3H-thy or BrdU incorporation of cells with experi-
mentally induced DNA damage and putative new neurons [97].
6. use of antibodies associated with cell division but not with DNA
repair [98].

A final cautionary note is raised by a recent publication that points out
the deleterious effects BrdU incorporation can have on stem cell popu-
lations, including those in the brain [99]. Just two injections of 60
mg/kg BrdU administered at different points during rat development
(from embryonic day [E]11 through postnatal day [P]10) resulted in
severe morphological and behavioral abnormalities, depending on the
timing of the treatment. Presumably, the permanent replacement of the
thymidine by BrdU on the replicating DNA strand causes cumulative
mutations in rapidly expanding cell populations. The severity of this
effect on adult-born neurons depends on the number of divisions a
neural precursor undergoes before terminal differentiation, which is not
known. If adult-born neurons arise from a relatively small number of
founder cells, BrdU-induced replication errors could be expected to
affect many of the neuronal offspring. This is not an unlikely scenario, as
the doses and the number of injections used to assess adult neuro-
genesis frequently exceed those used in this study.

Box 1. Nucleotide incorporation: DNA synthesis or repair — a recurrent controversy
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It is not known why only HVC→RA neurons and HVC
interneurons, but not HVC→X neurons, die and are
replaced in normal adult birds. Correlative evidence sug-
gests that recruitment of new neurons is regulated by prior
neuronal death. To test whether the lack of incorporation of
HVC→X neurons in adulthood is caused by the lack of
instructive signals from HVC→X-neuronal death, HVC→X
neurons were selectively destroyed using a photolytic
lesion technique. However, no new HVC→X neurons were
encountered after the induction of selective death. In con-
trast, targeted ablation of the HVC→RA neurons resulted

in a significant increase of the number of these neurons.
This indicates that death-associated signals can indeed reg-
ulate the recruitment of adult-born neurons, but only of the
type that normally undergoes replacement in adulthood. To
address whether age-related extrinsic factors prevented the
recruitment of HVC→X neurons, HVC→X neurons were
also ablated in juvenile zebra finches, in which favorable
conditions for axonal outgrowth towards Area X still persist;
such favorable conditions include transiently expressed
molecular factors. Even under these circumstances, no new
HVC→X neurons were found. These results are consistent

Figure 1
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Targeted neuronal death upregulates neuronal recruitment to HVC in
a cell-type-specific manner. (a) Diagram of HVC showing
schematically the two projection neuron types, HVC→RA (black) and
HVC→Area X (white). Neuronal replacement occurs only in the
HVC→RA projecting neurons but not the HVC→X population. Newly
generated neurons migrate (1,2) into HVC where they incorporate,
differentiate, and extend axons towards RA (3,4). Other HVC→RA
neurons die (5) and disappear (6). (b) Bilateral cell-type-specific
neuronal degeneration in young and adult male zebra finches was
induced by photoactivation of retrogradely labeled HVC projection
neurons, using a 674 nm laser. The retrograde label consisted of
chlorin e6-conjugated nanospheres that were injected either into Area
X or into RA. After allowing sufficient time for retrograde transport,
HVC was non-invasively illuminated with 674 nm laser light. This
activates chlorin e6 to release cytotoxic singlet oxygen, resulting in
apoptosis of the targeted neurons. The procedure spares cells that
are not labeled as well as those that have taken up chlorin e6-
conjugated nanospheres but lie outside of the region over which the
laser is focused. To monitor cell birth, 3H-thy was injected systemically
every other day for 10 days, starting on the day after laser illumination.
Three months later, the retrograde tracer FluoroGold (FG) was
injected into the same target that had previously been injected with
chlorin e6. This FG injection allowed assessment of how many HVC

