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Abstract

Over the last decades, honeybees have been a fascinating model to study insect
navigation. While there is some controversy about the complexity of underlying neural
correlates, the research of honeybee navigation makes progress through both the analysis
of flight behavior and the synthesis of agent models. Since visual cues are believed to
play a crucial role for the behavioral output of a navigating bee we have developed a
realistic 3-dimensional virtual world, in which simulated agents can be tested, or in
which the visual input of experimentally traced animals can be reconstructed. In this
paper we present implementation details on how we reconstructed a large 3-dimensional
world from aerial imagery of one of our field sites, how the distribution of ommatidia
and their view geometry was modeled, and how the system samples from the scene to
obtain realistic bee views. This system is made available as an open-source project to
the community on http://github.com/bioroboticslab/bee_view.

Introduction

Honey bees are extraordinary navigators. They orient themselves in an area of several
square kilometers around their hives and they communicate spatial properties of remote
resources via the waggle dance [24]. In the last decade, harmonic radar was used to
trace the flights of navigating bees [17]. Recent results suggest that bees can robustly
find their nest, even with an invalidated path integrator achieved by displacing the
animal in a black box - or disturbed sun compass - induced by pausing the internal clock
via anesthesia [4]. Honey bees have been shown to perform shortcut flights between
known and dance-advertised sites over novel terrain [13], a behavior that indicates that
geometrical relationships between location are represented in or computed by yet
unknown neural structures. Experimental evidence for different strategies, such as path
integration and visual guidance using picture memories, have been provided [6, 21].
However, it is still unknown how those components are combined and at which level of
abstraction the different components are available to a navigating bee [5, 8].

While this question may ultimately be answered through electro-physiological
studies, we think the flight behavior of navigating bees may provide clues about the
nature of visual information that is used for a navigational tasks (such as finding back
to the colony). Experimental studies that analyzed flight trajectories so far only looked
at rather basic features, such as velocities or angles, which were then compared between
treatments.
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Figure 1. Close up photographs of a bee’s head (Megachile Fortis) from the side (left)
and from the front (right). The individual hexagonally shaped facets (the box on the
right shows the magnified area of the blue rectangle) and the central ocellus on top of
the head can be distinguished. The compound eyes have an ellipsoid shape and are
roughly parallel to each other. The strong curvature of the eye results in a large field of
view (FOV): the honeybee has close to a 360◦ FOV, only limited by the region blocked
by the thorax of the bee. Photographs courtesy of the U.S. Geological Survey.

We have mapped a large area (2.73 km2 in size) with a quadrocopter and have
created a virtual representation of our test site’s visual environment. We implemented
the imaging geometry of the honey bee’s complex eyes and are able to reconstruct the
visual input available to a flying bee given her position in the world. Previously recorded
flight trajectories of bees can now be replayed in the virtual world and hypotheses
regarding to which information bees use for a given navigational task can be tested.

In this work we present our implementation of reconstructing the bee’s view in the
virtual world. We provide a detailed description of how our system performs with
respect to runtime and imaging accuracy. We provide code and map data along with
this paper. The software is available online on GitHub.

Previous Work

The compound eyes of insects are made up of thousands (in the case of the honeybee
about 5 500) of hexagonally shaped ommatidia facing in different directions. [19] Each
ommatidium acts like a single eye with its own corneal lens and (in reference to the
apposition eye) photoreceptor. But unlike the human eye, each ommatidium receives
light from a very limited portion of the environment. An ommatidium thus can be
thought of as one picture element, or pixel [3].

In order to mimic the visual input we need to model the spatial distribution and the
field of view of each ommatidium in the compound eye. The spatial resolution of the
resulting image is determined by the interommatidial angles and the acceptance angles
(see Figure 8) of the ommatidia. Both have been mapped out by Seidl and
coworkers [19], which forms the basis of our eye model proposed here. A similar model
for generating the interommatidial angles was described in [22], for the sake of brevity
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Figure 2. Left: Interommatidial angles: The interommatidial angle (∆ϕ) is the angle
between neighbouring ommatidia. One can differentiate horizontal (elevation, ∆ϕh) and
vertical (azimuth, ∆ϕv) angles. Right: The acceptance angle (∆ρ) defines the visual
field of the individual ommatidia. The acceptance function describes the sensitivity of
the ommatidium, in relation to the angular distance from the optical axis. The angular
sensitivity function can be approximated by a two-dimensional circular Gaussian. The
full width at half maximum (FWHM) of this Gaussian is the acceptance angle of the
ommatidium [23].

