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The study of navigation is informed by ethological data from many species,
laboratory investigation at behavioural and neurobiological levels, and com-
putational modelling. However, the data are often species-specific, making it
challenging to develop general models of how biology supports behaviour.
Wiener et al. outlined a framework for organizing the results across taxa,
called the ‘navigation toolbox’ (Wiener et al. In Animal thinking: contemporary
issues in comparative cognition (eds R Menzel, J Fischer), pp. 51–76). This
framework proposes that spatial cognition is a hierarchical process in
which sensory inputs at the lowest level are successively combined into
ever-more complex representations, culminating in a metric or quasi-
metric internal model of the world (cognitive map). Some animals, notably
humans, also use symbolic representations to produce an external represen-
tation, such as a verbal description, signpost or map that allows
communication of spatial information or instructions between individuals.
Recently, new discoveries have extended our understanding of how spatial
representations are constructed, highlighting that the hierarchical relation-
ships are bidirectional, with higher levels feeding back to influence lower
levels. In the light of these new developments, we revisit the navigation tool-
box, elaborate it and incorporate new findings. The toolbox provides a
common framework within which the results from different taxa can
be described and compared, yielding a more detailed, mechanistic and
generalized understanding of navigation.
1. Introduction
How animals navigate across complex terrain or featureless oceans or deserts,
or find their way home after a foraging trip, has fascinated and puzzled
people over centuries. Because successful navigation is essential to survival,
understanding its mechanisms is a major goal for researchers in biology, neuro-
science, psychology and robotics. Facilitating wayfinding is also the goal of
human navigational tools, ranging from traditional systems using a complex
mix of terrestrial and celestial cues [1] to modern global positioning systems.

The wealth of behavioural and neural data generated by these investi-
gations, combined with formal computational specificity, offers an excellent
opportunity to formulate explanations of navigation that link brain and behav-
iour [2]. The field of navigation, however, has been fragmented, with relatively
little communication across disciplines, model organisms or levels of analysis.
For example, neuroscientists recording cells may not think about, or find it dif-
ficult to tackle experimentally, the ecological validity of the behaviours they
study. By contrast, zoologists seeking to understand natural behaviours in the
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wild may not consider the underlying neural substrates.
Fortunately, this situation is changing as interdisciplinary
societies and conferences arise, spawning cross-cutting
collaborations. However, the variety of findings and wealth
of data generated by these endeavours in many different
model systems can be overwhelming, limiting our ability to
derive general principles.

To cope with the vast mass of information and to facilitate
synthesis across disparate fields, Wiener et al. [3] suggested
the navigation toolbox as a formulation of common underlying
principles that may operate across many different taxa. The
toolbox delineates four hierarchically organized levels of
spatial representation that enable the classification of naviga-
tional computations and behaviours, allowing cross-taxa
comparisons. We believe this framework is useful for orga-
nizing the ever-expanding mass of data concerning animal
navigation, allowing us to derive underlying principles
as well as to resolve controversies. However, as research
progresses we recognize that the original framework was
overly one-directional, because emerging evidence is that
the levels interact bidirectionally.

Here, we review and develop the framework, integrating
more recent findings across different domains and exploring
this bidirectionality. We first present a précis of the toolbox
proposal, and then elaborate using case studies. Along the
way, we illustrate how the framework addresses controversies
and discuss top-down processes. We finish with discussion of
how the framework can unify the study of navigation across
taxa and across levels of description, and implications for
the evolution of goal-directed wayfinding, adding some
suggestions for new research directions.
2. The navigation toolbox
The navigation toolbox comprises a hierarchy of represen-
tations and processes that are organized according to their
degree of spatiality: that is, the degree to which sensory infor-
mation is processed to form representations encompassing
the metric properties of distance and direction. We briefly
describe these below before progressing to a more detailed
deconstruction of each one.

The four levels (figure 1) are:

(1) sensorimotor mechanisms;
(2) spatial primitives;
(3) spatial constructs;
(4) spatial symbols.

At the sensorimotor level, the key process is primary sen-
sation, sometimes directly linked to locomotor behaviour.
This information is not yet processed into more elaborated con-
structs such as object representation, but can be used directly
to guide travel, in processes such as chemotaxis (chemical
guidance) [7] and phototaxis (light guidance) [4]. At the
second, spatial primitive level, sensory information is combined
into conjunctive representations that encode information
having isolated spatial components—for example, distance,
or direction, or landmark specificity—but lack the two- or
three-dimensional aspect required for true localization.

