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Abstract How complex is the memory structure that hon-
eybees use to navigate? Recently, an insect-inspired parsi-
monious spiking neural network model was proposed that
enabled simulated ground-moving agents to follow learned
routes. We adapted this model to flying insects and evaluate
the route following performance in three different worlds
with gradually decreasing object density. In addition, we
propose an extension to the model to enable the model to
associate sensory inputwith a behavioral context, such as for-
aging or homing. The spiking neural network model makes
use of a sparse stimulus representation in themushroombody
and reward-based synaptic plasticity at its output synapses.
In our experiments, simulated bees were able to navigate cor-
rectly even when panoramic cues were missing. The context
extensionwe propose enabled agents to successfully discrim-
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inate partly overlapping routes. The structure of the visual
environment, however, crucially determines the success rate.
We find that the model fails more often in visually rich envi-
ronments due to the overlap of features represented by the
Kenyon cell layer. Reducing the landmark density improves
the agents route following performance. In very sparse envi-
ronments, we find that extended landmarks, such as roads or
field edges, may help the agent stay on its route, but often
act as strong distractors yielding poor route following per-
formance. We conclude that the presented model is valid for
simple route following tasks and may represent one compo-
nent of insect navigation. Additional components might still
be necessary for guidance and action selection while navi-
gating along different memorized routes in complex natural
environments.

Keywords Insect navigation · Mushroom body · Spiking
neural network model · Learning and plasticity · Artificial
agent · Insect cognition

1 Introduction

Within the insect world, honeybees exhibit extraordinary
navigational capabilities. Experimental evidence for differ-
ent strategies, such as path integration and visual guidance
using picture memories, has been presented (Collett and
Collett 2002; Srinivasan 2014). However, it remains con-
troversial how those components are combined and at which
level of abstraction the different components are available
to a navigating bee (Cruse and Wehner 2011; Cheung et al.
2014; Menzel and Greggers 2015).

Studies using harmonic radar suggest that bees can
robustly find their nest, even when invalidating the path inte-
grator through displacing the animal in a dark box, or when
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disturbing the sun compass throughpausing the internal clock
using anesthesia (Menzel and Manz 2005; Cheeseman et al.
2014). A unique perspective on the internal representation
of locations is provided by the waggle dance communication
systemwithwhich foragers can direct nestmates to field loca-
tions (von Frisch 1967). After decoding a dance, honeybees
have been shown to perform shortcut flights between known
and dance-advertised sites over novel terrain, a behavior indi-
cating that geometrical relationships between sites of interest
are represented (Menzel et al. 2011).

Analytical approaches to investigate the neural correlates
of navigation face a technological dilemma: To this date,
there is no laboratory-based protocol available to study all
aspects of long-range navigation in flying honeybees, e.g.,
using virtual environments in the laboratory as used in walk-
ing bees or flying fruit flies (for a review see Jacobs and
Menzel 2014). Due to its extraordinary learning capabilities,
the honeybee is the most popular insect model for the inves-
tigation of insect cognition and complex forms of learning
(Menzel and Giurfa 2001; Menzel 2012; Avarguès-Weber
and Giurfa 2013). Therefore, neural correlates of learning
and memory formation have been extensively studied in
the restrained honeybee and this anatomical and physiolog-
ical knowledge has been used in a number of recent model
approaches to learning and memory formation (see Sect. 4).
The mushroom body (MB), a higher-order brain center in
insects, has long been shown to be involved in associative
learning in insects (for review see Heisenberg 2003; Menzel
2012, 2014). The computational resources in terms of neu-
ron number and network complexity are highly developed
in the MB of bees and ants. The MB circuit might thus also
play a vital role in storing and retrieving higher-order infor-
mation as required in navigation (Menzel 2012; Seelig and
Jayaraman 2015; Devaud et al. 2015).

A neural network model for one component of naviga-
tion has recently been proposed by Ardin et al. (2016). This
model relies on plasticity in the mushroom body, which is
used as a visual matching unit. Walking agents (e.g., desert
ants) were shown to robustly follow routes in a virtual world.
The model maps the current view of the navigating agent
to a single dimension representing how familiar the agent is
with its current visual input. By maximizing this familiarity
with respect to the heading direction, a target location can be
reached without explicit knowledge of the field location and
without other higher-level representations of the world such
as a cognitive map (Baddeley et al. 2012).

Ants typically live in environments full of panoramic cues.
Flying insects, however, might navigate over flat terrain,
reducing the significance of the panorama and often limiting
visual input to ground cues. Here, we investigated whether
the familiarity model is applicable to the visual world of fly-
ing insects, particularly of the honeybee Apis mellifera, and
how an agent performs navigational tasks in flat environ-

ments with sparse or dense object population. To this end, we
developed virtual 3D models that provide realistic training
and testing environments for flying agents. We implemented
the spiking neural network model proposed in Ardin et al.
(2016) and adapted our system to approximate the honey-
bee’s visual input. Once trained on a sequence of images,
the network represents the route memory for one unidirec-
tional path. We extended the model to incorporate and learn
an additional route context. This allowed us to train and test
outbound and inbound foraging flights, enabling the agent to
use one model for approaching food sources and the other
for finding the nest on its way back.

2 Methods

2.1 Artificial worlds

We used a quadcopter (DJI Inspire One) to obtain aerial
recordings of an experimental field site (N 50.814207, E
8.872498) at an altitude of approx. 100m. In total, an area of
800m × 800m was covered. The recordings were processed
with the software Pix4Dmapper to create a 3D texture object
which was imported to Blender, a 3D rendering software.
The recorded field, mostly open spaces used for agriculture,
exhibited only few trees and bushes, features whose depth
information was only partially recoverable due to the flight
altitude of the drone. No panoramic features were transferred
to the map; thus, the 3D scene was named flat world (see
Fig. 1).

A second scene was composed by manually distributing
models of trees, bushes and rocks. In this tree world, no
ground texture was used. From this world, two conditions
were derived (shown in Fig. 5), one densely occupied with
objects, called high-density condition (HD), and the other
with most of the objects removed. We call this variant of the
tree world low-density condition (LD).

The Blender Python API served to define camera position
and orientation and to obtain the corresponding view of a
given agent.

2.2 Obtaining views of the environment

A relatively simple model of the bees visual apparatus was
used, following Ardin et al. (2016). We consider the imaging
resolution (angle between neighboring ommatidia) as con-
stant at 2.5◦, which corresponds to the resolution measured
in the frontal part of the honeybee compound eyes (Laugh-
lin and Horridge 1971). The horizontal field of view was
set to 295◦. Following Ardin et al. (2016) we limited the
vertical field of view (FoV) to 75◦. Although this reduced
the amount of ground cues for agents in the flat world, we
kept this parameter constant for the sake of comparison with
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Fig. 1 Reconstructed field
environment in top view. The
inset in the lower right depicts
two predefined routes used in
the experiments

results obtained in the tree world. Here, a larger vertical FoV
would have resulted in large ground areas without any visual
input.