called the ”Stürzl-model” from here on. It was an extension of an earlier model
proposed by Giger [9] which only covered the frontal hemisphere of the eye (180◦

horizontal field of view). The Stürzl-model covered the full field of view of the
compound eye, taking into account the boundaries of the eye’s visual field. Based on his
model, Giger developed an application called the Bee Eye Optics Simulation (BEOS). It
simulates how bees perceive 2D images placed at a specific distance from the bee [10].
Collins [7] developed a Monte Carlo raytracing simulation for honeybee vision. He takes
the geometry of the eye as a basis for calculating viewing directions, and also simulates
the spectral sensitivity of the eye.

There are also hardware implementations of how a bee perceives the world. In [25],
the spectral sensitivity of the receptors of an eye is simulated by recording images with
a UV-sensitive camera. The spatial resolution is simulated by reconstructing the bee
views depending on the interommatidial angles and acceptance angle of the ommatidia.
In [15], Neumann describes a method for mapping a cubic environment map to spherical
images with the resolution of insect vision.

While substantial previous work has been done to reproduce the visual perception of
bees, unfortunately, none of the solutions was publicly available to an interested
researcher. Our motivation thus was to implement an accurate model that potentially
runs in real-time, with an explicit raytracing instead of remapping. This model should
be generically applicable to different models of compound eyes and different world
models, and it should be freely available to the community.
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Implementation

3-D World

The 3-D world consists of three parts: 1) a 3-dimensional depth map of an experimental
field site surrounded by 2) a cylinder that holds a panorama image and 3) a sky dome
(see figure 4). The virtual world reproduced an area east of Großseelheim, a town in
central Germany. It covers an area of about two square kilometers and was used for
behavior experiments with bees over the last few years. The depth map was created in
June 2016 from aerial images taken by a drone, using stereophotogrammetry. The
resulting model has a vertical accuracy of 30 cm and a horizontal accuracy of
5 cm–10 cm. Therefore small bushes and trees appear with their respective shapes in the
depth map but smaller objects such as fences and small plants are only visible in the
texture of the model. The environment was highly structured and exhibits panoramic
features that were too far away to be depth mapped by our drone. Hence, the model
was extended by mapping a high resolution panoramic image onto a cylinder.

Figure 3. Here the problem of duplicated objects is illustrated. Objects in the 3D
model also appear on the panorama. The bushes in the background are duplicated.

Objects within the drone-captured area appear in this panorama texture irrespective
of the camera position and a duplicate would be imaged to the bee eye, one from the
actual 3-D object and one from the panorama texture. To solve this problem, duplicated
objects were identified in the 3-D world and removed manually from the panorama with
an image editing program. Larger objects (such as trees) were replaced with parts of
other panoramas, since one can not see what is behind these objects (see Figure 3).
Note that only one recording was used as panorama texture. It’s projection to the bee
eye is correct only for positions close to the position we recorded the panorama. For all
other positions in the world the projection exhibits an error proportional both to the
distance of the original object’s position to the camera and the distance of the camera
to the original panorama recording position. When moving closer to objects, the
objects’ projection grows larger, when moving away they appear smaller, when moving
parallel to the objects they shift. In a 360◦ panorama such as our virtual world, all of
these effects can be observed in any one move. However, since the area mapped by our
drone is fairly large, the errors introduced by having only a static panorama are
negligible. The resulting model has 1 000 294 faces and 499 116 vertices. The resolution
of the texture of the 3D terrain is 8000 px× 8000 px, the resolution of the texture of the
cylinder is 24 000 px× 3000 px. The model needs 472 MiB of disk space.
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Figure 4. Illustration of how the 3D model is extended. A: Wireframe of the three
Components. B: The cylinder with the panorama projected onto it. C: The hemisphere
with the sky texture. Since the sky in this model is static it may introduce bias to the
subsequent image analysis. We therefore also created a 3D model with solid white sky.
D: The 3D Terrain captured by the drone. E: The resulting 3D model with skydome
and panorama.
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Raycasting

In order to generate a realistic projection of the world’s object to our model of a bee
eye, we cast rays from each ommatidium into the world. While “ray tracing” methods
follow rays of light over multiple bounces off of scene objects, “ray casting” only takes
into account the primary ray, i.e. only the light rays between camera and object are
simulated. To achieve this, rays are generated from the camera. For each pixel of the
image to be rendered, ray directions are calculated from the eye model. The rays are
“shot” in the calculated directions. Then, every object in the scene is tested whether it
intersects with the ray. This is computationally expensive since there can be millions of
objects in a scene. After an intersection is found, the colour for the pixel is sampled
from the object’s texture at the intersection point.