Linkage occurs at the third, spatial-construct level. Here,
spatial primitives are combined into representations that
allow precise localization in two or three dimensions.
A vector is a spatial construct: it combines distance and
direction concerning how a point in space such as the current
position, home base or starting point of a journey relates to
another point. A route can also be a spatial construct if
segments of the route comprise vectors between points.
Another type of spatial construct is a cognitive map, in
which a spatial location is uniquely represented in a ‘coordi-
nate system’ (loosely speaking) such that an animal can
represent, in principle, any location in the space. Finally,
at the symbolic level, arbitrary symbols are used to help
guide movement. Humans use spatial symbols all the time:
words, maps or signs. Some animals may use symbols too.
As a prominent example, the honeybee uses movements of
its body, in the form of the waggle dance (figure 1), to ‘sym-
bolize’ the distance and direction to a patch of flowers.
However, the waggle dance is a closed system that is not
capable of expanding to express new understandings or
integrate spatial with non-spatial information.

We now detail, below, the characteristics of each level,
illustrating each one using different taxa and different levels
of analysis. We also discuss what adaptive behaviours are
enabled at each level and how the levels interact with one
another. We hope this framework will create a common
language that enables researchers studying a wide range of
navigational behaviours across many different organisms
and settings to share their insights more widely.
(a) Level 1: sensorimotor tools
The lowest level in the hierarchy, the sensorimotor level, relies
on multimodal sensory signals. The modalities for a given
species depend on the organism’s suite of sensors, which
furnishes its subjective sensory world (or Umwelt) [8,9].
The suite might include vision, olfaction, audition, touch,
thermoreception, chemoreception, electroreception, magne-
toreception and body senses: signals that code linear and
angular acceleration, gravity, internal postural signals
(proprioception) and sensations of movement (kinaesthesis).

These signals provide an organism with information per-
taining to places, directions and/or movement through a
space, but do not fully encode these things, and so are not
in and of themselves spatial. These signals alone suffice,
however, for the simplest kind of navigational behaviour:
movements up or down a sensory gradient, a process often
called orientation (by contrast with bona fide navigation
[10]). Such mechanisms include taxes and kineses. In taxis,
the orientation mechanism works to turn an organism to a
different, likely better, direction of travel; in kinesis, the mech-
anism changes the rate of specific, targeted behaviours based
on sensory-gradient information. For example, diverse
animals are attracted to light (figures 1 and 2), moving
towards higher light intensities in phototaxis [4]. Scent-track-
ing, in which an organism follows a chemical trail to a food
source, mate or home, is a common Level 1 behaviour,
found in many animals, including insects [12], rodents [13],
birds [14] and humans [15]. Chemotaxis, in small and
microbial organisms, orients such organisms up or down
chemical gradients (for example fly larvae [16]).

Level 1 information can be characterized as one
dimension: the level of a single parameter such as chemical
concentration, light level or wind direction. Elevating
sensory information into more spatial parameters such as a
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Figure 1. The four levels of spatial representation. The left column shows illustrative cases with non-human animals and the right with humans. At Level 1, sensory
information is used directly to guide the actions used in navigation. Left: a sea urchin larva swims upwards until the light level crosses a brightness threshold,
whereupon it reverses (from [4]). Right: in a strange city, humans might ‘follow their nose’ to a bakery. Level 2: simple spatial features are extracted from sensory
information. Example shows the use of views to guide navigation. Left: an ant at the start of a journey home using an artificial panoramic skyline for guidance that
mimics the actual skyline [5]. Right: in open space, humans might also use the broad panorama for guidance. Level 3: spatial primitives of direction and distance are
combined as vectors to guide navigation. Left: Drosophila flies may code and transform vectors in the form of spatial sine waves [6]. Right: Humans can learn to
compute shortcuts to non-distinct locations, travelling in a particular direction for an approximate distance to reach their destination. Level 4: symbols constructed or
communicated by others help in navigation. Left: the renowned waggle dance of the honeybee. Right: humans often use maps to help navigation. Figure credits.
Level 1, photophobia in sea urchin: from [4], the open-source publication (licence: https://creativecommons.org/licenses/by/4.0/). Level 1, bakery: from Wikimedia
creative commons (licence: https://creativecommons.org/licenses/by-sa/4.0/deed.en), author: Reinhold Möller. Level 2, skyline for ants: photo by Paul Graham. Level
2, city skyline: from Wikimedia creative commons (licence: https://creativecommons.org/licenses/by/4.0/deed.en), author: Marte007. Level 3, sine wave: from Wiki-
media creative commons (licence: https://creativecommons.org/licenses/by-sa/3.0/deed.en), author: badseed, using work by Josemontero9 and José Luis Gálvez.
Level 3, shortcut: from Wikimedia creative commons (licence: https://creativecommons.org/licenses/by-sa/2.0/deed.en), author: Anthony Vosper. Level 4, waggle
dance: from Wikimedia creative commons (licence: https://creativecommons.org/licenses/by-sa/2.5/deed.en), author not named. Level 4, treasure map: from Pixabay
(licence: https://pixabay.com/service/license-summary/), author: Pexels.
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direction of travel or a speed of travel takes us to Level 2:
spatial primitives.
(b) Level 2: spatial primitives
Multiple kinds of one-dimensional sensory information can
combine at Level 2 to form spatial primitives. Level 2 primi-
tives in our scheme include such building blocks for
navigation as landmark identification, scene and context
recognition, direction sense, travel-distance estimation,
perception of terrain slope and detection of boundaries.
Some primitives are arguably more complex and ‘con-
structed’ than others, but are not in themselves able to
provide two- or three-dimensional positional or vector
information.