To accelerate computations, we prerendered bee views in
Blender as grayscale images from an altitude of 1.5m and
with a field of view of 360◦ horizontally and 100◦ vertically
(0◦ being parallel to the ground). With an angular resolution
of 2.5◦, this resulted in a 144×40 pixel matrix. Correspond-
ing to the agents direction ofmovement, the imageswere then
cropped to the final field of view (295◦ horizontal and 75◦
vertical FoV), resulting in an 118×30 pixel image. Depend-
ing on the world the experiment took place in, the view was
cropped differently: We removed the lower 10 pixel rows in
the tree world, but removed the upper 10 pixel rows in the
flat world. We therewith shifted the viewing axis of the 75◦
FoV 12.5◦ upward in the tree world and by the same amount
downward in the flat world to increase the amount of visible
cues in the respective visual field.

In the final steps of preprocessing, the image was inverted
and flattened into a 3540 × 1 array. Figure 2 shows prepro-
cessed example views from all three environments. Fig. 2 Visual Input generated from the different environments

described in Sect. 2.1: The tree-HD, tree-LD and flat world
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Table 1 Neuron parameter

Parameter PN KC EN

Number of neurons 360 20,000 1

C 100 4 100

a 0.3 0.01 0.3

b −0.2 −0.3 −0.2

c −65 −65 −65

d 8 8 8

k 2 0.035 2

vr −60 −85 −60

vt −40 −25 −40

ξ N(0,0.05) N(0,0.05) N(0,0.05)

2.3 Spiking neural network model and simulation

We implemented the neural network model presented in
Ardin et al. (2016) and adjusted the number of input neu-
rons to match the dimensionality of our bee views as well as
to allow for additional context input.

We use the values reported in Ardin et al. (2016) for the
majority of model parameters (see Table 1 for details). The
model architecture as depicted in Fig. 3 consists of three lay-
ers of Izhikevich neurons (Izhikevich 2007). This is a flexible
neuron model able to reproduce a variety of spike patterns
depending on themodel parameters. The two dynamical vari-
ables in themodel are themembrane voltage v and an abstract
recovery variable u:

C v̇ = k(v − vr)(v − vt) − u + I + [ξ ∼ N (0, σ )] , (1)

u̇ = a(b(v − vr) − u) , (2)

where C is the membrane capacitance, vr and vt are rest-
ing and threshold potentials, respectively, and a, b and k are
model parameters that determine the specific spiking prop-
erties. Only the dynamics of the upstroke of the spike are
modeled and the variables are reset when v exceeds a peak
value:

if v > vt

{
v = c

u = u + d
(3)

After preprocessing, the input values are taken as input
current I to the respective neurons.

The network topology resembles the fan-in–fan-out archi-
tecture of the MB (Heisenberg 2003; Jortner et al. 2007;
Huerta and Nowotny 2009; Caron et al. 2013). The first layer
represents the population of projection neurons (5057 PNs)
that relay the input information to themushroom body. There
are two PN subpopulations, one for receiving visual input
(3540 vPNs) and one population that encodes the agents nav-

igational context (1517 cPNs). Their projection targets, the
MB intrinsic Kenyon cells (20,000 KCs), form the second
layer. EachKC receives input from 10 randomly (Caron et al.
2013) selected PNs (Szyszka et al. 2005; Turner et al. 2008)
with connection weights set to 0.25. All neurons in this fea-
ture layer project to a single mushroom body output neuron
or extrinsic neuron (EN) in the output layer. The respective
synapse parameter are given in Table 2.

The input current to the second and third layer is given
by:

I = gS(vrev − v) , (4)

where g is the synaptic weight resembling a conductance
and S represents the amount of active neurotransmitter which
increases with presynaptic spikes and decays with

Ṡ = −S

τsyn
+ φ δ(t − tpre) . (5)

The synaptic weights between first and second layer are
fixed at g = 0.25, and the plastic weights between second
and third layer are initialized with g = 2 and if subjected to
learning are quickly reduced to 0. There is no fixed quantile
in weight change. The amount of change is governed by a
three factor rule. A synapse becomes tagged, i.e., eligible
to plastic change, according to the spike-timing-dependent
plasticity (STDP) rule (for review see Morrison et al. 2008).
In this case the STDP rule tags all synapses where during the
simulation time both the presynaptic and the postsynaptic
neuron has fired. The tag change is inversely proportional to
the temporal difference between those spikes. The third factor
is the coincidence of the reinforcement signal. The amount
and duration of the reinforcer r are determined by the injected
signal R(t) and its time constant τr. The reinforcer in turn
determines the amount of weight change �g. Parameters are
chosen such that the tagged synapses are silenced over a 10
mswindow after the presentation of the reinforcement signal.

Formal definition of learning rule and parameters:

ġ = cr,

(6)

ṙ = −r

τr
+ R(t) ,

(7)

ċ = −c

τc
+ STDP(tpre − tpost)δ[(t − tpre)(t − tpost)], (8)

STDP(tpre − tpost) =

⎧⎪⎪⎨
⎪⎪⎩
A+e

tpre−tpost
τ+ if tpre − tpost < 0

0 if tpre − tpost = 0

A−e
− tpre−tpost

τ− if tpre − tpost > 0

(9)
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Fig. 3 Schematics of information processing in the neural network
model. Visual input and context input are combined in a normalized 1D
vector Î scaled by fs and fed into the network. Here N is the number of
PNs and m the number of vPNs. The population of PNs corresponds in
size to the input vector and constitutes the input layer. Their projections
diverge on to the coding layer in which the input is sparsely represented
by a set of active KCs. The projections of the coding layer converge on

a single EN, in the output layer. These projections are during training
subject to learning, which is induced by a reinforcement signal BA. The
learning results in the silencing of the connections that are involved in
exciting the EN. During evaluation the spike count of the EN is taken
as familiarity measure for the input. Connections already silenced are
indicated with dashed lines. Active neurons are depicted in blue

Table 2 Synapse parameters: time constants for the decay of S (τsyn),
c (τc) and d (τd )

Parameter PN to KC KC to PN

τsyn 3.0 8.0

φ 0.93 8.0

g 0.25 [0,2.0]

τc N/A 40 ms

τd N/A 20 ms

A+/A− N/A −1

τ+/τ− N/A 15 ms

Quantile of S releases at each presynaptic spike φ and weights of
synapses g. STDP amplitudes A+ for �t = tpre − tpost < 0 and A− for
�t > 0 as well as the respective time constants τ+/τ−

The KC population in the MB encodes input features in
a sparse manner (Kloppenburg and Nawrot 2014). Only a
small fraction of ∼5–10% of all neurons are active for any
given sensory input (Szyszka et al. 2005; Perez-Orive et al.
2002; Ito et al. 2008; Honegger et al. 2011). This popula-
tion sparseness is mainly due to the divergent connectivity

scheme (fan-out) from the input to the coding layer, and it
supports associative learning as synaptic plasticity can act
on distinct sparse patterns in the large space of KCs (Huerta
and Nowotny 2009; Nowotny and Huerta 2012). Moreover,
individual KCs react only briefly with few spikes to a given
change in the sensory input. This temporal sparseness has
been attributed to feedforward inhibition (Perez-Orive et al.
2002, but see Gupta and Stopfer 2012), feedback inhibi-
tion (Kee et al. 2015), or cellular adaptation (Nawrot 2012;
Farkhooi et al. 2013).