neurons projected to this target at the time of perfusion, including any
neurons that had escaped killing by the targeted photolysis as well as
any new neurons that replaced those that were killed. The latter cell
type could be positively identified by the combined FG and 3H-thy
label; see inset in (c). (c) Induced death of the HVC→RA neurons in
adults upregulates incorporation of new neurons into HVC. The
number of newly recruited HVC→RA projection neurons was
significantly higher after targeted neuronal death of the HVC→RA
neurons (black bar) than in the three control groups (n hemispheres for
white = 6, black = 18, light gray = 4, dark gray = 4 hemispheres.
ANOVA, p = 0.012; F=4.3). The control groups were not significantly
different from each other (p>0.05). There was no significant difference
in HVC volumes among groups (not shown). (d) Induced death of the
HVC→X neurons in adults does not affect incorporation of new
neurons into HVC. Neuron addition to HVC after induced death of the
HVC→X neurons in adult zebra finches was equivalent in the
experimental group that received chlorin e6 injections before the laser
(black bar) and the control group that received laser illumination only
(white bar). p = 0.8 Mann-Whitney test, Z adjusted for ties –0.286, n
= 3,2. (e) Induced death of the HVC→X neurons in juveniles does not
cause replacement of HVC→X neurons. After induced death of
HVC→X neurons, no new HVC→X neurons were observed in any
group (nbirds=6,6,3,6).
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with the notion that neural precursor cells in the avian brain
are lineage-restricted and that death-related signals cannot
induce a change of fate. 

Mice cut loose from fate restriction
One must be cautious not to overinterpret these results in
favor of lineage restriction of adult neural precursors in
general. The identical approach used in mice suggests the
opposite: that adult neural precursors can be induced to
change fate [34••]. In rodents, spontaneous neurogenesis
persists in the olfactory system and the hippocampus, but
not in the cortex. Magavi et al. [34••] report that photolytic
neuronal death can induce layer VI cortical neurons to be
regenerated in adulthood. This is remarkable because dur-
ing development, layer VI neurons are derived from early
precursors, and late progenitors are no longer competent to
respond to environmental cues that specify layer VI iden-
tity [30]. In fact, the precursors that persist into adulthood
in the neurogenic subventricular zone (SVZ) of rodents are
normally destined to become glia and olfactory bulb neu-
rons (reviewed in [35]). Nevertheless, Magavi et al. suspect
that precursors residing in the SVZ, which is close to layer
VI, are recruited by death-induced signals to give rise to
the regenerated layer VI neurons. 

Interestingly, previous attempts to respecify adult mam-
malian SVZ cells into cortical neurons were not successful.
Even when postnatal SVZ precursors were transplanted
into embryos, where environmental cues for region-specif-
ic differentiation are presumably more appropriate, SVZ
precursors never colonized the cortex, though they did
incorporate into many other levels of the developing neu-
raxis (reviewed in [35]). If confirmed, the new findings in
mouse cortex [34••] imply that adult SVZ precursors are
not irreversibly committed but can alter their fate in
response to death-associated factors. This is consistent
with the striking finding that adult in-vitro-expanded SVZ
precursors (neurospheres) can integrate into chick and
mouse embryos and their progeny can differentiate into
cells of ectodermal, and even mesodermal and endodermal
lineage [36••]. In view of this unexpected plasticity of SVZ
cells in mice, it is curious that in songbirds replacement of
neurons after targeted photolytic death was limited to the
type of neuron that is replaceable in intact birds. Because
adult neurons are incorporated into more brain regions in
non-mammalian brains (fish, lizards, birds) than in 
mammals, it would seem more likely that neural precursors
in non-mammalian vertebrates are actually less lineage-
restricted than mammalian precursors, or that
non-mammalian brains are more permissive. Taken
together, these data suggest that adult neural precursors
are normally lineage-restricted but, with the appropriate
signals, have the capacity to become de-differentiated into
a less-specified precursor.

Elimination of neural precursors by programmed cell death
Recent insights concerning adult neurogenesis in insects
point towards another variable affecting adult neurogenesis.