One illustrative example is landmark recognition, as
when recognizing the Eiffel Tower while exploring Paris.
The process of moving towards such a familiar landmark,
or ‘beacon’, is referred to as beaconing and is a simple
form of navigation, akin to taxis (even garnering the term
telotaxis) except that it requires more deeply elaborated
neural processing of the cue (for example, by object

https://creativecommons.org/licenses/by/4.0/
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(a) (c)(b)

Figure 2. Sensorimotor processes allow simple forms of navigation towards or away from stimuli, such as in chemotaxis or beaconing. (a) Chemotaxis in algae in
response to the pheromone lamoxirene [11]. (b,c) Beacons, positive, encouraging approach (b), and negative, encouraging avoidance (c). Figure credits: (b) image
from https://commons.wikimedia.org/wiki/File:Eiffel_Tower_-_Paris_-_2016.JPG by Brian Lee is licensed under the Creative Commons Attribution-Share Alike 4.0
International license. (c) Image from https://commons.wikimedia.org/wiki/File:Mevagissey_lighthouse_(9453).jpg by Nilfanion is licensed under the Creative Com-
mons Attribution-Share Alike 4.0 International license.
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recognition mechanisms). A landmark can also be used as an
avoidance cue (figure 2c).

An example of the use of spatial primitives is desert ants
matching the skyline of the panoramic visual scene to a
stored memory of the scene to derive the best direction of
travel (figure 1; [5]). Some ants use terrestrial cues, such as
visual panoramas, to orient in a chosen direction [16–18].
Panoramic cues may guide ant navigation directly, akin to
route instructions: each given panorama becomes linked
with an associated heading direction. The insect does not
localize its current location on a map; it just computes its
direction of travel [17,19–21]. This thus falls short of linking
distance and direction to form vectors.

Another important spatial primitive is the celestial (sky)
compass in insects, most studied in hymenopterans [22,23].
It has three main components [24]. The dominant cue is the
pattern of polarized light in the sky [25], but insects also
use the position of the Sun and the spectral pattern across
the entire sky [24]. Brightness and spectral composition
differ according to the position of the Sun.

Neurobiology has shed light on the somewhat modular
nature of these abilities. Cells with direction-specific activity
(figure 3) have recently been found in the ellipsoid body of
the Drosophila melanogaster central complex [27]. This extra-
ordinary discovery echoed the earlier discovery of ‘head
direction cells’ in mammals [26,28,29], which support local,
short-range navigation [30–32] (and possibly long-range
navigation, although this has not yet been studied). It
remains to be determined whether these parallel phenomena
reflect a direction sense that evolved long ago or the conver-
gent evolution of an important spatial competence in two
diverse taxa, but the similarity is striking.

Behaviourally, the compass mechanisms employed by birds
are among the best-understood Level 2 directional primitives.
They are reliant on celestial and/or geomagnetic cues [33]. For
some nocturnal songbirds, directional compass information
determines the flight paths of first-time migrants [34,35].
Duringmigration, they fly in a specified direction foran innately
programmed amount of time, a mechanism that resembles the
encoding of a vector; indeed, this process is often referred to
as ‘vector navigation’. The encoding of a vector makes this
process Level 3, but the compass component is Level 2.
In experiencedmigrants, the compass mechanisms are typically
coupled to avian maps of space encoding distances and direc-
tions, which are more complex Level 3 spatial constructs (see
below). For so-called map-and-compass navigation in birds,
this Level 2–3 recursive interaction reflects a bidirectional flow
of information between levels, a point we return to.

The avian hippocampus also contains head direction cells
[36,37], but it is not yet established whether these support
compass navigation in birds. Hippocampal lesions do not
disrupt Sun-compass orientation in homing pigeons [36]
nor geomagnetic compass orientation in migratory savannah
sparrows (Passerculus sandwichensis, [36,37]), so possibly these
long-range directional behaviours are supported by a differ-
ent neural system in vertebrates.