Thenetworkwas implemented and simulatedwithANNar-
chy, a neural network simulator with a Python interface and
a C++ code generator to efficiently simulate custom spiking
neural models and networks (Vitay et al. 2015). The simula-
tion time step parameter of the Izhikevich model was set to
dt = 0.25 ms. The differential equations were solved using
the explicit Euler method.

2.4 Normalization of visual input

The overall visual input varies greatly across different input
scenes which requires some form of input normalization.
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Normalization mechanisms have not been studied in the
visual pathway of the honeybee. However, in the olfac-
tory pathway, experimental evidence and theoretical models
indicate normalization, or gain control, through different
mechanisms. For example, the interneuron network in the
antennal lobe is hypothesized to provide gain control through
lateral inhibition as one contribution to normalization (Wil-
son and Laurent 2005; Olsen and Wilson 2008; Asahina
et al. 2009; Schmuker et al. 2011; Serrano et al. 2013). The
mechanism of cellular adaptation additionally contributes to
response normalization (Farkhooi et al. 2013).

In the present model, we did not attempt to model any
biological mechanism explicitly. Rather, we normalized the
input vector to unit length. Still, depending on the structured-
ness of the environment and on the agents view, the input
might either activate too many or too few feature neurons in
the KC layer; both scenarios lead to a drop in performance.
We circumvented this by scaling the input vector following
a simple heuristic. In preliminary experiments, we sampled
random views for each environment from a fixed spatial grid
and computed the number of active KC neurons given that
input. The scaling parameter fs was then manually adjusted
such that the number of active KC neurons was on average
200. This value corresponds to a sparse representation by
10% of the total KC population. We set fs = 18,300 for the
flat world and fs = 18,800 and fs = 17,200 for the HD and
LD condition of the tree world, respectively. These values
differ from the ones chosen in Ardin et al. (2016).

2.5 Context-dependent input

The agents behavioral context is represented as an array of
activations Im+1, …, IN that is fed into respective input neu-
rons (cPNs) which in turn provide input to the KCs in parallel
to the input from the vPNs. We limit the model to two con-
texts, such as inbound or outbound flight, represented by a
population of neurons (Nc = 1517) whose activations cor-
respond to a given context (see Fig. 4). The activations I are
scaled with the same factor fs as chosen for the activations
of vPNs.

The cPN population size was experimentally determined
to constitute 30% of the total PN population [0.3 =
Nc/(Nv + Nc)]. The same proportion was taken for the over-
all input strength. At this size, an input vector learned in one
context shows no significant familiarity when evaluated in
the other.

2.6 Route learning

A number of routes through the artificial worlds were pre-
defined, and visual inputs were sampled along these routes
at a frequency of 0.5m−1. Each of these inputs was com-
bined with a context vector corresponding to the direction

Fig. 4 Distribution of input activations over the population of cPNs, for
two distinct motivational contexts, e.g., inbound and outbound travel.
The index n denotes the nth neuron out of a population of size Nc

of the agent and then presented to the network for 40ms.
The reinforcement signal is then injected, and the simulation
continues to run for another 10ms.All connections of the fea-
ture layer to the output neuron are subject to learning. The
learning rule is a form of spike-timing-dependent plasticity
(STDP) paired with a reinforcement signal, as proposed in
Izhikevich (2007). The STDP tags the downstream synapses
activating the EN. Only if a reinforcement signal is present,
each synaptic tag is translated into the (negative) change of
the synaptic weights. STDP actualized by a reinforcement
signal has been found in the locust MB (Cassenaer and Lau-
rent 2012). The parameters of the learning rule are chosen
such that it implements one-shot learning. The weight of an
active connection is quickly reduced to zero. The same input
will therefore not elicit any more activity in the EN during
subsequent inputs.

2.7 Network evaluation

Learning is disabled during testing (Ardin et al. 2016). Due to
the learning procedure, low EN spike rates during the eval-
uation phase represent high familiarity with the input, and
high EN spike rates are produced by features that were not
present in learning and therefore signal low familiarity. In
our experiment, a given input vector is presented for 40 ms
to the trained network. To save computation time, the period
between presented inputs, in which the honeybee moves and
the network returns to its equilibrium state, is not simu-
lated. Instead all neuron and synapse variables, except for
the synaptic weights, are reset to their initial values after
each presented image, for both training and evaluation. To
determine the most familiar direction at a given location, we
evaluate the network output for a number of views obtained
by scanning the environment horizontally. Each view to be
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tested is produced by cropping the 360◦ view provided via
the Blender API. Given an initial heading, only views from
−90◦ to +90◦ enter the network for familiarity evaluation.
This implies a bias to move forward. The minimum in EN
spike count of this sequence of measurements represents the
most familiar direction. If multiple minima are found, the
closest to the initial heading direction is chosen.

3 Experiments

3.1 Setup

To evaluate whether an agent can learn routes in the tree
world, we defined three routes [tortuous (T), curved (C)
and S-shaped (S)] in a low-density (LD) and high-density
(HD) tree world (see Fig. 5). These are representative for the
diverse routes seen in field experiments, e.g., see (Riley et al.
2005; Capaldi et al. 2000; Riley et al. 2005). An agent was
first trained to the corresponding views along the focal route
(2 m step size). In the experiments, the agent is reset to the

Fig. 5 Topviewsof the treeworld inHD(left) andLD(right) condition.
The three routes constructed for the route following experiment are
depicted in color: T in red, S in blue and C in green

routes beginning, the most familiar direction is determined
as described in Sect. 2.7 and a step of 2 m is performed into
this direction. This scheme is performed repeatedly until the
agent either reaches the end of the route (distance <3 m),
counted as a success, or leaves the boundaries of a route cor-
ridor (8 m wide). This hyperparameter was experimentally
determined in preliminary tests. Once the agent goes astray,
it is reset to the nearest point on the route. This waywe obtain
a second measure of the networks performance, the number
of resets. After a reset and at the beginning of a simulation,
the agent performs a scan over the full 360◦ range. If the
agent reaches a maximum number of resets, it is considered
lost.

To quantify the route following performance, 20 runs per
routewere simulated.Theoutput of the network and therefore
the route an agent takes is dependent on the specific con-
nectivity of the layers, which is generated randomly within
certain constraints. Each run was performed with a different
instance of theMB network and therefore a different connec-
tivity. Distributions and means of the number of resets were
taken as a measure for the route following performance.

In a second experiment, we investigated whether an agent
can learn following routes with only ground cues present.
Thus, we defined two routes in the flat world, with a shared
start and endpoint.Both locations, an actual hive location that
was situated there at the time of the recordings and a bush on a
meadownorth of the hive, were only visible as ground texture
and therefore might only offer decisive information in close
range.One route directly connects start and goal location, and
the other route arrives at the goal in a detour, following clear
linear ground structures (see Fig. 1). The routes consist of 58
(straight) and 107 (detour) training views. To take a probable
increase in salience of a goal cue in this environment into
account, the success radius in this experiment was set to 5 m.
The rest of the test procedure follows the one described for
experiment 1.