Model of the Bee’s Compound Eye

In the honeybee eye, the interommatidial angles vary across the bee’s compound eye,
with a minimum at the equator (elevation = 0) and gradual increments towards the
borders of the eye. This means, ommatidia have a smaller spacing, i.e. a higher
resolution at the equator. Vertically, inter-ommatidial angles range from 1.5◦ to 4.5◦

and horizontally they range from 2.4◦ to 4.6◦. For calculating the interommatidial
angles, a routine described by Stürzl et al [22] was implemented. The routine is based
on a formula from Giger [9]. Giger approximates the measurements of interommatidial
angles determined by Seidl [19] for all ommatidia in the frontal hemisphere. Stürzl et
al. [22] extend this model to cover the full bee’s eye FOV. They also take into account
the border of the visual field. Since the authors of [22] did not provide source code, we
re-implemented the routine as an R script. This model produces angles for a total of
5440 ommatidia per eye. These are precomputed and stored in a comma separated file
for later use by the renderer. This way, the subsequent parts of the rendering pipeline
can be used for updated models of ommatidium distribution or different animal models.
These angles in 3-D space define the direction of the rays to be cast. Since individual
ommatidia do not just register light coming in from this exact direction, but rather
collect light from a field around this average vector, we need to define how much of the
scene can be sampled by one ommatidium and with how much weight samples from
differing directions are integrated into the output of an ommatidium. Stürzl et al chose
to use an acceptance angle that varies depending on the elevation and azimuth of the
ommatidia. Since the interommatidial angles also vary, a static acceptance angle may
lead to oversampling in areas of high resolution (e.g. the center of the eye) and
undersampling (at the edge of the eye). The lens diameter also varies between 17 µm
and 24 µm over the surface area of the eye, this has been interpreted as an indication for
a dynamic acceptance angle by Stürzl et al, however as of now, there aren’t any direct
electro-physiological measurements available for the whole eye. The only direct
measurements were conducted in the frontal region of the eye and came up with an
acceptance angle of 2.6◦ [12]. Stürzl et al’s acceptance angle is not radially symmetric
since it depends on horizontal and vertical interommatidial angles. Giger uses a static
acceptance angle of 2.6◦ with a radially symmetric acceptance function – an approach
followed in our rendering engine.

Sampling from the Scene

The acceptance function is a radially symmetric Gaussian with a full width at half
maximum (FWHM) that is equal to the acceptance angle. Stürzl et al use 9× 9
sampling directions per ommatidium and weight the samples with a Gaussian weight
matrix, whereas Giger uses a sampling array of 441 sampling points that are arranged
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Figure 5. Gaussian sampling function with 462 samples showing the angular deviation
from the main optical axis, the weights are shown as a third dimension.

as concentric circles around the optical axis of the ommatidium. Each sample is
weighted according to its distance from the optical axis using a gaussian pdf with zero
mean and a standard deviation of 1,1523 (in case of an acceptance angle of 2.6◦).

Similarly to Giger, we implemented a concentric disk sampling method. This is
achieved by creating a square sample matrix with coordinates ranging from -1 to 1 and
then mapping the sample points to a disk. Afterwards, the coordinates are normalized
to be in the range of −∆ρ to +∆ρ. The formula maps the x, y coordinates of a point in
a square to the X, Y coordinates of a point in a disk [18]:

(x, y) 7→ (X,Y ) =


(

2y√
π

sin xπ
4y ,

2y√
π

cos xπyx

)
, if |x| ≤ |y|

(
2x√
π

cos yπ4x ,
2x√
π

sin yπ
4x

)
, otherwise

The acceptance function that weighs the sample points depending on the distance to
the main optical axis of the ommatidium is given by:

f(x, y) = e
−
(

5
√

x2+y2

3∆p

)2

The formula approximates a bivariate Gaussian function with FWHM ∆ρ. For a ∆ρ
of 2.6◦ this equates to:

f(x, y) = e−0.410914(x
2+y2)