Another well-studied spatial primitive is travel-distance
estimation (odometry). Here again, neurobiological studies
have pointed to a modular separation of this function in the
vertebrate brain. In mammals, grid cells in the entorhinal
cortex are thought to support odometry [38–40]. Grid cells
(figure 4) are neurons found in the entorhinal and parahippo-
campal cortex of rodents (and likely other mammals [42–44])
that increase their firing rates (production of action poten-
tials, or ‘spikes’) when the animal enters any of multiple,
evenly spaced circular regions of the environment. These
spikes-in-locations are called firing fields, and together
these fields often make a uniform pattern across the space
(figure 4a), which is grid-like, hence the name. The even spa-
cing of these fields indicates a capacity of the neurons to track
distance. If animals homogeneously explore a symmetrical
open field, then the firing fields align in rows with a specific
orientation (figure 4b), which indicates integration of distance
with direction (figure 4c) and thus amounts to a primitive
form of spatial localization, approaching a Level 3 spatial
construct. However, the regularity breaks down in three-
dimensional space (figure 4d ) [41,45]. The regular grids
seen in restricted laboratory spaces may therefore possibly
be a side-effect of the process that generates discrete fields
rather than an integral part of the computation supported
by grid cells (which remains unknown). Grid cells thus
arguably lie on the Level 2–3 boundary.

https://commons.wikimedia.org/wiki/File:Eiffel_Tower_-_Paris_-_2016.JPG
https://commons.wikimedia.org/wiki/File:Mevagissey_lighthouse_(9453
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Figure 3. The neural basis of the spatial primitive of direction, recorded in two different taxa: rodents and insects. (a) Left: neurons from one of the head direction
(HD) cell regions are recorded as a rat explores a cylindrical chamber in which direction is indicated by a single landmark (white card on the wall). Right: polar plot
of the firing rate of a single HD neuron is plotted as a function of the facing direction of the animal. Accumulated time spent facing each of the possible directions is
shown in grey. This neuron fired maximally (green line) when the rat faced ‘southeast’ (blue plot). (b) Neuronal activity recorded by a scanning microscope from a
fruit fly as it ‘walked’ on an air-cushioned ball that controlled a video display simulating a real environment. Right (top): plots showing successive points in time as
a visual cue ( pale blue bar) moved around the screen, coupled to the actions of the fly. Right (bottom): heat plots showing hot-spots of neural activity in the
circular region of the fly brain that maintain a consistent relationship to the visual cue. The same effect was seen in darkness (not shown), indicating that this is not
just a visual response, but one that integrates the sensorimotor tools of vision and locomotion. Figure adapted from fig. 1 of [26]; published with permission ( please
note the rights are held by a third party).
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How the distance-tracking of grid cells is achieved is not
yet known, but the presence of co-localized speed-sensitive
cells in this region [46] suggests a speed signal of
some sort: another spatial primitive. These self-motion com-
putations based on internally derived cues such as the
vestibular acceleration sense or motor commands are some-
times called idiothetic [47]. They can be used directly to
control movement—for example, to enable a fly to keep walk-
ing in a straight line [48]—or combined with other cues,
as discussed in the next section, to enable truly spatial
computations such as self-localization.

In insects, odometric information can arise from different
sources: e.g. from optic flow in bees [49], or step-counting in
desert ants [50,51]. Optic flow is one measure of distance tra-
velled in flying insects like the bee: additional inputs
contribute [52], such as the sequence of objects passed by, or
the location of the goal in relation to other spatial features (see
below). In step-counting, some parameters associated with
rhythmic walking are integrated [51]. Similar parameters might
account for distance-tracking in mammalian grid cells [53].

Another spatial primitive is boundary detection. Several
neurons in the rodent spatial system appear sensitive
to boundaries. For example, grid cells will stretch the
distance between their firing fields if the walls of a familiar
environment are moved apart [54], and place cells (discussed
in the next section) also stretch their firing fields. Interest-
ingly, the amount of stretch is only around half that
of the environment, indicating a tension between the external
spatial cues and the internal odometric ones. The discovery of
boundary-sensitive neurons (figure 5) in several regions
of the spatial system, including the subiculum [56]
and entorhinal cortex [57], provides a possible mechanism
for the anchoring of the spatial representation to
the environment.