In the third experiment, we investigated whether the con-
text input scheme enables an agent to learn and discriminate
routes that share a portion of the path. The experiment was
conducted in the tree world. Two routes were designed with
an overlap in their first half. The routes bifurcate then into an
east and a west route. Both routes are 90 m long resulting in
45 training views along each route. Preliminary tests showed
that an agent can learn and then follow both routes indepen-
dently. In the experiment, we trained an agent by presenting
both routes in random order. We then tested the agent by fol-
lowing the scheme described above with the context input
set to either one of the routes. As a sanity check, we trained
agents by presenting both routes but in only one context.
These agents should not be able to follow the correct route.
We performed 16 experimental trials per training type and
counted in how many trials the agent was able to reach the
goal. Resetting was disabled in this experiment.
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Fig. 6 Boxplots of reset counts for the routes: S, C and T both in
the HD and LD condition. The whiskers indicate the range of results,
whereas the boxes encompass the upper and lower quartiles, with the
median shown as a black line. The black squares denote themeans of the
distributions. In total 20 runs were conducted per route and condition

All simulationswere performed on amachinewith aAMD
Phenom II X6 1090T Processor and 24GRAM. The run time
for one simulation step was about 50 s resulting in about 440
hours of runtime for all experiments.

3.2 Statistics

To verify the statistical significance of observed differences
in route following performance, the sets of reset counts were
compared between conditions with the Chi-square test of
independence using the function “chisq.test()” of the statis-
tics software R. This test takes as the zero hypothesis that the
two compared samples are drawn from the same distribu-
tion. Considering the small sample population, the test was
performed following Hope (1968).

3.3 Results

Route following in the tree world We trained an agent on
each of the three route types and consequently tested its route
performance over 20 trials per route type andworld condition
(120 trials in total). For each trial, different instances of the
network, i.e., with different random connectivity, were used.
Due to the reset procedure, the agents reached the goal in
almost all runs. Only one flight on the S route failed because
the agent got trapped in an infinite reset loop. In the analysis
of the reset counts, this flight is excluded. It is to note that for
all routes there were also successful flights where no reset
was necessary. We call these tight successes (TS).

In all experiments, the mean reset count is smaller for
routes in theLDenvironment (seeFig. 6).However, the statis-

Table 3 Mean reset counts and proportion of tight successes for the
various routes in the HD and LD condition

Route S C T

Mean (HD) 1.42 1.0 1.65

Mean (LD) 1.10 0.25 0.85

P value 0.485 8.9e−05 0.033

TS (HD) 0.15 0.10 0.10

TS (LD) 0.20 0.75 0.30

The givenP values are the results of the Chi-square test comparing reset
distributions between both conditions

tical significance of this result varies between the route types.
The results are significant for the C and T route (P < 0.05),
but not for the S route (P � 0.05). The decrease in reset
counts is in turn manifested in an increase in tight suc-
cesses for the LD condition. These results are summarized
in Table 3.

Navigating on open fields We ran 20 trials for each route,
with a different network each. From these, five runs, three
along the straight and two along the detour route, had to be
excluded due to the agent getting stuck in an infinite reset
loop. In contrast to the experiments in the tree world, the
agent never reached the goalwithout resets. The average reset
count for the straight route is 3.12, slightly higher than for the
detour route (μ = 2.94). The standard deviations are 1.18
and 0.85, respectively.

We find no significant difference in reset count distribu-
tions (p = 0.186). However, the detour route is 98 m longer
than the straight route, and thus, it is an unfair comparison.
By normalizing by the route length, we obtain a reset rate of
0.027/m vs 0.014/m for the straight and detour route, respec-
tively.

The detour route can be divided into three straight route
segments with differing visual input and connected by two
turns between these segments (see Fig. 5). The first segment
(short edge) is a sharp edge between a field in the south and
a meadow in the north. This segment was traveled without
error in all runs. It is followed by a turn onto a long straight
segment (long edge) oriented along a rut. In some of the runs,
the agent attempted to turn in the other direction following
the bend of the field edge, which accounts for 9.4% of overall
resets. The long edge segment was followed with the second
lowest reset count (7.5% of overall resets) although it was the
longest route segment. The resets occurred in an area where
the rut was briefly disconnected. The next transitional turn,
connecting the long edge segment and the meadow segment,
failed in all runs accounting for 35.8% of overall resets. In
all runs the agent continued along the rut instead of turning
onto the meadow. The meadow segment, which leads over
the open meadow till the goal, was the most error prone with
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Table 4 Success counts for 16 runs with both routes trained in the same
context, either inbound or outbound

Context West East Failures

Context 1 5 1 2 (East)

Context 2 4 0 4 (West)

Columns indicate which goal was reached, or which direction was cho-
sen if the run was a failure

Fig. 7 Exemplary route following during the context discrimination
experiments. Trained and flown routes are indicated in green and red,
respectively. Start positions are shown as black and goal positions as
white circles together with the success radius. Left successful run with
the two routes trained in different contexts. Right failed run with both
routes trained in the same context

43.8% of overall resets and only a single run without resets
on this segment.

Context discrimination First, we trained both overlapping
routes without discriminating between them in the context
input. When tested, the agents predominantly followed the
west arm of the Y-route and in 6 runs the agent did not reach
either goal, which was counted as a failure (see Table 4;
Fig. 7). We then trained agents, with a different context input
for each route. When tested, all agents arrived successfully
at their respective goal.

Baseline To compare the results obtained with the network
model to a more tangible approach, we implemented two
baselines. In the first baseline model, we kept all training
views in memory and defined the familiarity of a given test
view as the inverse Euclidean distance to its nearest neigh-
bor. Not very surprisingly, all agents could follow the trained
views.We have not investigated further how robust this base-
line is against changes in starting position and how the route
following performance depends on object density. This has
been studied thoroughly elsewhere (Stürzl and Zeil 2007).
To allow a fairer comparison, we modeled the set of training
views with a multivariate Gaussian. The familiarity hence
was just the probability of the given view to belong to the
trained distribution. We reduced data dimensionality with
PCA to D = 50 in order to avoid the covariance matrix to
become singular. This baseline was tested along the three

route types in the LD and HD world and along both route
types in the flat world. Since the method is deterministic, we
ran 9 trials for each route, for a 3×3 grid of starting positions
centered on the route’s actual start (2 m spacing). Similar to
the neural network model, the baseline yields fewer resets
in the LD world. For the S and C routes, we find that with
the Gaussian model the agent can follow the route in all trials
except for the HDworld’s C route (7 successful arrivals). The
model, however, fails on the N route (one arrival in the HD
world, no success in LD) and the flat world (no arrivals). Par-
ticularly in the flat world, where visual features were sparse,
the network model was better able to extract the relevant
features and to represent the subspace of known views.

4 Discussion

4.1 The effect of environmental richness on model
performance

The neural network model proposed by Ardin et al. (2016)
was successfully adopted to control a simulated agent to
follow previously trained routes in panorama-rich environ-
ments.