The weights produced from the formula are then normalized to sum up to 1.
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Figure 6. This figure compares the shape of different sampling functions viewed from
the side and the top. The top view shows the angular deviation from the main optical
axis of the ommatidia, the side view shows the horizontal deviation and the corresponding
weights. The weights determine how much the sampled color contributes to the perceived
color of the ommatidium. The Stürzl-model uses a square sampling function with 81
sampling points, and Giger uses a concentric disk sampling function with 441 sampling
points. How the number of samples affect the output image is thoroughly compared in
the results chapter.
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Core Technologies

The core renderer was written in C++. It uses Embree for intersecting the rays with
the scene and the Eigen C++ Vector Library [11] for fast vector arithmetic. Embree is
a raytracing kernel developed by Intel and offers core raytracing functionality such as
intersecting rays with the scene, while hiding the underlying acceleration structures and
CPU optimizations. Additionally it has a good documentation and, even though still
under development, the API is stable. Furthermore it is highly optimized for CPUs,
achieving good results in benchmarks. Embree is free and open source, as it is released
under the Apache 2.0 license. It runs on all modern x86 and AMD64 CPUs [26].

The rendering engine uses the Wavefront Object (.obj) file format, since it is
supported by most of the major 3D applications and it is an open, human readable
format. The core renderer was wrapped in Python, as Python is widely used in
scientific programming, so this provides an interface that can easily be used with other
scientific applications. For every C++ function that should be wrapped, a
corresponding Cython function was written that calls the C++ function. The result is
the beeview python package that, after being built with the Cython compiler, can easily
be imported to Python.

Figure 7. Left image: an example plot of a flight from the release site (RS) to the hive
(H). Red is search flight, blue is linear flight and the dotted yellow lines are gaps. The
yellow hexagon is the position of the bee. The central image shows the 2D bee view
from that position (a 25 m× 25 m portion of the map), rendered with the Radar Track
module. The right image shows the bee view rendered with the help of the beeview
python package.

The source code can be found on Github [16].

Results

In this section we look at how different rendering parameters affect the output and the
performance of the renderer. The runtime performance of raycasting directly depends
on the number of rays to cast and the amount of polygons in the scene. These are given
by the bee’s eye model and the scene described in the section “3D World”. The number
of rays needed for rendering a bee view is 2NoNs. Where No is the number of
ommatidia and Ns is the number of samples per ommatidium. For 462 samples per
ommatidium the renderer generates 5 026 560 rays and performs as many intersection
tests. The scene has over 106 faces that need to be tested for intersection.

Since the performance of the renderer directly depends on the number of rays to
cast, users might decide decreasing the number of rays for faster rendering. We
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conducted a test series to determine the minimal sample size per ommatidium at which
the renderer still yields acceptable results (see Figure 9). From visual inspection we
conclude that more than 56 rays per ommatidium may not be necessary. Lower
numbers decrease rendering times but produce choppier images.

The acceptance angle controls the sharpness of the rendered beeview (see Figure 8).
A larger acceptance angle leads to a blurrier Image. Also, objects that are farther away
are not as sharp as closer objects, since with greater distance the acceptance angle
covers a larger area.

Figure 8. The effect of different acceptance angles on the output of the renderer. left:
1.3◦, centre: 2.6◦, right: 5.2◦. A smaller acceptance angle leads to a sharper image.

We also compared if and how the rendering output is affected by using a square
sampling distribution (similar to the Stürzl-model [22] or a concentric disk distribution
similar to Giger [9] (see Figure 10. We find that there is no perceivable difference
between the two methods, except for small sample sizes, as square sampling covers a
larger area (2∆ρ = width of the square = diameter of the disk). However for larger
sample sizes the differences are less pronounced, since the samples at the edge
contribute with small weights.

We conducted a series of tests to examine the properties of the rendered bee views
(see Figure 11). The test series shows that objects in the centre of the eye appear
enlarged, since the resolution of the eye is highest here. Also, the closer the object, the
more it appears distorted, because the object covers a larger part of the field of view.
Additionally the model confirms that only a small portion of the field of view of the
eyes overlap.

Discussion

We have implemented a fast, accurate and open software package to reproduce the
visual perception of honeybees. It is the first system of this kind made available as
open-source package.