So far, we have presented Level 2 as deriving from Level 1
information in a bottom-up fashion. Evidence suggests, how-
ever, that besides a bottom-up flow, constructs at higher
levels can also exert top-down influence on those at lower
levels, mediated by bidirectional interconnections between
sensory areas [58] and top-down projections from so-called
‘higher’ brain regions [59]. This bidirectional conclusion is
supported by growing electrophysiological evidence of the
modulation of more primary phenomena by higher-order
ones. For example, experiments on mice using virtual reality
showed that the responses of neurons in the primary visual
area, Level 1 sensory phenomena, are modulated by running
speed, a Level 2 code [60], and by spatial position, a Level 3
construct [61], with cells responding differently to the same
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Figure 4. Activity of rodent grid cells. (a) Schematic showing the recording of a single entorhinal grid cell. A rat explores a square arena, with its path (grey line)
tracked by an overhead camera. Inset oscilloscope trace shows neuronal spikes (action potentials; highlighted with red squares) from a single neuron. The red squares
on the arena depict those same spikes placed at the location where the rat was when they were emitted. They congregate in restricted regions of the arena. (b)
When the spikes plotted as in (a) are accumulated over a trial they form regularly spaced firing fields, indicative of odometry (distance-tracking). For simple sym-
metrical environments like this square platform, the firing fields form rows with a stable orientation. (c) The regular spacing indicates the integration of both
distance and direction. (d ) In three dimensions, this regularity breaks down, although the discreteness of the firing fields remains [41].

(a) (b)

 head
direction

Figure 5. Two forms of border-related firing: egocentric (a) and allocentric
(b). The plots show spikes for a single neuron overlaid on the path of a rat in
grey, as previously. The egocentric boundary cell in (a) was recorded in the
retrosplenial cortex [55]. It is ‘egocentric’ because the cell fires when the
border has a given directional relationship to the animal, as shown by the
colour coding. The boundary vector cell in (b) only fired when the rat was
against a boundary lying at a given allocentric direction (e.g. north).
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visual stimulus depending on where the animal ‘was’
(metaphorically speaking) in global (virtual) space.
(c) Level 3: spatial constructs
At Level 3, spatial primitives are combined to represent
‘place’. A sense of place falls in Level 3 if the place is encoded
as being at certain distances and directions from other places,
either precisely (metrically) or approximately (topologically).
Simply recognizing a place as familiar is not enough: there
needs also to be the incorporation of relational information.
One way of achieving this is the equivalent of what is con-
tained in a vector: the combining of distance and direction
together. Such a representation encodes metric relations—dis-
tances and directions—between at least two locations. We
consider here three such constructs: vectors, (some kinds
of) routes, and maps.
(i) Vectors
A vector is a mathematical entity possessing a length (distance)
and adirection, therefore requiring the integration of information
in these twodomains. Vectors provide ameans to define a spatial
relationship between two points in the environment.

One famous example of vectorial spatial representation is
the waggle dance of the honeybee (figure 1), a spectacular
Level 3 process. Nobel-Prize-winning work by von Frisch
demonstrated that honeybees compute the vector between
the hive and a food source [55,62–64]. These insects then com-
municate the vector to their hive-mates via the waggle dance.
The slant of the waggle on a vertical surface indicates direc-
tion, while the duration of the waggle indicates distance.
Dance-monitoring bees integrate the distance and direction
components into a vector, which then guides their own be-
haviour, enabling them to fly in a given direction (specified
by the sky compass) for a given distance (based on optic
flow) to reach a food source or a new potential nest site.
Note that using waggle-dance information to navigate
arguably falls into Level 4, using symbolic information
communicated by another animal. Recruits, however, do
not only use the dance-communicated vector but also
location-specific information present en route to the goal
(see below in §2c(iii) ’Maps’). Recruited bees cope with
detours [65], displacement of the starting location and
changes of the Sun-compass-related reference [65,66] and
they can perform shortcuts between a previously experienced
location and dance-communicated locations [62].
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As described earlier, the first-time migration of migratory
birds is generally thought to be guided by an inherited/gen-
etic programme, which predisposes a particular direction to
fly for a defined length of time. That information is sufficient
for naive migrants to approximate arrival within their
population-specific overwintering range. This navigational
mechanism is referred to as ‘vector navigation’ [34,63], an
approximate vector that perhaps just falls into Level 3.

The ubiquitous navigational tool of path integration illus-
trates well the distinction between Levels 2 and 3. Homing by
path integration is an example of vector navigation. Homing
entails direct travel back to an invisible starting point (such as
a nest) after a circuitous outwards journey, and it often makes
use of path integration, which is the process of continuous
updating of self-location. Path integration has been inten-
sively studied in small mammals [64] and also insects [22],
and it has been shown that the animal simultaneously
knows both the direction and the distance back to its home:
that is, it has a homing vector. Since it can execute that jour-
ney at any time (for example when suddenly startled), it must
carry a continuously updated record of the homing vector.