In Ardin et al. (2016) the average number of resets for
routes trained with 80 images was 2.6. Intriguingly, our
experiments in the tree world yield even lower mean values
(HD: 1.6 resets, LD: 0.8 resets). This result can be attributed
to the feature density of theworlds. Our virtualworlds exhibit
less features than the one modeled in Ardin et al. (2016).
However, in a world with even less structure, such as our
flat world, the performance of the network deteriorates and
reset counts increase to 3.25 resets on average. Two processes
may have caused this result. First, an agent faces a larger
parallax in densely populated worlds. Thus, the agent’s view
changes more quickly as it leaves the route. The catchment
area’s dependency on the object density in theworld has been
described earlier in Stürzl and Zeil (2007). A second factor
that may have caused the differences in route following per-
formance relates to the learning process. Each neuron in the
central feature layer of the network (KC) represents a spe-
cific combination of active pixels. Each view presented in
training activates a certain number of feature neurons in the
KC layer. The more visual features are present in the view,
the more KC neurons will be firing. By applying the learning
rule, these features do not contribute to the activity of the
output neuron anymore. Hence, by using many views along
a route, the union U of all feature cells that were activated
represent the route memory. If an agent deviates from the
learned route, it is hence not necessarily caused by a view
that closely resembles one of the trained views. The view that
maximizes familiarity is just the one with the largest overlap
with U (see Supplementary Information S1 for an illustra-
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tive example). Feature-rich worlds exhibit more active KCs,
which in learning lead to the silencing of more synapses that
contribute to the output activity. To make different worlds
comparable, we scaled the input activations such that on aver-
age 200 (1%) of all features cells are active. Thus, the HD
condition does on average not activate more KC neurons.
The scaling, however, affects which input features are rep-
resented by the KC neurons. In the LD world the input is
sparse, and most of the KC features represent local image
structure. In the HD world, and even worse in the flat world,
active pixels are more uniformly distributed and, on aver-
age, the KC layer exhibits more active neurons that receive
input from almost anywhere in the image. This is reflected
by how random pairs of views overlap in feature space. To
quantify the similarity of the internal representations of two
views, we randomly sampled views from each environment
and calculated the average overlap of the internal representa-
tions. In the flat world 39% of the feature neurons are shared
on average. For the HD and LD tree worlds, this overlap is
15 and 8%, respectively. Similarly, if we apply the L2 norm
to compare the corresponding input vectors directly, we find
that on average the distance of two inputs is 0.370 for the flat
world, 0.783 for the HD and 0.788 for the LD condition in
the tree world.

The effect of the KC overlap on the learning process is
illustrated by comparing the average familiarity of randomly
sampled viewsbefore and after training a specific route. In the
flat world, we found the average EN spike count to be 79.8.
After learning it drops to an average of 11.5 (straight route in
Fig. 1). When training a similar route with the same amount
of training views in the tree world, we observe a drop from 89
to 52.3 and from89 to 75 in the averageENspike count for the
HD and LD condition respectively. Hence, in the flat world,
everything looks familiar at the end of training. Learning a
route in this world leads to a situation where signal and noise
are not well separated. We call this “signal flattening.”

The different degree of overlap in the KC representation
and the subsequent signal flattening effects might be linked
to the input sparseness and therefore to the structuredness
of the respective environment. We calculated the Gini factor
(Hurley and Rickard 2009) for all three environments (HD:
0.663; LD: 0.715; flat: 0.569), which shows a decreasing
input sparseness from LD to HD and the flat world. Since
all visual inputs are normalized to unit length, we observe
stronger activations of active input cells in sparse worlds.
Given the random PN-KC connectivity, sparse environments
yield more KCs that are activated by only a few highly active
PNs. In environmentswithmore distributed visual input,KCs
are activated by multiple inputs across the field of view and
therefore code global rather than local features. A detailed
examination of how the input structure relates to the repre-
sentation of local and global features should therefore be in
focus of future research.

4.2 Extended landmarks

Although in the examined case, traveling the detour route
gives no significant advantage in reaching the goal, our
results suggest that traveling along extended landmarks
might improve performance on long journeys considerably.
Extended landmarks are adding additional local features to
an input that else is broadly distributed over the FoV. Train-
ing a route along such structures could therefore reduce the
overall signal flattening as well as provide a prominent local
feature to follow. This is illustrated by the mean EN spike
count, which dropped to 11.5 after training the 58 views of
the straight route compared to 21.2 for training 58 views of
the detour route.

On the other hand, these types of structures pose a risk of
the navigator to become bound to the landmark, not being
able to break away. This was observed at the transition
between the long edge and the meadow. This is likely due to
the similarity, and hence familiarity, of the views along the
landmark in an otherwise rather featureless environment. At
the T intersection the agent turned into the wrong direction in
9.4%of the trials. Since themodel does not integrate compass
information, the directional ambiguity thus poses another risk
when orienting along extended landmarks. Lastly, under cer-
tain conditions similar landmarks that are not part of the route
could attract and mislead the navigator.

We performed an additional set of experiments in which
we tested the context extension. Although we regarded this
input component as representative for a categorical internal
state (such as themotivation for outbound or inboundflights),
we would like to stress the fact that this input could be vir-
tually anything, such as low-level sensory input (such as UV
or chemical cues), multimodal sensory integrations or high-
level information, such as motivation, plans and decisions.

When both routes are trained without reflecting the route
identity in the context subspace, i.e., when training both
routes in the same context, we observe two effects: The agent
either follows any of the two routes or it deviates from the
route, both ofwhich aremore likely than in the context-aware
case. Agents deviate from the route anywhere, not just at the
bifurcation. Where it deviates from the routes, or which of
the routes it follows, depends on the specific route the net-
work was trained and tested on, and the noise intrinsic to the
process.

Training the two routes with separate context inputs,
the agents were able to successfully discriminate the paths
according to the context. Generally, the route following per-
formance was increased compared to the same-context case,
likely due to a lower KC overlap between the two routes and
therewith better separability and lower overall signal flatten-
ing. It remains future work to investigate how to integrate
additional sensory components, such as compass informa-
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tion, and how reliable the navigator can follow routes using
such a continuous context.

4.3 Plasticity model

Experimental evidence for associative plasticity exists for
multiple loci in the insect system. We have here assumed
synaptic plasticity at a single site in the network, between
KCs and the MB output neurons, in our case a single EN.
This assumption follows earlier modeling approaches on
unsupervised (Nowotny et al. 2005; Montero et al. 2015)
and supervised associative olfactory learning (Huerta et al.
2004; Huerta and Nowotny 2009; Hausler et al. 2011; Wess-
nitzer et al. 2012; Smith et al. 2012; Helgadottir et al. 2013;
Bazhenov et al. 2013; Schmuker et al. 2014; Haenicke 2015)
in insects. There is accumulating experimental evidence
for plasticity at this synaptic location (Menzel and Manz
2005; Menzel 2012; Cassenaer and Laurent 2012), and ENs
have clearly been shown to encode valence in the honeybee
allowing rewarded olfactory stimuli to be unequivocally dis-
tinguished from non-rewarded stimuli (Strube-Bloss et al.
2011, 2016; Menzel 2014). Valence encoding has also been
shown for mushroom body output neurons of the fruit fly
Drosophila melanogaster (Aso et al. 2014; Hige et al. 2015).
This value code at the MB output might also reflect plas-
ticity at an earlier stage of the network. In the honeybee,
the MB constitutes a recurrent network where a popula-
tion of GABAergic inhibitory ENs receive input from KCs
and backproject to the input site of the MB. They termi-
nate on synaptic densities in the microglomerular structures
of the calyx where they may inhibit the PN boutons that
connect with postsynaptic KCs. It has been shown exper-
imentally that these inhibitory ENs change their activity
in response to classical conditioning (Haehnel and Men-
zel 2010; Filla and Menzel 2015) and thus may modulate
the olfactory input due to learning (Szyszka et al. 2005;
Haenicke 2015). This fits the observation of learning-induced
changes of odor responses in the PN boutons of the honey-
bee (Haenicke 2015). Also KCs of the honeybee (Szyszka
et al. 2008) and of the fruit fly (Dylla et al. 2017) show
plasticity in classical conditioning experiments indicating
plasticity at the MB input site. There is additional evidence
for associative plasticity in the early olfactory pathway, both
for the honeybee (e.g., Fernandez et al. (2009)) and for the
fruit fly (Schwaerzel et al. 2003). To our knowledge, plastic-
ity in the visual pathway of the honeybee has not yet been
demonstrated. With the accumulating evidence for plasticity
atmultiple locations in theMBnetwork, wemay hypothesize
that the MB circuit establishes and makes use of multi-site
plasticity and future models of navigation may exploit this
feature.