In insects, new neurons are added to adult mushroom bod-
ies in some species (e.g. mealworms, ladybirds, rove
beetles) but not in others (e.g. flies, cockroaches, honey-
bees) [16,37]. Even within the same order, adult
neurogenesis can be present (crickets) or absent (locusts).
At least in adult flies and bees, the reason for this is that
the neuroblasts in the mushroom bodies undergo pro-
grammed cell death during late pupal stages [38,39]. It is
not known whether, in other adult brains, certain neural
precursors might undergo programmed cell death after
they have generated a certain number of progeny. This,
however, does not seem to be the case in the mammalian
hippocampus, where the dramatic decrease of neuronal
production that accompanies aging is due to age-depen-
dent increases in corticosteroid levels rather than to
programmed cell death of the progenitor pool [40].

Longevity of new neurons and factors affecting birth
and survival
The life span of new neurons is probably highly relevant to
the task they perform. In many species, at least some
adult-born neurons survive for weeks or months after they
have been born, suggesting that they are functional.
However, much evidence points towards an initial over-
production and subsequent pruning of adult-born neurons
analogous to processes during development. For example,
Kirn et al. [41] recently reported that neurons start arriving
in HVC about one week after they are born in the ventric-
ular zone (VZ). Half of the newly arriving neurons
apparently die within the next two weeks. What deter-
mines their death is not yet understood. But other
experiments suggest that the time span of survival can be
affected by environmental factors. Now, work by Wang
et al. [42••] raises the possibility that survival of new neu-
rons is dependent on sensory experience. Within one
month after being deafened, male zebra finches had only
one quarter as many new HVC neurons as did intact males,
either because of a decrease in neurogenesis or because of
increased death of the newly born neurons during the first
month of their existence. Moreover, deafening also
seemed to attenuate neuronal death at later stages, so that
four months after deafening the number of new neurons
was the same as it had been at one month. In contrast, in
normal males, more than two thirds of the neurons present
at one month were no longer present at four months. As
deafening also causes song deterioration, these new data
raise the question of whether changes in neuronal turnover
are the cause of behavioral change (see section entitled
‘Functional significance of new neurons’). 

Different species use similar molecular factors to
regulate both developmental and adult neurogenesis
Cyclic changes in hormone levels are correlated with
changes in neuronal incorporation and survival in mice
(estrous cycle [43]) and canaries (seasons [22]). One candi-
date factor that mediates the seasonal changes in songbirds
is testosterone, which affects the longevity of HVC→RA
neurons [22]. Recent evidence suggests that testosterone’s
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effect on neuronal survival in canaries is mediated by
brain-derived neurotrophic factor (BDNF) [44].
Interestingly, both BDNF mRNA levels and neuron incor-
poration are linearly related to the amount of song
produced, raising the intriguing possibility that neurogen-
esis and survival are activity-dependent [45]. In mice, a
role for activity has been postulated because closure of the
nostril affects the dynamics of neuronal birth and death in
the olfactory bulb (reviewed in [25]) and because running
increases the number of new granule neurons added to the
hippocampus [46]. Two new papers are consistent with the
idea that running mediates neurogenesis via insulin-like
growth factor I (IGF-I) action. Peripherally injected IGF-I
is taken up by the brain where it increases the generation
and survival of new neurons in the hippocampus [47].
Peripheral infusions of IGF-I also mimic the effects of
exercise on brain c-fos and BDNF expression [48]. IGF-II
might fulfill a parallel function in songbirds, where the
non-renewable HVC→X neurons strongly express IGF-II
mRNA and only the renewable HVC→RA neurons are
immunopositive for the IGF-II protein, suggesting a
paracrine mechanism of action [49]. Retinoic acid may be
another common factor that regulates neurogenesis in
songbirds and the mammalian hippocampus [50,51]. A
retinoic-acid-producing enzyme is highly enriched in
HVC, and HVC can induce retinoic acid production in an
in vitro assay. Pharmacological blockage of the enzymatic
production of retinoic acid in HVC during development
interferes with the normal development of song, suggest-
ing that the cellular machinery needed to acquire song
cannot develop in the absence of retinoic acid [50]. The
effects of the blockage on adult neurogenesis in birds is
still unknown, but in mammals, retinoic acid and BDNF
collaborate in vitro to induce neuronal differentiation of
adult hippocampus-derived stem cells [51].