Path integration-based homing sometimes sits between
Level 2 and Level 3 processing. In homing by path integration
in ants, for example, an animal follows some internal instruc-
tional motor programme to move in a particular direction for
a particular distance. Is the output of such a system treated as
a vector (a Level 3 construct) or is it only a single instruction
to move in one direction until the strength of the signal
wanes, perhaps best considered a Level 2 mechanism? Flies
have now been found to transform their head direction rep-
resentation [27], combined with optic flow information, into
a ‘travelling direction’ [6]. This transformation of coordinate
systems requires explicit representation of distance and
direction, thus showing that flies represent a vector, a Level
3 construct. Path integration in rodents is also taken to
explicitly encode distance and position, contributing to
self-localization, and thus falls into Level 3 in our scheme.

In mammals, neurobiological work suggests that some
neurons code vector signals. Boundary vector cells fire
when the animal is positioned at a given vector from a bound-
ary. They come in two forms, allocentric and egocentric
(figure 5). Allocentric boundary vector cells fire when the
animal is located at a given, small perpendicular distance
from a particular boundary [67] and are thought to provide
information that enables place cells (described below) to loca-
lize their firing [68]. Egocentric boundary cells fire when the
boundary is located in a given direction with respect to
the animal (left, right, straight ahead, etc.) at a given distance
[69,70] and may be part of the transformation of information
between the egocentric and allocentric reference frames
[69–71]. Other neural vector signals include object vector
cells [72,73], which fire when the animal is at a vector from a
specific object, goal vector cells, which respond similarly but
for goals [74,75], and ‘home base vector’ cells, in the
retrosplenial cortex of mice, which fire when the animal is at
a specific vector relative to its home base [76].
(ii) Routes
Route navigation arises when a navigator chains together a set
of actions linked to environmental stimuli such as landmarks,
in order to reach a goal. Route-following behaviour can com-
prise Level 2 or Level 3 components, or a mixture. A series
of instructions linking a cue to a given travel direction
would in our hierarchy be a Level 2 route. Such instructional
series can form a route for ants [20–22] or sea turtles
[18,77,78], with ants using panoramic views and turtles
using the Earth’s geomagnetic cues (inclination and intensity).
We expect, however, that these route-travelling animals would
quickly learn the approximate distances of each segment of
their route such that the segments would then comprise vec-
tors, at which point they are more truly spatial (Level 3).

The hippocampal place cells may be involved in route
encoding. These cells (figure 6a), first discovered in rats
[79], fire in focal places in the environment. Each cell is
active in many spaces (compare the left versus right boxes
in figure 6a) and each given location has many cells active
there (compare the three cells in this example). A sequence
of traversed places forms a route, and place cells encode
routes (figure 6b). After an animal has traversed a sequence
of places, activating place cells in a temporal sequence,
these temporal sequences later recur spontaneously [80],
indicating memory of the spatial sequence.
(iii) Maps
Loosely speaking, when a representation of locations
captures some relational properties of these locations, the
result is a ‘cognitive map’ [81]. The existence and nature of
cognitive maps have been much debated [82] but most inves-
tigators agree that a map implies, at a minimum, having
multiple locations represented on a single coordinate
system such that an animal can flexibly compute navigational
paths between arbitrary points in the space. There may also
be intermediate representations: for example, a vector map
with multiple fixed points and multiple vectors, but which
does not represent the entire space in a common reference
frame [64,82–84]. In migrating birds, a sense of place has
been suggested for experienced migrators, in contrast to the
vector navigation of first-time migrators [74,85]. Displaced
experienced migrators change course to head to their usual
destination, while naive birds continue in the same compass
(vector) direction. Experienced birds are thought to have a
map sense of where in the world they have been displaced to.

The map sense of birds has been most carefully studied in
homing pigeons. What emerges from that research is that a
complex mosaic of maps operates over different distances,
with different properties and varying dependence on the hip-
pocampus. Best known among homing pigeon maps is the
so-called ‘navigational map’ [86,87], which enables home-
ward orientation from distant, unfamiliar locations and
appears learned from predictable variation in the distribution
of atmospheric odours [88]. The navigational map also has
properties that can be captured in a simple algorithm [89]
that relates the olfactory profile at the home loft with the
olfactory profile at a distant location [63,88], and it is, surpris-
ingly, not dependent on the hippocampus [90–92]. When
navigating over familiar spaces, homing pigeons can rely
on visual landmarks and landscape features experienced
on previous flights. However, the implementation of
modern Global Positioning System (GPS)-tracking technol-
ogy has suggested that how those landscape features are
represented depends on whether a pigeon has a hippo-
campus or not. Hippocampal-lesioned pigeons can only use
a familiar landscape scene to recall a Level 2 compass direc-
tion to fly off in the home direction, in what has been called