5 Outlook

Although successful route following could be reproduced
using the MBmodel, the performance highly depends on the
structure of the environment and breaks down in flat worlds.
We suggest that one limiting factor to the capacity of the net-
work is the KC overlap, which induces global accumulation
of familiarity that we called signal flattening. Reducing this
overlap therefore could greatly increase performance. This
would require further investigation into the representation of
input features in the feature layer.

Ways to reduce overlap resulting from global environ-
mental features could be to introduce a visual preprocessing
or a PN-KC connectivity which samples for local image
features, like edges or color gradients. If the average KC
overlap measured here does stem from global as well as
from local features, there might be a possible trade-off as
some similarity in the representation of neighboring views
has to be retained in order for the familiarity navigation to
work. To resolve this conflict, future investigations should
have the goal to reduce global while increasing local KC
overlap.

An alternative approach to achieve this goal is to intro-
duce heterogeneity in the KC population. In computational
models, typically all model neurons share identical parame-
ters. However, this assumption is not biologically realistic
and parameter variation across neurons and synapses in
biological networks have been suggested to support neural
processing and network function while avoiding unwanted
effects such as network synchronization (e.g., Lengler et al.
(2013)). Montero et al. (2015) studied the effect of neuronal
variability in unsupervised learning and classification in a
MB network with binary neurons and synapses. Introducing
a variable activation threshold across the population of KCs
improved learning of classification in their MB model. The
authors could further show that a combination of generalist-
type KCs (low thresholds) responding to a larger set of inputs
and specialist-type KCs (high threshold) responding to one
or few very specific inputs allowed for an optimal perfor-
mance. In our model, we used a fix average number of 200
activated KCs for all input scenarios. In the dense-world sce-
nario, we obtained good performance. However, in the flat
world we observed signal flattening and a large KC response
overlap. This broad responses might correspond to the case
of generalist-type KCs. Introducing a variable threshold in
the KC population would allow for a variation in the KC
excitability which might be better suited to adopt to different
worlds scenarios. Combining specialist-type KCs to support
highly specific associations and non-overlapping responses
even in a flat world with generalist-type KCs that are suit-
able for high-density input should be tested in future model
extensions. One step further, we might hypothesize that
neuron excitability might be dynamically changed through
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neuromodulatory input to adjust to different input scenarios
(Nadim and Bucher 2014).

To investigate navigational strategies and their respective
neural correlates with the computational approach, future
research will make use of recorded flight paths of bees,
either by deriving models from the data or by validat-
ing models against the data. We will further improve the
three-dimensional reconstruction of realistic environments
in which computational agents can be tested. This will be
of great use when analyzing honeybee flight trajectories that
were recorded in the same environment. By projecting the
virtual world using a camera model that mimics the honey-
bee eye (Stürzl et al. 2010), we can approximate the visual
input along the flight paths and can investigate how environ-
mental and visual input features correlate with the animal’s
behavior.

The proposed model involves basic features of neural
computation such as sparse coding and reward-modulated
synaptic plasticity that are essential for MB learning. We
want to add that models as presented here do not exclude
additional neural processing stages that lead to more holis-
tic representations as assumed, e.g., in the concept of a
“cognitivemap.”Higher-order cognitive concepts are always
rooted in more basic neural operations, and neither the ele-
mentary functions nor the higher-order computations oppose
each other. Elementary properties like “familiarity,” as mod-
eled here, capture important components of navigation, but
cannot be used to reproduce the full spectrum of honey-
bee behavior. Future work should therefore combine basic
computations and higher-order neural processing. Compar-
ing the behavior of computational agents with that of real
animals requires close to equivalent test procedures allowing
for the richness of environmental and cognitive conditions.
Test procedures need to ask under which conditions agents
and animals perform novel movement trajectories that are
more efficient and less risky. Cognitive behavioral biology
considers novel shortcuts as indicator for a form of naviga-
tional memory that is best conceptualized as cognitive map,
the mental representation of the environment in its geomet-
ric layout (Tolman 1948), if elementary processes like image
matching and path integration can be excluded. It will be
necessary to include such a paradigm in future modeling
approaches.

Acknowledgements We thank Barbara Webb for fruitful discussions
and Julian Petrasch and Sebastian Krieger for creating the drone map.
This work was partially funded by the Bundesministerium für Bil-
dung und Forschung (BMBF) through Grant No. 01GQ0941 to the
Bernstein Focus Learning and Memory Berlin (Insect Inspired Robots:
Towards an Understanding of Memory in Decision Making) and the
Dr. Klaus Tschira Stiftung through Grant No. 00.300.2016 (Robotik in
der Biologie: Ziele finden mit einem winzigen Gehirn. Die neuronalen
Grundlagen der Navigation der Bienen).

References

Ardin P, Peng F, Mangan M, Lagogiannis K, Webb B (2016) Using an
insect mushroom body circuit to encode route memory in complex
natural environments. PLoS Comput Biol 12(2):e1004,683

AsahinaK, LouisM, Piccinotti S, Vosshall LB (2009) A circuit support-
ing concentration-invariant odor perception in drosophila. J Biol
8(1):9

Aso Y, Sitaraman D, Ichinose T, Kaun KR, Vogt K, Belliart-Guérin
G, Plaçais PY, Robie AA, Yamagata N, Schnaitmann C et al
(2014) Mushroom body output neurons encode valence and guide
memory-based action selection in drosophila. Elife 3(e04):580

Avarguès-Weber A, Giurfa M (2013) Conceptual learning by miniature
brains. Proc R Soc Lond B Biol Sci 280(1772):20131,907

Baddeley B, Graham P, Husbands P, Philippides A (2012) A model
of ant route navigation driven by scene familiarity. PLoS Comput
Biol 8(1):e1002,336. doi:10.1371/journal.pcbi.1002336

Bazhenov M, Huerta R, Smith BH (2013) A computational framework
for understanding decision making through integration of basic
learning rules. J Neurosci 33(13):5686–5697