Functional significance of new neurons
When first discovered, adult neurogenesis appeared mal-
adaptive. Why maintain a metabolically expensive
developmental program into adulthood to selectively
replace or add certain cell types and send neural precursors
through a dense parenchyma to sometimes distant targets?
Why throw away differentiated neurons, when modifica-
tion of synapses is sufficient to adjust to environmental
change? Besides, how can a brain that regularly changes its
components provide sufficient stability to maintain what it
has learned [8]? Possible answers to the last argument
come from recent research into the dynamic relationship
between mechanisms that promote network plasticity and
mechanisms that maintain network stability [52]. How this
type of ‘homeostatic plasticity’ — in other words, a balance
between plasticity and stability — is achieved in circuits
that undergo neuronal replacement in adulthood has yet to
be formally addressed. The frequent assumption is that a
net addition of new neurons to an existing network facili-
tates plasticity, including learning. In contrast, a
steady-state, or a decrease in, neuron number is associated
with stability and decreased ability to learn. There is no

theoretical reason why this should be so, as either incorpo-
ration or elimination of neurons from a steady-state
network could induce plasticity. 

Behavior influences neurogenesis?
During the past few years, results have accumulated that
are consistent with the possibility that learning about the
environment contributes to the generation or mainte-
nance of adult-born neurons in the hippocampus of birds
and mice (reviewed in [9]). However, as already men-
tioned, many other variables including motor behaviors,
such as running (in mice) or singing (in canaries), also
influence how many new neurons are incorporated into
adult brains [45,46]. Further investigation into the nature
of the link between metabolic activity, neuronal addi-
tion/survival and learning will be necessary to determine
whether learning causes neuronal addition, or whether
both neuronal addition and enhanced learning are conse-
quences of metabolic activity, yet not causal to each other.
Similar follow-up studies are necessary to resolve whether
the above-mentioned changes of neuronal
incorporation/survival in deafened zebra finches [42••]
actually cause the resulting degradation of song.
Alternatively, other effects of deafening, such as poten-
tially different levels of singing activity, could play a role.
A potential problem with the idea that deafening-induced
changes in neuron addition/survival contribute to song
deterioration is that deafening does not always cause song
to deteriorate. When, in addition to deafening, a basal
ganglia-like pathway is surgically interrupted, song
remains unchanged [53•]. If new neurons were to be
involved with the song deterioration normally seen after
deafening, one would have to argue that these changes in
neuronal turnover do not happen when deafening is com-
bined with an interruption of the basal ganglia pathway.
Also conceivable is that deafening always results in
changes in neuronal turnover but that this would lead to
song changes only in animals with an otherwise intact
song system. In either case, one should bear in mind that
manipulations of auditory feedback in songbirds are sen-
sory in nature but could directly affect the motor pathway
through changes in HVC→RA neuronal turnover.