(a)

(b) 1s 100 ms

Cell 1

walking through place fields resting later

Cell 2

Figure 6. Place cells. (a) Data from a rat exploring two connected boxes as shown in figure 4 but with the path of the rat in yellow for one box and brown for the
other. The red dots are spikes from each of the three simultaneously recorded neurons. Note that the cells fire differently in the two boxes, and also that their firing
locations overlap considerably. (b) Place cells also encode sequences of locations. In the schematic, a rat is either walking (left) or resting/sleeping (right). The spikes
from two cells are shown, aligned along the path of the rat and also across time. Left: during walking, the spikes occur sequentially in both time and place. Right:
during resting, the same temporal sequence of spikes spontaneously recurs, suggesting reactivation of ‘memory’ for the route.
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‘site-specific compass orientation’ [93]. By contrast, pigeons
with a hippocampus can use the landscape scene directly to
navigate a route home, using known landmarks or landscape
features. This type of navigation has been referred to as pilo-
tage. Hippocampal-dependent pilotage also enables pigeons
to re-orient when needed [94]. Both the odour-gradient
map and pilotage can be characterized as Level 3 spatial
constructs; they provide positional information and have
map-like properties. However, only the corrective re-
orientation enabled by hippocampal-dependent pilotage has
the properties of a cognitive map.

Displaced honeybees can also head towards either their
hive or a feeder, after flying off a vector based on path inte-
gration [95,96]. In the most recent such detour study [96],
Wang et al. recruited honeybees flying to a food source
based on a nest-mate’s waggle dance, and displaced the
recruits to various locations. These displaced recruits flew
first a shortened part of the vector indicated by the waggle
dance and then towards the food source indicated by the
dancer. Many of them crossed over this indicated location.
To test whether the recruit embeds the vector information
into its landscape memory, the recruited bees were moved
to other places within the explored area and released [96],
and their flight paths were recorded. The flight component
controlled by the learned vector changed according to the
difference between the expected area when starting at
the ive and the experienced area, and the search flights
were directed towards the location defined by the endpoint
of the danced vector. Thus, the communication process
enables recruits to approach the indicated location from
different locations within their familiar territory. To the
authors, this ability implies knowledge of not only a vector
to fly, but also a location in physical space associated
with the vector based on map-like information about
their surroundings.
In mammals, the discovery of place cells was taken as
strong evidence for a hippocampally localized cognitive
map [97]. The distribution of place fields covers the entire
space, but the ‘map’ (pattern of place fields produced by
the population of cells active in that environment) differs
between environments, meaning that the code is a population
code: multiple cells are required to decode location.

Humans may map spatial relations among places using a
common framework (i.e. by forming a cognitive map)
although whether or not they do so in a given situation
likely depends on the environment as well as the individual’s
abilities, motivation and experience [84]. An alternative
model for how they represent spatial relations is the cognitive
graph, in which links between key nodes are encoded along
with some local metric relationships [83,98], preserving topo-
logical relationships but without the completely metric
framework. Global and consistent metric relations between
places on such a cognitive graph may not be found. Cognitive
maps and cognitive graphs may be supported by different
systems in the brain [92].

As with Level 2, interactions between levels are top-down
as well as bottom-up. A top-down example in Level 3 concerns
the interaction between the hippocampal spatial-context signal
(Level 3) and the head direction cells (Level 2). Although head
direction cells are needed for place cells to form their maps,
this map can in turn drive HD cells [86,99].
(d) Level 4: spatial symbols
We can add one more layer to the toolbox with the ability of
some species, most notably humans, to make and use exter-
nal symbolic devices and systems to navigate, i.e. spatial
symbols (Level 4). Symbols include physical maps, signage
(such as location markers, exit markers or signposts on a
walking trail) and language, which can describe relationships
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between places and landmarks and formulate route instruc-
tions. Some of the linguistic instructions now come not
from other humans, but from computerized navigational sys-
tems: for instance, SatNavs directing drivers to turn left
in 100 m. The invention of tools to guide navigation has a
long history, both as maps and mapping conventions
became progressively more refined [100], and also as tools
for measuring constructs such as time and longitude were
invented [101].