Capaldi EA, SmithAD,Osborne JL, Fahrbach SE et al (2000)Ontogeny
of orientation flight in the honeybee revealed by harmonic radar.
Nature 403(6769):537

Caron SJ, Ruta V, Abbott L, Axel R (2013) Random convergence
of olfactory inputs in the drosophila mushroom body. Nature
497(7447):113–117

Cassenaer S, Laurent G (2012) Corrigendum: conditional modulation
of spike-timing-dependent plasticity for olfactory learning. Nature
487(7405):128–128. doi:10.1038/nature11261

Cheeseman JF, Millar CD, Greggers U, Lehmann K, Pawley MDM,
Gallistel CR, Warman GR, Menzel R (2014) Way-finding in dis-
placed clock-shifted bees proves bees use a cognitive map. Proc
NatlAcadSci 111(24):8949–8954. doi:10.1073/pnas.1408039111

Cheung A, Collett M, Collett TS, Dewar A, Dyer F, Graham P, Mangan
M, Narendra A, Philippides A, Stürzl W, Webb B, Wystrach A,
Zeil J (2014) Still no convincing evidence for cognitive map use
by honeybees: Fig. 1. Proc Natl Acad Sci 111(42):E4396–E4397.
doi:10.1073/pnas.1413581111

Collett TS, Collett M (2002) Memory use in insect visual navigation.
Nat Rev Neurosci 3(7):542–552. doi:10.1038/nrn872

Cruse H, Wehner R (2011) No need for a cognitive map: decentralized
memory for insect navigation. PLoS Comput Biol 7(3):e1002,009.
doi:10.1371/journal.pcbi.1002009

Devaud JM, Papouin T, Carcaud J, Sandoz JC, Grünewald B, Giurfa
M (2015) Neural substrate for higher-order learning in an insect:
mushroom bodies are necessary for configural discriminations.
Proc Natl Acad Sci 112(43):E5854–E5862

Dylla KV, Raiser G, Galizia CG, Szyszka P (2017) Trace condition-
ing in drosophila induces associative plasticity in mushroom body
kenyon cells and dopaminergic neurons. Front Neural Circuits
11:42

Farkhooi F, Froese A, Muller E, Menzel R, Nawrot MP (2013) Cel-
lular adaptation facilitates sparse and reliable coding in sensory
pathways. PLoS Comput Biol 9(10):e1003,251

Fernandez PC, Locatelli FF, Person-Rennell N, Deleo G, Smith BH
(2009) Associative conditioning tunes transient dynamics of early
olfactory processing. J Neurosci 29(33):10,191–10,202

Filla I, Menzel R (2015) Mushroom body extrinsic neurons in the hon-
eybee (apis mellifera) brain integrate context and cue values upon
attentional stimulus selection. J Neurophysiol 114(3):2005–2014

Gupta N, Stopfer M (2012) Functional analysis of a higher olfactory
center, the lateral horn. J Neurosci 32(24):8138–8148

Haehnel M, Menzel R (2010) Sensory representation and learning-
related plasticity in mushroom body extrinsic feedback neurons
of the protocerebral tract. Front Syst Neurosci 4:161

123

http://dx.doi.org/10.1371/journal.pcbi.1002336
http://dx.doi.org/10.1038/nature11261
http://dx.doi.org/10.1073/pnas.1408039111
http://dx.doi.org/10.1073/pnas.1413581111
http://dx.doi.org/10.1038/nrn872
http://dx.doi.org/10.1371/journal.pcbi.1002009


Biol Cybern (2018) 112:113–126 125

Haenicke J (2015) Modeling insect inspired mechanisms of neural and
behavioral plasticity. PhD thesis, Freie Universität Berlin

Hausler C, Nawrot MP, SchmukerM (2011) A spiking neuron classifier
network with a deep architecture inspired by the olfactory system
of the honeybee. In: 5th International IEEE/EMBS conference on
neural engineering (NER), pp 198–202

Heisenberg M (2003) Mushroom body memoir: from maps to models.
Nat Rev Neurosci 4(4):266–275. doi:10.1038/nrn1074

Helgadottir LI, Haenicke J, Landgraf T, Rojas R, Nawrot MP (2013)
Conditioned behavior in a robot controlled by a spiking neural
network. In: 6th International IEEE/EMBS conference on neural
engineering (NER), 2013, pp 891–894

Hige T, Aso Y, Rubin GM, Turner GC (2015) Plasticity-driven individ-
ualization of olfactory coding in mushroom body output neurons.
Nature 526(7572):258–262

Honegger KS, Campbell RA, Turner GC (2011) Cellular-resolution
population imaging reveals robust sparse coding in the drosophila
mushroom body. J Neurosci 31(33):11,772–11,785

Hope ACA (1968) A simplified Monte Carlo significance test proce-
dure. J Roy Stat Soc B 30(3):582–98. doi:10.2307/2984263

Huerta R, Nowotny T (2009) Fast and robust learning by reinforce-
ment signals: explorations in the insect brain. Neural Comput
21(8):2123–2151

Huerta R, Nowotny T, García-Sanchez M, Abarbanel HD, Rabinovich
MI (2004) Learning classification in the olfactory system of
insects. Neural Comput 16(8):1601–1640

Hurley N, Rickard S (2009) Comparing measures of sparsity. IEEE
Trans Inf Theory 55(10):4723–4741

Ito I, Ong RCy, Raman B, StopferM, (2008) Sparse odor representation
and olfactory learning. Nat Neurosci 11(10):1177–1184

Izhikevich EM (2007) Solving the distal reward problem through link-
age of STDP and dopamine signaling. Cereb Cortex 17(10):2443–
2452. doi:10.1093/cercor/bhl152

Jacobs LF, Menzel R (2014) Navigation outside of the box: what the
lab can learn from the field and what the field can learn from the
lab. Mov Ecol 2(1):3

Jortner RA, Farivar SS, Laurent G (2007) A simple connectivity scheme
for sparse coding in an olfactory system. J Neurosci 27(7):1659–
1669

Kee T, Sanda P, Gupta N, Stopfer M, BazhenovM (2015) Feed-forward
versus feedback inhibition in a basic olfactory circuit. PLoS Com-
put Biol 11(10):e1004,531

Kloppenburg P, Nawrot MP (2014) Neural coding: sparse but on time.
Curr Biol 24(19):R957–R959

Laughlin SB, Horridge GA (1971) Angular sensitivity of the retinula
cells of dark-adapted worker bee. Zeitschrift für Vergleichende
Physiologie 74(3):329–335. doi:10.1007/BF00297733

Lengler J, Jug F, Steger A (2013) Reliable neuronal systems: the impor-
tance of heterogeneity. PLoS ONE 8(12):e80,694

Menzel R (2012) The honeybee as a model for understanding the basis
of cognition. Nat Rev Neurosci 13(11):758–768

Menzel R (2014) The insect mushroom body, an experience-dependent
recoding device. J Physiol Paris 108(2):84–95

Menzel R, Giurfa M (2001) Cognitive architecture of a mini-
brain: the honeybee. Trends Cogn Sci 5(2):62–71. doi:10.1016/
S1364-6613(00)01601-6