Neurogenesis influences behavior?
A second related, but distinct, question is whether the
incorporation of new neurons in adult brains mediates
behavior. Again, no conclusive evidence is available, but
some recent data are compatible with the hypothesis.
Song recovery after targeted ablation of HVC→RA neu-
rons in zebra finches coincides with the replacement of
the ablated neurons [33•]. Whether song recovery after
other manipulations [54,55] correlates with changes in
neuronal incorporation has not been tested yet, but recent
data from Scott et al. [56•] address an interesting corollary
to the idea that neuronal replacement drives behavioral
change. These authors reasoned that in the absence of
appropriate auditory instruction new HVC neurons might
compromise established neural function, resulting in song
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deterioration. To test this, the authors checked whether
the rate of neuronal addition after deafening co-varied
with song deterioration in two species of songbirds whose
song either degrades rapidly after deafening (bengalese
finches), or slowly (zebra finches). Indeed, a high per-
centage of new neurons added to HVC after deafening in
bengalese finches correlated with fast song deterioration,
whereas a lower percentage of new HVC neurons in zebra
finches corresponded to a slower process of song changes.
This could be due to a constitutively higher rate of neu-
ronal addition or to species differences in neuronal
turnover in response to deafening. Attenuated addition or
turnover could also account for the remarkable finding
that songs of older adult zebra finches take significantly
longer to deteriorate after deafening than songs of
younger adult birds [57•]. As rates of spontaneous neuro-
genesis decline with age [32], it is possible that the
age-related resistance to deafening is mediated by slower
incorporation or slower turnover rates in old animals.

These findings highlight the need for studies on the inter-
action between neuronal replacement and auditory
processing in HVC. Most HVC neurons respond preferen-
tially to the bird’s own song (BOS; reviewed in [58]), and
recent in vivo intracellular recordings show that all HVC
neuron types (HVC→RA, HVC→X and interneurons)
respond in a BOS-specific manner, albeit with distinct
spiking and subthreshold characteristics [59••]. The oppor-
tunity now beckons to record intracellularly from newly
generated HVC→RA neurons of different maturation
stages and thus establish how they become functionally
incorporated into existing circuits. This should reveal
whether new HVC→RA neurons are ‘entrained’ by adja-
cent neurons, as has been proposed [56•,60].

Experimental manipulations of the number of new neurons
As in the experiments discussed above, most studies cor-
relate changes in rates of neuron addition with behavioral
changes. One primary example is the correlation between
seasonal changes in canary song plasticity and HVC neuron
incorporation [61]. Similar correlations have been reported
in various other systems [43,62–64,65•]. What cannot be
ruled out in any of the studies that report changes in
behavior and neuron number is that these changes are
either coincidental or co-regulated, but not causally relat-
ed. To address this problem, it is necessary to manipulate
the birth and/or survival of adult-born neurons directly, and
methods to do so are now becoming available. Baseline
levels of the generation of new neurons or their survival
can be experimentally up- or down-regulated (Table 1). 

Unfortunately, so far all of these approaches also affect
additional variables besides the desired increase/decrease
of neuron incorporation or survival, making it difficult to
assess whether a behavioral effect is specific to the changed
levels of neuron incorporation (Table 1). Future attempts to
ablate identified populations of adult-born neurons in a
temporally and spatially precise manner will doubtlessly
become more feasible as more information becomes avail-
able about the molecular and cellular steps that characterize
the differentiation of neural precursors [12,66,67].

A system that might be well suited to targeted ablation of
adult-born neurons is that of insects. New neurons in
insects are added mainly to the mushroom bodies, a brain
structure implicated in the learning and memory of odors
[68]. Using the elegant molecular genetic approach of clon-
al analysis to trace the lineage of mushroom body
neuroblasts in Drosophila, the generation and projection

Table 1

Some manipulations of the number of new neurons in adult brains: effects on behavior?