The renderer is not limited to rendering bee views, but can also render normal
images from a pinhole or a panoramic camera. It has a simple API so it can easily be
interfaced with from other applications. The beeview Python package provides bindings
to the C++ functions of the renderer. The renderer is implemented in a way that all
the settings of the renderer are flexible. This means that the renderer can easily be used
with different interommatidial and acceptance angles for simulating the vision of other
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Figure 9. These renderings show a portion of the bee view (the red rectangle) for
different sample sizes to determine how the number of sample points affects the simulated
bee vision. For this a series of bee views was rendered, with the number of sample points
per ommatidium ranging from 12 to 9900. Until n = 56 the differences between the bee
views are quite large. From n = 56 to n = 462 the image still becomes smoother, but the
differences are almost not noticeable. From n = 462 there is no conceivable difference
between the rendered bee views.

insects. The optimal settings for rendering bee views were determined so the
performance is maximized while still maintaining accuracy. With the proposed system,
behavioral studies that investigate the relation of visual input to behavioral output can
benefit from this system. The 3D model is also an ideal environment for synthetic
studies using artificial agents. The C++ API and the beeview Python package provide
all the functions needed for the movements of an agent like the one implemented by
Müller [14]. Functions for moving, rotating and rolling the camera, so all the possible
movements of a bee are covered. Furthermore it is possible to set the camera direction
directly, or via a look at(point) function. A render function that returns the elevation
angles, the azimuth angles and the sampled colours of all ommatidia as continuous
arrays for visual input of the agent. A function for measuring the distance from a point
to the next object in a specific direction, that can be used for measuring the height
above ground and setting the camera’s position accordingly. The renderer can also be
used for evaluating pattern and shape recognition experiments, as in [9], [20], [1], by
placing test images at a specific distance from the camera. Additionally the renderer
can be used for educational purposes to demonstrate how different parameters of the
compound eye affect insect vision.

Still, a number of aspects can be improved. Loading the high resolution textures of
the model has the biggest impact on the start-up time of the renderer (about 10 s).
Using a faster image library instead of the simple ppm loader could speed up the
process. Only supporting the ppm file format for images is not optimal, but can easily
be improved by using a different image library. The model eye only takes into account
the spatial resolution of honeybee’s eyes. The model could be extended to include the
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Figure 10. Comparison of differences between using a square sampling distribution.

light intensity received by the ommatidia and the spectral sensitivity of the ommatidia.
To achieve this, the 3D environment has to include UV emission information. This
could be done by recording the scene with a camera sensitive to UV-light and storing
the recorded UV-data in the red channel or alpha channel of the texture. Additionally
only the compound eyes were modelled, but for a complete bee vision simulation the
ocelli should also be taken into account. The 3D model could be extended by including
light sources and material properties. Based on these the renderer could render shadows
and other light effects by tracing the rays for multiple bounces. The polarization of light
could be simulated, as some ommatidia of the bee’s eye are sensitive to it. The scene
could be refined by using a subdivision mesh (Embree is capable of handling subdivision
meshes) [2]. In the summer of 2017, we recorded a larger 3-D model. Embedding it in a
DEM would be a good method for expanding the model, since the new model covers all
scene objects that are near the testing area, and the elevation data is sufficient for
modelling the far away hills. The method followed in this paper (with one panorama
taken from the centre of the model) would pose additional manual work to produce a
sufficiently accurate panorama. Due to the larger size of the model, and therewith more
extreme positions with respect to the panoramic recordings, the angular deviations of
objects in the panorama would likely exceed acceptable magnitudes. We plan to provide
more accurate maps of the testing grounds in the near future.
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Figure 11. These renderings show the simulation of how a bee sees a 2 m× 2 m image
from different distances. Image A: The test scene, rendered with the pinhole camera.
The test image shows squares of different colours with numbers in them. Each square has
a width and height of 25 cm. Because of the square form, distortions are easily identified.
The numbers and colours help distinguish the different squares. As mentioned before,
the renderer only reproduces the sampling geometry and not the spectral perception
of honey bees. The colors, hence, serve purely for distinguishing the squares. Image
B: The test image seen from a distance of 2 m. Image C: 1 m. D: 50 cm. E: 25 cm. F:
10 cm. The settings for the bee camera used: acceptance angle 2.6◦, disk sampling, 132
samples per ommatidium.
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