Menzel R, Greggers U (2015) The memory structure of navigation
in honeybees. J Comp Physiol A Neuroethol Sens Neural Behav
Physiol 201(6):547–61. doi:10.1007/s00359-015-0987-6

MenzelR,ManzG (2005)Neural plasticity ofmushroombody-extrinsic
neurons in the honeybee brain. J Exp Biol 208(Pt 22):4317–32.
doi:10.1242/jeb.01908

Menzel R, Kirbach A, Haass WD, Fischer B, Fuchs J, Koblofsky M,
Lehmann K, Reiter L, Meyer H, Nguyen H, Jones S, Norton P,
Greggers U (2011) A common frame of reference for learned

and communicated vectors in honeybee navigation. Curr Biol
21(8):645–650. doi:10.1016/j.cub.2011.02.039

Montero A, Huerta R, Rodriguez FB (2015) Regulation of specialists
and generalists by neural variability improves pattern recognition
performance. Neurocomputing 151:69–77

Morrison A, DiesmannM, Gerstner W (2008) Phenomenological mod-
els of synaptic plasticity based on spike timing. Biol Cybern
98(6):459–478

Nadim F, Bucher D (2014) Neuromodulation of neurons and synapses.
Curr Opin Neurobiol 29:48–56

NawrotMP (2012)Dynamics of sensory processing in the dual olfactory
pathway of the honeybee. Apidologie 43(3):269–291

Nowotny T, Huerta R (2012) On the equivalence of Hebbian learning
and the SVM formalism. In: 46th annual conference on informa-
tion sciences and systems (CISS), 2012, pp 1–4

Nowotny T, Huerta R, Abarbanel HD, Rabinovich MI (2005) Self-
organization in the olfactory system: one shot odor recognition
in insects. Biol Cybern 93(6):436–446

Olsen SR, Wilson RI (2008) Lateral presynaptic inhibition mediates
gain control in an olfactory circuit. Nature 452(7190):956–960

Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI, Laurent
G (2002) Oscillations and sparsening of odor representations in
the mushroom body. Science 297(5580):359–365

Riley JR, Greggers U, Smith AD, Reynolds DR, Menzel R (2005) The
flight paths of honeybees recruited by the waggle dance. Nature
435(7039):205

Schmuker M, Yamagata N, Nawrot M, M R, (2011) Parallel represen-
tation of stimulus identity and intensity in a dual pathway model
inspired by the olfactory system of the honeybee. Front Neuroeng
4:17

Schmuker M, Pfeil T, Nawrot MP (2014) A neuromorphic network
for generic multivariate data classification. Proc Natl Acad Sci
111(6):2081–2086

Schwaerzel M, Monastirioti M, Scholz H, Friggi-Grelin F, Birman
S, Heisenberg M (2003) Dopamine and octopamine differentiate
between aversive and appetitive olfactory memories in drosophila.
J Neurosci 23(33):10,495–10,502

Seelig JD, Jayaraman V (2015) Neural dynamics for landmark orien-
tation and angular path integration. Nature 521(7551):186–191.
doi:10.1038/nature14446

Serrano E, Nowotny T, Levi R, Smith BH,Huerta R (2013) Gain control
network conditions in early sensory coding. PLoS Comput Biol
9(7):e1003,133

Smith BH, Huerta R, Bazhenov M, Sinakevitch I (2012) Distributed
plasticity for olfactory learning andmemory in the honey bee brain.
In: Honeybee neurobiology and behavior, Springer, pp 393–408

Srinivasan MV (2014) Going with the flow: a brief history of the
study of the honeybee’s navigational odometer’. J Comp Physiol
A 200(6):563–573. doi:10.1007/s00359-014-0902-6

Strube-BlossMF,NawrotMP,Menzel R (2011)Mushroombody output
neurons encode odor-reward associations. J Neurosci 31(8):3129–
3140

Strube-Bloss MF, Nawrot MP, Menzel R (2016) Neural correlates of
side-specific odour memory in mushroom body output neurons.
Proc R Soc B 283(1844):20161,270

Stürzl W, Zeil J (2007) Depth, contrast and view-based homing in out-
door scenes. Biol Cybern 96(5):519–531

Stürzl W, Böddeker N, Dittmar L, Egelhaaf M (2010) Mimicking hon-
eybee eyes with a 280 field of view catadioptric imaging system.
Bioinspir Biomim 5(3):036,002

Szyszka P, Ditzen M, Galkin A, Galizia CG, Menzel R (2005) Spars-
ening and temporal sharpening of olfactory representations in the
honeybee mushroom bodies. J Neurophysiol 94(5):3303–3313

Szyszka P, Galkin A, Menzel R (2008) Associative and non-associative
plasticity in Kenyon cells of the honeybee mushroom body. Front
Syst Neurosci 2:3. doi:10.3389/neuro.06.003.2008

123

http://dx.doi.org/10.1038/nrn1074
http://dx.doi.org/10.2307/2984263
http://dx.doi.org/10.1093/cercor/bhl152
http://dx.doi.org/10.1007/BF00297733
http://dx.doi.org/10.1016/S1364-6613(00)01601-6
http://dx.doi.org/10.1016/S1364-6613(00)01601-6
http://dx.doi.org/10.1007/s00359-015-0987-6
http://dx.doi.org/10.1242/jeb.01908
http://dx.doi.org/10.1016/j.cub.2011.02.039
http://dx.doi.org/10.1038/nature14446
http://dx.doi.org/10.1007/s00359-014-0902-6
http://dx.doi.org/10.3389/neuro.06.003.2008


126 Biol Cybern (2018) 112:113–126

Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev
55(4):189

Turner GC, Bazhenov M, Laurent G (2008) Olfactory representations
by. J Neurophysiol, pp 734–746. doi:10.1152/jn.01283.2007

Vitay J, Dinkelbach HÜ, Hamker FH (2015) ANNarchy: a code gener-
ation approach to neural simulations on parallel hardware. Front
Neuroinform 9:19. doi:10.3389/fninf.2015.00019

von Frisch K (1967) The dance language and orientation of bees. Har-
vard University Press, Harvard

Wessnitzer J, Young JM, Armstrong JD, Webb B (2012) A model of
non-elemental olfactory learning in drosophila. JComputNeurosci
32(2):197–212

Wilson RI, Laurent G (2005) Role of gabaergic inhibition in shaping
odor-evoked spatiotemporal patterns in the drosophila antennal
lobe. J Neurosci 25(40):9069–9079

123

http://dx.doi.org/10.1152/jn.01283.2007
http://dx.doi.org/10.3389/fninf.2015.00019

	A neural network model for familiarity and context learning during honeybee foraging flights
	Abstract
	1 Introduction
	2 Methods
	2.1 Artificial worlds
	2.2 Obtaining views of the environment
	2.3 Spiking neural network model and simulation
	2.4 Normalization of visual input
	2.5 Context-dependent input
	2.6 Route learning
	2.7 Network evaluation

	3 Experiments
	3.1 Setup
	3.2 Statistics
	3.3 Results

	4 Discussion
	4.1 The effect of environmental richness on model performance
	4.2 Extended landmarks
	4.3 Plasticity model

	5 Outlook
	Acknowledgements
	References