Manipulation Reference Number of new neurons Where Behavior Alternate mechanism

Infusions
bFGF (peripheral) [80] + SVZ and OB Not tested Identity of new cells unknown, affects

other brain areas
IGF-1(peripheral) [47] + Hippocampus Not tested Affects other brain areas

[48]
BDNF (local) [44] + HVC Not tested Affects HVC in multiple ways 
BDNF-blocking [44] – HVC Not tested Affects HVC in multiple ways 

antibodies (local)
Opiates (local) [81] + Hippocampus Not tested Affects other brain areas 
Ara-C (local) [67] – SVZ Not tested Affects all dividing cells
Methamphetamine [82] + Hippocampus Not tested Affects other brain areas

(peripheral)
Genetic manipulations

DNA fragmentation [83] + Hippocampus Better water- Affects other brain areas,
factor 45 maze performance developmental effects

Hu-Bcl-2 [84] + Hippocampus Fine motor Affects other brain areas,
problem developmental effects

NCAM [85] – OB and Problem with odor Developmental effects, 
hippocampus novelty detection hippocampus also has 

fewer new neurons 

Ara-C, cytosine-β-D-arabinofuranoside; bFGF, basic fibroblast growth factor; NCAM, neural cell adhesion molecule; OB, olfactory bulb.
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pattern of the three neuron types that constitute this brain
structure have been recently elucidated [69]. If a similar
approach can be modified to include an inducible cell-
death signal and be adapted to insects with persistent
neurogenesis in adulthood, it would hold great promise for
a clean analysis of the behavioral relevance of adult neuro-
genesis in olfaction. Analysis of the functional role of new
neurons in insect, arthropod, marsupial and mammalian
olfaction could provide insights into the way in which con-
vergent evolution has not only resulted in designs with
similar neuroanatomical and physiological characteristics
[70], but also the potential functional need for continuous
turnover of new neurons. 

Are adult-born neurons involved in fish behavior?
In fish, new neurons are added to many parts of the brain,
including the visual and auditory system as well as the cere-
bellum [18,19]. A frequently cited and parsimonious
explanation for this is the continued growth of many adult
fish [71] which necessitates the addition of new neurons to
sensory structures and their connected brain areas.
However, like songbirds, fish are an ideal model for pursu-
ing the question of whether neurogenesis is relevant to
behavior because of their variety of reproductive, vocal, and
sexually dimorphic behaviors with identified brain sub-
strates [72,73]. A relationship between adult neurogenesis
and behavior has been hypothesized for the pacemaker
nucleus of the weakly electric gymnotiform fish, Apteronotus,
but has so far not been explicitly tested [19]. It would be
particularly interesting to pursue the way in which the addi-
tion of new neurons can be compatible with the precise
temporal firing pattern that is characteristic for both the
pacemaker nucleus in fish and for HVC of songbirds. 

Conclusions and future directions
Emerging evidence about the regulation of neural precur-
sors in adult animals indicates that their fate is normally
quite restricted. However, under special circumstances,
neural precursors can apparently differentiate into a variety
of cell types. Elucidating the signals that induce this flexi-
bility will be a major task in the future. Broadening the
study of adult neurogenesis to a greater variety of species
has already yielded interesting parallels between brain
regions that share structural and functional homologies
(hippocampus in birds and mammals [74], and the olfacto-
ry system in most species studied). Similarities among
species are now also evident in the use of certain molecular
factors involved in the regulation of adult neurogenesis.
Establishing a definite role for new neurons in adult behav-
ior will require the development of genetic mutants in
which adult neurogenesis is regulated in a temporally and
spatially specific way. In addition, approaches that use a
variety of species to correlate changes in specific behaviors
with changes in the rate of neuronal turnover will continue
to play an important role in identifying what aspects of
behavior are affected by, or are affecting, adult neurogene-
sis and survival [46,75,76]. Awareness of the fact that all
behaviors are an assortment of distinct but interrelated

components is of key importance in accomplishing this
task. For example, memory, motor ability, motivation, per-
ception, arousal and attention all contribute to the
execution of the seemingly simple ‘cognitive’ Morris water-
maze task. The extensive knowledge about different
aspects of behavior gathered by experimental psychologists
and ethologists is a resource whose power for studying the
function of adult-born neurons is only starting to be recog-
nized [77]. This emphasizes the need for a diversification of
behavioral assays, including those that tap the natural
behavior of the species under investigation [78,79].
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