The question of how human language, at Level 4, affects
spatial cognition (and human thought in general) has gener-
ated long and continuing debates. Languages vary in
whether they encode spatial relations in allocentric terms
(north, south, east, west, etc.) or egocentric terms (left,
right) or both. Some investigators claim that linguistic sys-
tems at Level 4 constrain access to Level 3 representations
[102]; others suggest that the language one speaks merely
biases the initial construal of what one hears, along with
possibly biasing attention at encoding [103,104]. Similarly,
in cognitive development, some claim that learning language
is unique to humans in spatial re-orientation [105]; others
suggest that language is only one part of development,
which also leverages the power of human capacities for
adaptive cue combination [106].

The question arises as to whether species other than
humans use symbols. Arguably, the honeybee navigation
system exploits symbolic communication in the form of the
waggle dance, which communicates an outbound vector orig-
inating at the hive. We consider the waggle dance to contain
symbolic information; this symbolic information is read by
the recruit that has explored the environment and established
a map-like representation of space around the hive (see
above). The waggle dance is thus like human language in
that it can transmit information from one brain to another,
although the former is genetically encoded, whereas the
latter is culturally constructed: the capacity for language is
genetically encoded but the actual language is culturally
developed and transmitted.

The symbolic devices described above differ from each
other in fundamental ways. Maps provide a simultaneous
overview of multiple spatial relations and supply continuous
metric information. By contrast, language is inherently sequen-
tial (we can only say one thing at a time) and hence places a
burden on working memory. In addition, language is often
categorical, so that two locations are ‘close’ or ‘far’ from each
other, with an unspecified and possibly shifting metric.

Although there has been controversy as to whether Level
4, with its human-made techniques, transforms Level 3 com-
putations, Level 4 undoubtedly influences Level 3 processes.
For example, if a person is unsure of their position and
their companion tells them, then they become self-localized,
which we assume is accompanied by the establishment of
the appropriate firing of (Level 3) place cells. People can con-
struct cognitive maps of an environment purely based on
verbal instructions [107] and generate grid-cell firing patterns
based on verbally instructed imagination [108], indicating
top-down influence across the levels.
3. Conclusion
How can the navigational toolbox framework aid research on
spatial behaviour? The toolbox contains a hierarchically
organized set of competences (tools) that are used to build
representations that guide spatial behaviour. These are
grouped in what might be considered semantic categories,
pertaining to spatial information content independently of
any biological substrate. In describing and hierarchically clas-
sifying the core elements of spatial representation and
behaviour, the toolbox allows researchers to consider inter-
actions between different elements of spatial processing,
often at different levels in the hierarchy. Given that the tool-
box provides a common frame for all species, it sheds light on
the evolution of navigation and mechanisms that support
navigation. Looking widely can generate new insights, a
recent example being the ubiquitous role of oscillations in
orientation and navigation [109,110].

One useful function of the toolbox is to provide a
common functional language for neural mechanisms under-
girding navigation, most closely examined in rodents and
in insects. The study of neurons allows us to interrogate the
inner structure of cognitive representations and to discover
the modular organization that is present in these diverse
taxa, and which is likely universal. By manipulating these
signals experimentally, we can then determine how they are
combined in order to generate complex behaviours.

The toolbox framework invites us to examine when and
how the progression across levels marched in evolutionary
history. By teaming the toolbox framework with a broad
comparative perspective including genomic analyses, we
can start to answer questions about the origins of the marvel-
lous navigational abilities of spectacular study cases as
widely disparate as bacteria, desert ants, honeybees,
migratory and non-migratory birds, sea turtles, rodents and
primates. An evolutionary progression up the levels is
inferred, because each level is constructed with materials
from the next-lower level. Level 1 may be the most ancient
evolutionarily. Some later-evolved neuronal populations
and circuits may work at Level 2, while a bigger conglomera-
tion combines to form Level 3 constructs. Level 4, found
almost exclusively in humans, likely evolved most recently,
beginning with the appearance of symbolic thinking, linguis-
tic communication and tool-making in early hominins, and
continuing in cultural evolution at an ever-increasing pace.
Level 4 devices arise quickly: GPS-based route instructions,
for example, arose this century. The use of external props
for navigation showcases one way in which symbol use
drives cultural evolution, constituting what Jablonka &
Lamb [111] have called a symbolic dimension of evolution,
one aspect of a view of extended evolution [112].

The toolbox framework is incomplete in that it does not
address how any form of spatial representation is put into
action, which is a key challenge for movement and spatial
biologists. In an age in which discussion of embodied,
extended and enactive cognition is ongoing [113–116],
consideration of how any spatial representation is put into
action is paramount in the study of orientation and naviga-
tion. We hope that the toolbox provides a useful common
framework with which to explore these issues in diverse
taxa, and serves to unite disparate research frontiers on the
study of wayfinding.
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